郑彦龙


通讯方式:

研究方向:

办公地点:

 

 

个人简介

教育经历:

  • 2013-2017,澳大利亚蒙纳士大学,工学院土木工程系,哲学博士

  • 2010-2013,同济大学,土木工程学院地下建筑与工程系,隧道及地下工程专业工学,硕士

  • 2006-2010,中南大学,资源与安全工程学院,采矿与岩土工程工学,学士

  • 曾赴宾夕法尼亚州立大学、华威大学和诺丁汉大学短期访学

科研与学术工作经历:

·         2018/11-,东南大学,土木工程学院桥隧与地下工程系,副研究员

·         2018/01-2018/06,澳大利亚蒙纳士大学,工学院土木工程系,博士后


学术兼职

任中国岩石力学与工程学会岩石破碎工程专业委员会委员,江苏省地下空间学会会员,《Geomechanics and Geophysics for Geo-Energy and Geo-Resources》编委,并为以下二十余本国内外期刊提供审稿服务:

  • Rock Mechanics and Rock Engineering

  • Tunnelling and Underground Space Technology

  • International Journal of Rock Mechanics and Mining Sciences

  • Geomechanics and Geophysics for Geo-Energy and Geo-Resources

  • Journal of Rock Mechanics and Geotechnical Engineering

  • International Journal of Mining Science and Technology

  • Bulletin of Engineering Geology and the Environment

  • Engineering Fracture Mechanics

  • Journal of Central South University

  • Marine and Petroleum Geology

  • Journal of Geophysics and Engineering

  • The Transactions of Nonferrous Metals Society of China

  • Shock and Vibration

  • Geofluids

  • Cogent Engineering

  • 清华大学学报

  • 土木工程学报

  • 隧道建设(中英文)

  • 实验科学与技术

  • 水利水运工程学报


教学课程

·         本科生:程序语言与科学计算I

·         本科生:地下结构工程

·         硕士研究生:高等岩石力学

·         博士研究生:岩石动力学与地下工程


科研、教改项目

1)       国家自然科学基金青年科学基金项目,火成岩微波面照射损伤破裂机理研究,5210412130万,2022-2024,主持

2)       徐工集团横向课题,液压式破碎锤破岩机理与选型理论研究,JSZX22020914-270万,2022.09-2023.08,主持

3)       江苏省“双创团队”项目,面向地下工程开挖的微波节能破岩新技术,JSSCTD202140300万,2022-2024,技术骨干

4)       江苏省“双创博士”项目,微波辅助破岩样机研发,15万,2019-2021,主持

5)       水力学与山区河流开发保护国家重点实验室开放合作基金,围压作用下微波面照射硬岩的致裂机理及损伤评价研究,SKHL20164万,2021.01-2022.12,主持

6)       深部岩土力学与地下工程国家重点实验室开放基金,工业微波致裂极硬岩的机理与应用,SKLGDUEK19038万,2019.5.1-2021.5.31,主持

7)       2019年中央高校基本科研业务费专项,基本造岩矿物微波介电参数及热力学参数表征,20194万,主持

8)       新加坡裕廊集团科研项目,用于地下硐室开挖的微波辅助破岩机具的开发,140万新加坡元,2019-2020,参加

9)       国家重点研发计划课题,建筑工程施工紧邻构筑物等环境安全状态监测预警及控制技术研究与工程示范,2017YFC0805505250万,2017.7-2020.12,参加

10)   蒙纳士大学工学院种子基金项目(Seed Fund),Rock dynamic fracturing for geoengineering and mining applications4万澳元,2018,参加


论文和专著

·         已发表论文(发表SCI论文30篇,其中第一作者或通讯作者19篇)

1)       Zheng Y, Su Z, Li J*, Wang Z, Xu Y, Li X, Che P, 2024. Energy transfer efficiency and rock damage characteristics of a hydraulic impact hammer with different tool shapes. International Journal of Impact Engineering, 104933.

2)       Zheng Y, Su Z, Fu H, Zhang Q, Li J*. Thermal behaviors of cement and mortar under microwave treatment and the influencing factors: An experimental study. Construction and Building Materials 411, 134191.

3)       Zheng Y*, Ma Z, Gong Q, Zhang P, Zhao X, Li J*, 2022. Heating‑Dominated Fracturing of Granite by Open‑Ended Microwave: Insights from Acoustic Emission Measurement. Rock Mechanics and Rock Engineering 55, 4577–4589.

4)       Zheng Y, Su Z, Fu H, Zhang Q, Li J*. Thermal behaviors of cement and mortar under microwave treatment and the influencing factors: An experimental study. Construction and Building Materials 2023(411), 134191.

5)       Zheng Y*, Ma ZJ, Yang SQ, Zhao XB, Li JC, 2021. A microwave fracturability index (MFI) of hard igneous rocks. International Journal of Rock Mechanics and Mining Sciences 138. 104566.

6)       Zheng Y*, Sun T, 2021. A method to derive the dielectric loss factor of minerals from microwave heating rate tests. Measurement 171, 108788.

7)       Zheng Y, He L*, 2021. TBM tunnelling in extremely hard and abrasive rocks: Problems and assisting methods. Journal of Central South University 28, 454–480.

8)       Zheng Y*, Ma Z, Zhao X, He L, 2020. Experimental investigation on the thermal, mechanical and cracking behaviours of three igneous rocks under microwave treatment. Rock Mechanics and Rock Engineering 53, 3657–3671.

9)       Zheng YL, Zhao XB, Zhao QH, Li JC*, Zhang QB, 2020. Dielectric properties of hard rock minerals and implications for microwave-assisted rock fracturing. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 6:22.

10)   Zheng YL, Zhang QB* and Zhao J, 2017. Effect of microwave treatment on thermal and ultrasonic properties of Gabbro. Applied Thermal Engineering 127, 359-369.

11)   Zheng YL, Zhang QB*, Zhao J, 2016. Challenges and opportunities of using tunnel boring machines in mining. Tunnelling and Underground Space Technology 57, 287-299. 

12)   Zhao Q, Zheng Y*, Li J, Che P, Zhao X, 2024. Heating and Water Transport Behavior of Sandstones Under Microwave Irradiation. Rock Mechanics and Rock Engineering, 1-16.

13)   Ma Z, Zheng Y*, Li J, Zhao X, Zhao J, 2024. Enhancing rock breakage efficiency by microwave fracturing: A study on antenna selection. Energy 288, 129876.

14)   Ma Z, Zheng Y*, Gao M, Li J. Assessing the Size Effect on Microwave Fracturing of Diorite Using a Dielectric-Loaded Converging Waveguide Antenna. Rock Mechanics and Rock Engineering 2023(56): 5677–5691.

15)   Ma ZJ, Zheng YL*, He L, Li JC, 2022. Effect of joints on microwave fracturing of the Bukit Timah granite using an open-ended antenna. Deep Underground Science and Engineering 1 (2), 138-147.

16)   Ma ZJ, Zheng YL*, Zhao XB, Li JC, 2022. Microwave-assisted hard rock breakage by impact hammers: heating, fracturing and mechanical breakage. Bulletin of Engineering Geology and the Environment 81(8):1-14. 

17)   Ma ZJ, Zheng YL*, Li JC, Zhao XB, Zhao QH, He JL, Fu HY, 2021. Characterizing thermal damage of a diorite treated by an open-ended microwave antenna. International Journal of Rock Mechanics and Mining Sciences. 104996. 

18)   Ma ZJ, Zheng YL*, Zhao XB, Li JC, Zhao J, 2021. A dielectric-filled converging waveguide antenna for microwave fracturing of hard rocks. IEEE Transactions on Antennas and Propagation. 3138425.

19)   Ma ZJ, Zheng YL*, Li XZ, Zhao XB, He L, Zhao QH, He JL, Li JC*, 2021. Design and performance of an open-ended converging microwave antenna in fracturing biotite diorite at low microwave power levels. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 7(4): 95. 

20)   Mu BG, Yang WK, Zheng YL*, Li JC, 2021. Excavation rate “predicting while tunnelling” for double shield TBMs in moderate strength poor to good quality rocks. International Journal of Rock Mechanics and Mining Sciences. 104988.

21)   Zhao XB*, Zhao QH, Zheng YL, He L, He JL, Zhao GF, Li H, 2022. Cracking Behavior and Mechanism of Igneous Rocks Under Open-Ended Microwave Irradiation.55:6151–6169.

22)   Zhao XB, Zhao QH*, Zheng YL, He L, He JL, Zhao GF, Li H, 2022. Cracking Behavior and Mechanism of Igneous Rocks Under Open-Ended Microwave Irradiation. Rock Mechanics and Rock Engineering, 1-13.

23)   Zhao QH, Zhao XB*, Zheng YL, Li JC, He L, He JL, Zou CJ, 2020. Heating characteristics of igneous rock-forming minerals under microwave irradiation. International Journal of Rock Mechanics and Mining Sciences 135, 104519.

24)   Zhao QH, Zhao XB*, Zheng YL, Li JC, He L, Zou CJ, 2020. Microwave fracturing of water-bearing sandstones: Heating characteristics and bursting. International Journal of Rock Mechanics and Mining Sciences 136, 104495.

25)   Xu T, He L*, Zheng Y, Zou X, Badrkhani V, Schillinger D, 2021. Experimental and numerical investigations of microwave-induced damage and fracture formation in rock. Journal of Thermal Stresses 44 (4), 513-528.

26)   Ji Y, Wang L, Zheng Y, Wu W*, 2020. Temperature-dependent abrasivity of Bukit Timah granite and implications for drill bit wear in thermo-mechanical drilling, Acta Geotechnica 16, 885–893.

27)  Chen X, Liu XL*, Wang EZ, Zheng YL, Wang SJ, 2018. Rockburst prediction and classification based on the ideal-point method of information theory, Tunnelling and Underground Space Technology 81:382~390.

28)   Liu ZH, Du CL*, Zheng YL, Zhang QB, Zhao J, 2017. Effects of nozzle position and waterjet pressure on rock-breaking performance of roadheader. Tunnelling and Underground Space Technology 69: 18-27.

29)   Ma ZJ, Zheng YL*, Sun TW, Li JC, 2021. Thermal stresses and temperature distribution of granite under microwave treatment. 11th Asian Rock Mechanics Symposium, October 21-25, 2021, Beijing China.

30)   Zhao J*, Zheng YL, Zhang QB and Zhao XB, 2018. Rock fracturing by low power microwave treatment-observations, mechanisms and applications. 10th Asian Rock Mechanics Symposium, Keynote paper, 29 Oct. to 03 Nov., Singapore

31)   Zheng Y., Gong Q, Li J and Zhao J, 2014. A review of the applications of tunnel boring machines in mines, in Proceedings 15th Australasian Tunnelling Conference 2014, 691–704.

32)   白云,蔡国栋,郑彦龙, 2014. JSC-1A模拟月壤气动开挖试验研究. 同济大学学报(自然科学版) 42 (10), 1486-1492 (EI)

33)   谷芳芳,石振明,郑彦龙,白云, 2014. --印跨喜马拉雅铁路通道探讨. 隧道建设34 (7), pp 653-660.

34)   Zheng YL, Bai Y, Cai GD, 2014. Numerical Simulation of Pneumatic Excavation and Conveying of Lunar Regolith Simulant JSC-1A. ASCE Earth and Space 2014.


专利、软件著作权

1)       郑彦龙,赵坚,赵晓豹,李建春,何磊,张乾兵。一种用于致裂岩石的充填介质压缩截面矩形波导,国家发明专利,专利号ZL202010035842.6

2)       郑彦龙,赵坚,赵晓豹,张乾兵,李建春。一种基于点聚焦透镜天线的工业微波辅助破岩装置,国家发明专利,专利号ZL202010035560.6

3)       傅环宇,郑彦龙,李建春,何磊,张琦。一种基于微波致裂水泥石技术的地砖拆除方法及拆除装置,国家发明专利,专利号ZL202110977011.05

4)       郑彦龙,赵坚,赵晓豹,马中骏,李建春,何磊。一种用于硬岩隧道开挖的金属透镜天线微波辐射装置,国家发明专利,专利号ZL202010043819.1

5)       白云,郑彦龙,蔡国栋。一种月球土壤采集装置及模拟采集装置,发明专利,2016,已公开,国家发明专利,专利号ZL201310264139.2

6)       郑彦龙,马中骏,赵坚,李建春,何磊,赵晓豹,张琦。一种基于微波致裂硬岩技术的人工挖孔桩成孔施工方法,申请号 202010503725.8

7)       郑彦龙,马中骏,傅环宇,李建春。一种基于微波致裂混凝土技术的地下连续墙拆除设备和方法,申请号202010993028.5

8)       王大鹏,李建春,郑彦龙。一种基于超声波的节理对应力波透反射规律影响的实验方法,申请号202010614243.X

9)       张琦,张宸浩,王月峰,郑彦龙,李建春,王宁,蒋擎,张斌。一种基于集对分析的岩体质量分级评价方法,申请号202010495329.5

10)   张琦,王月峰,李建春,郑彦龙,张斌,陶津,赵学亮,钟志煜。一种深基坑紧邻建筑物安全连续评价方法,申请号202010496172.8


荣誉和奖励
指导学生

博士:

2018级博士,马中骏(已毕业),就职于宁波大学

2020级博士,赵沁华(在读)

硕士:

2020级硕士,傅环宇(已毕业)

2021级硕士,马彪(在读)

2021级硕士,王志杰(在读)

2021级硕士,周晓舟(在读)

2021级硕士,刘鸿恩(在读)

2023级硕士,潘万全(在读)

2023级硕士,何子安(在读)


每年计划招收南京本校、无锡分校“智能建造”方向、东南大学蒙纳士大学联合研究生院硕士生2~3名。