1. Zhang GY*, Guo ZW, Qu YL**, Mi CW. Global and local flexotronic effects induced by external magnetic fields in warping of a semiconducting composite fiber. Composite Structures, 2022, 295: 115711-1~12. 2. Zhang GY*, He ZZ, Qin JW, Hong, J. Magnetically tunable bandgaps in phononic crystal nanobeams incorporating microstructure and flexoelectric effects. Applied Mathematical Modelling, 2022, 111: 554-566. 3. He, Z., Zhang, G.*, Chen, X., Cong, Y., Gu, S., & Hong, J.** (2022). Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates. International Journal of Mechanical Sciences, 107892. 4. Lai, P., He, Z., Cong, Y., Gu, S., & Zhang, G.. Bandgap Analysis of Periodic Composite Microplates with Curvature-Based Flexoelectricity: A Finite Element Approach. Acta Mechanica Solida Sinica, 1-8. 5. Xia, Z. X., Zhang, G. Y., Cong, Y., & Gu, S. T.. A non-classical couple stress based Mindlin plate finite element framework for tuning band gaps of periodic composite micro plates. Journal of Sound and Vibration, 529, 116889. 6. Yin SH, Xiao ZB, Zhang GY*, Bui TQ**, Wang XF, Liu JG. Size-dependent postbuckling for microbeams: analytical solutions using a reformulated strain gradient elasticity theory. Acta Mechanica, 2022, 233: 5045-5060. 7. Qu YL, Guo ZW, Zhang GY*, Gao XL**, Jin F. A new model for circular cylindrical Kirchhoff–Love shells incorporating microstructure and flexoelectric effects. Journal of Applied Mechanics, 2022, 89: 121010-1~15. 8. Yin SH*, Xiao ZB, Zhang GY**, Liu JG, Gu ST. Size-dependent buckling analysis of microbeams by an analytical solution and isogeometric analysis. Crystals, 2022, 12: 1282-1~19. 9. Guo ZW, Qu YL, Zhang GY*, Mi CW**. Second-order analysis of wave propagation in an MEE microbeam using Mindlin–Medick approximation. Acta Mechanica, 2022, 233: 4141-4159. 10. Hong J*, Wang SP, Qiu XY, Zhang GY**. Bending and wave propagation analysis of magneto-electro-elastic functionally graded porous microbeams. Crystals, 2022, 12: 732-1~16. 11. Zhang GY*, Guo ZW, Qu YL, Gao XL**, Jin F. A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects. Acta Mechanica, 2022, 233: 1719-1738. 12. Qu YL, Zhang GY*, Gao XL**, Jin F. A new model for thermally induced redistributions of free carriers in centrosymmetric flexoelectric semiconductor beams. Mechanics of Materials, 2022, 171: 104328-1~11. 13. Qu YL, Guo ZW, Jin F*, Zhang GY**. A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part II-variational formulations and applications in plates. Mathematics and Mechanics of Solids, 2022, 27: 2567-2587. 14. Zhang GY*, Zheng CY, Mi CW, Gao XL**. A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory. Mechanics of Advanced Materials and Structures, 2022, 29: 2521-2530. 15. Shen W, Zhang GY*, Gu ST**, Cong Y. A transversely isotropic magneto-electro-elastic circular Kirchhoff plate model incorporating microstructure effect. Acta Mechanica Solida Sinica, 2022, 35: 185-197. 16. Zhang GY, Shen W, Gu ST*, Gao XL**, Xin ZQ. Band gaps for elastic flexural wave propagation in periodic composite plate structures with star-shaped, transversely isotropic, magneto-electro-elastic inclusions. Acta Mechanica, 2021, 232: 4325-4346. 17. Hong J, Wang SP, Zhang GY*, Mi CW. On the bending and vibration analysis of functionally graded magneto-electro-elastic Timoshenko microbeams. Crystals, 2021, 11: 1206. 18. Zhang GY*, Qu YL, Guo ZW, Jin F. Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects. Acta Mechanica Sinica, 2021, 37: 1509-1519. 19. Yin SH*, Xiao ZB, Deng Y, Zhang GY**, Liu JG, Gu ST. Isogeometric analysis of size-dependent Bernoulli–Euler beam based on a reformulated strain gradient elasticity theory. Computers & Structures, 2021, 253: 106577-1~12. 20. Hong J*, He ZZ, Zhang GY**, Mi CW. Tunable bandgaps in phononic crystal microbeams based on microstructure, piezo and temperature effects. Crystals, 2021, 11: 1029-1~12. 21. Hong J, He ZZ, Zhang GY*, Mi CW. Size and temperature effects on band gaps in periodic fluid-filled micropipes. Applied Mathematics and Mechanics, 2021, 42: 1219-1232. 22. Qu YL, Jin F*, Zhang GY**. Mechanically induced electric and magnetic fields in the bending and symmetric-shear deformations of a microstructure-dependent FG-MEE composite beam. Composite Structures, 2021, 278: 114554-1~18. 23. Hong J, Wang SP, Zhang GY*, Mi CW**. Bending, buckling and vibration analysis of complete microstructure-dependent functionally graded material microbeams. International Journal of Applied Mechanics, 2021, 13: 2150057-1~24. 24. Zhang GY*, Gao XL**, Zheng CY, Mi CW. A non-classical Bernoulli-Euler beam model based on a simplified micromorphic elasticity theory. Mechanics of Materials, 2021, 161: 103967-1~13. 25. Zhang GY, Gao XL*, Littlefield AG. A non-classical model for circular cylindrical thin shells incorporating microstructure and surface energy effects. Acta Mechanica, 2021, 232: 2225-2248. 26. Zhang GY*, Zheng CY, Qiu XY, Mi CW**. Microstructure-dependent band gaps for elastic wave propagation in a periodic microbeam structure. Acta Mechanica Solida Sinica, 2021, 34: 527-538. 27. Qu YL, Zhang GY*, Fan YM, Jin F. A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I–reconsideration of curvature-based flexoelectricity theory. Mathematics and Mechanics of Solids, 2021, 26: 1647-1659. 28. Zhang GY, Gao XL*. A non-classical model for first-order shear deformation circular cylindrical thin shells incorporating microstructure and surface energy effects. Mathematics and Mechanics of Solids, 2021, 26: 1294-1319. 29. Yin SH, Deng Y, Yu TT, Gu ST, Zhang GY*. Isogeometric analysis for non-classical Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Applied Mathematical Modelling, 2021, 89: 470-485. 30. Zhang GY, Gao XL. Band gaps for wave propagation in 2-D periodic three-phase composites with coated star-shaped inclusions and an orthotropic matrix. Composites Part B: Engineering, 2020, 182: 107319-1~13. 31. Qu YL, Li P, Zhang GY*, Jin F**, Gao XL. A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory. Acta Mechanica, 2020, 231: 4323-4350. 32. Zhang GY*, Qu YL, Gao XL**, Jin F. A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mechanics of Materials, 2020, 149: 103412-1~13. 33. Hong J, Zhang GY*, Wang X, Mi CW**. A simplified strain gradient Kirchhoff rod model and its applications on microsprings and microcolumns. Journal of Mechanics of Materials and Structures, 2020, 15: 203-223. 34. Zhang GY, Gao XL*. A new Bernoulli–Euler beam model based on a reformulated strain gradient elasticity theory. Mathematics and Mechanics of Solids, 2020, 25: 630-643. 35. Zhang GY*, Gao XL. Elastic wave propagation in a periodic composite plate structure: band gaps incorporating microstructure, surface energy and foundation effects. Journal of Mechanics of Materials and Structures, 2019, 14: 219-236. 36. Zhang GY, Gao XL*. Band gaps for flexural elastic wave propagation in periodic composite plate structures based on a non-classical Mindlin plate model incorporating microstructure and surface energy effects. Continuum Mechanics and Thermodynamics, 2019, 31: 1911-1930. 37. Zhang GY, Gao XL*. A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mechanica, 2019, 230: 243-264. 38. Zhang GY, Gao XL*. Elastic wave propagation in 3-D periodic composites: band gaps incorporating microstructure effects. Composite Structures, 2018, 204: 920-932. 39. Zhang GY, Gao XL, Bishop JE, Fang HE. Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Composite Structures, 2018, 189: 263-272. 40. Zhang GY, Gao XL, Ding SR. Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mechanica, 2018, 229: 4199-4214. 41. Zhang GY, Gao XL*, Guo ZY. A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mechanica, 2017, 228: 3811-3825.
|