[1] Qi J*, Zou W, Liu J, Li S, Wang J. (2024). Shear strength damage model and damage removal FE modeling of stud shear connectors embedded in UHPC. Composite Structures, 331: 117880. [2] Meza A, Salinas R, Qi J, Sierra R, Chavez F, Reyes R. (2024). Mechanical characterization of SFRC with annealed and galvanized steel fibers by different test typologies. Structural Concrete. [3] Li H, Wang W, Gao C, Li S, Wang J, Qi J. (2024). Shape memory alloy-reinforced UHPC tube confined bridge piers for enhancing the seismic resistance of highway bridges. Engineering Structures, 302: 117411. [4] Zhou K, Qi J*, Wang J. (2023). Post-cracking punching shear behavior of concrete flat slabs partially reinforced with full-depth UHPC: experiment and mechanical model. Engineering Structures, 275: 115313. [5] Zhang Q, Feng Y, Cheng Z, Jiao Y, Cheng H, Wang J, Qi J*. (2022). Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment. Computers and Concrete, 30(3): 175-183. [6] Li Z, Qi J*, Hu Y, Wang J. (2022). Estimation of bond strength between UHPC and reinforcing bars using machine learning approaches. Engineering Structures, 262: 114311. [7] Li X, Lu X, Qi J, Bao Y. (2022). Flexural behavior of fire-damaged concrete beams repaired with strain-hardening cementitious composite. Engineering Structures, 261: 114305. [8] Du L, Qi J*, Cheng Z, Wang J. (2022). Finite element modeling of UHPC slabs with dovetail joints and steel wire mesh using an innovative interfacial treating method. Structures, 37: 745-755. [9] Qi J, Cheng Z, Ma ZJ, Wang J, Liu J. (2021). Bond strength of reinforcing bars in ultra-high performance concrete: experimental study and fiber-matrix discrete model. Engineering Structures, 248: 113290. [10] Qi J, Cheng Z, Zhou K, Zhu Y, Wang J, Bao Y. (2021). Experimental and theoretical investigations of UHPC-NC composite slabs subjected to punching shear-flexural failure. Journal of Building Engineering, 44: 102662. [11] Qi J, Yao Y, Wang J, Han F, Lv J. (2021). Effect of sand grain size and fiber size on macro-micro interfacial bond behavior of steel fibers and UHPC mortars. Magazine of Concrete Research, 73(5): 228-239. [12] Hu Y, Zhao G, He Z, Qi, J, Wang J. (2020). Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC. Steel and Composite Structures, 36(1): 103-118. [13] Ding X, Hao J, Chen Z, Qi J, Marco M. (2020). New mix design method for recycled concrete using mixed source concrete coarse aggregate. Waste and Biomass Valorization, 11: 5431-5443. [14] Qi J, Cheng Z, Wang J, Zhu Y, Li W. (2020). Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges. Structural Engineering and Mechanics, 75(1): 49-57. [15] Qi J, Tang Y, Cheng Z, Xu R, Wang J. (2020). Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges. Advances in Concrete Construction,9(4): 413-421. [16] Tang Y, Du E, Wang J, Qi J*. (2020). A co-rotational curved beam element for geometrically nonlinear analysis of framed structures. Structures, 27: 1202-1208. [17] Feng Y, Qi J, Wang J, Zhang W, Zhang Q. (2020). Rotation construction of heavy swivel arch bridge for high-speed railway. Structures, 26: 755-764. [18] Qi J, Cheng Z, Wang J, Tang Y. (2020). Flexural behavior of steel-UHPFRC composite beams under negative moment. Structures, 24: 640-649. [19] Qi J, Ma ZJ, Wang J, Bao Y. (2020). Post-cracking shear behaviour of concrete beams strengthened with externally prestresssed tendons. Structures,23: 214-224. [20] Ding X, Qi J, Fang W, Chen M, Chen Z. (2020). Improvement on properties of recycled concrete with coarse ceramic vase aggregates using KH-550 surface treating technology. European Journal of Environmental and Civil Engineering, 24(1): 1-16. [21] Qi J, Wang J, Zhang Z, Li W, Hu Y. (2020). Flexural behavior of an innovative dovetail UHPC joint using steel wire mesh interface treatment in composite bridges. Advances in Structural Engineering,23(6): 1142-1153. [22] Qi J, Bao Y, Wang J, Li L, Li W. (2019). Flexural behavior of an innovative dovetail UHPC joint in composite bridges under negative bending moment. Engineering Structures, 200: 109716. [23] Feng Y, Qi J, Wang J, Liu J, Liu J. (2019). Flexural behavior of the innovative CA-UHPC slabs with high and low reinforcement ratio. Advances in Materials Science and Engineering, 2019: 6027341. [24] Qi J,Hu Y, Wang J, Li W. (2019). Behavior and strength of headed stud shear connectors in ultra-high performance concrete of composite bridges. Frontiers of Structural and Civil Engineering, 13(5): 1138-1149. [25] Qi J, Wang J, Feng Y. (2019). Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate. Advances in Concrete Construction, 7(4): 219-229. [26] Qi J, Ding X, Wang Z, Hu Y. (2019). Shear strength of fiber-reinforced high-strength steel ultra-high-performance concrete beams based on refined calculation of compression zone depth considering concrete tension. Advances in Structural Engineering, 22(8): 2006-2018. [27] Wang J, Qi J, Teng T, Xu Q, Xiu H. (2019). Static behavior of large stud shear connectors in steel-UHPC composite structures. Engineering Structures, 178: 534-542. [28] Wang Z, Wang J, Qi J. (2019). Explicit analytical model for seismic shear strength of RC bridge columns with different failure modes. Magazine of Concrete Research, 71(18): 935-948. [29] Qi J, Wu Z, Ma ZJ, Wang J. (2018). Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Construction and Building Materials, 191: 764-774. [30] Wang J, Xu Q, Yao Y, Qi J, Xiu H. (2018). Static behavior of grouped large headed stud-UHPC shear connectors in composite structures. Composite Structures, 206: 202-214. [31] Qi J, Wang J, Ma ZJ. (2018). Flexural response of high-strength steel-ultra-high-performance fiber reinforced concrete beams based on a mesoscale constitutive model: experiment and theory. Structural Concrete, 19(3): 719-734. [32] Qi J, Ma ZJ, Wang J. (2017). Shear strength of UHPFRC beams: mesoscale fiber-matrix discrete model. Journal of Structural Engineering, 143(4): 04016209. [33] Qi J, Wang J, Li M, Chen L. (2017). Shear capacity of stud shear connectors with initial damage: experiment, FEM model and theoretical formulation. Steel and Composite Structures, 25(1): 79-92. [34] Qi J, Wang J, Ma ZJ, Teng T. (2016). Shear behavior of externally prestressed concrete beams with draped tendons. ACI Structural Journal, 113(4): 677-688. [35] Qi J, Ma ZJ, Wang J, Liu T. (2016). Post-cracking shear strength and deformability of HSS-UHPFRC beams. Structural Concrete, 17(6): 1033-1046. [36] Wang J, Qi J, Zhang J. (2014). Optimization method and experimental study on the shear strength of externally prestressed concrete beams. Advances in Structural Engineering, 17(4): 607-615. [37] 胡张莉, 刘加平, 赵羽习, 赵海涛, 戚家南, 王育江, 韩方玉, 金鸣. 数据驱动的混凝土材料-结构一体化设计[J]. 建筑结构学报, 2024, 45(8): 20-33. [38] 胡玉庆, 戚家南, 陈东, 崔冰, 王景全. 考虑纤维桥接退化的钢筋UHPC梁受弯承载能力计算方法[J]. 中国公路学报, 2024, 37(7):168-178. [39] 戚家南, 邹伟豪, 李智杰, 程杭, 程钊, 邹星星, 王景全. 数据驱动的UHPC与钢筋界面粘结强度研究[J]. 中国公路学报, 2023, 36(9): 61-72. [40] 戚家南, 程杭, 程钊, 王景全, 李明. 栓钉剪力连接件传力机理与有效受力长度研究[J]. 中南大学学报(自然科学版), 2023, 54(5): 1894-1904. [41] 戚家南, 程杭, 邹伟豪, 王景全. 负弯矩作用下UHPC湿接缝桥面板裂后性能研究[J]. 湖南大学学报(自然科学版), 2022, 49(11): 57-66. [42] 李仁强, 戚家南*, 衣忠强, 王贤强, 程杭, 王景全. 考虑预应力提高效应的混凝土梁抗剪承载力[J]. 东南大学学报(自然科学版), 2022, 52(3): 455-460. [43] 戚家南, 王景全, 周凯, 刘建忠, 李文超. UHPC梁受剪性能试验与抗剪承载力计算方法[J]. 中国公路学报, 2020, 33(7): 95-103. [44] 王景全,戚家南*, 刘加平. 基于细观本构模型的UHPC梁受弯全过程分析[J]. 建筑结构学报, 2020, 41(9): 137-144. [45] 戚家南, 王景全. 考虑翼缘影响的钢筋混凝土T梁抗剪承载力[J]. 东南大学学报(自然科学版), 2019, 49(4): 638-644. [46] 王震, 王景全, 戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报, 2016, 50(5): 864-870. [47] 戚家南,王景全, 吕志涛. 体外预应力混凝土梁受剪承载力计算方法研究[J]. 建筑结构学报, 2015, 36(1): 92-97. [48] 王景全,戚家南. 有腹筋与无腹筋钢筋混凝土梁抗剪承载力统一计算方法[J]. 土木工程学报, 2013, 46(7): 47-57. |