胡书领


通讯方式:shuling.hu@seu.edu.cn

研究方向:

抗震韧性钢结构

钢结构多灾害防御及韧性提升

基于性能的结构抗震设计与评估

基于机器学习的结构智能设计和软件开发

3D打印金属结构及其数字孪生

办公地点:

 

 

个人简介

胡书领,东南大学土木工程学院上岗研究员,博士生导师,欧盟玛丽居里学者,德国洪堡学者,日本学术振兴会(JSPS)外国人特别研究员,入选2024年斯坦福全球前2%顶尖科学家榜单同济大学博士、加拿大英属哥伦比亚大学联合培养博士。博士毕业后先后在香港理工大学、日本京都大学、德国汉诺威莱布尼兹大学从事研究工作。基于多年的持续研究,本人已在抗震韧性钢结构体系抗震韧性机理的揭示、抗震性态调控设计和韧性评估理论的建立方面取得了有创新性、有特色的研究成果,对于发展抗倒塌到震后功能可恢复机理构件静力到体系动力智能设计地震易损性到全寿命周期效益评估的基础理论有重要科学意义,受到了国内外同行的充分肯定。

学术兼职

期刊副主编

·  Innovative Infrastructure Solutions

期刊编委

 

·  Prevention   and Treatment of Natural Disasters

·  Journal of Digital Technologies Research and Applications

·  Smart Construction

·  Urban Resilience and Earthquake Engineering

 

期刊审稿人

·   Journal of Structural Engineering (ASCE)

·   Engineering Structures (Elsevier)

·   Journal of Constructional Steel Research   (Elsevier)

·     International   Journal of Structural Stability and Dynamics (World Scientific)

·     Structural   Control and Health Monitoring (Hindawi)

·     Structures   (Elsevier)

·     Frontiers of   Structural and Civil Engineering (Springer)

·     Journal of   Asian architecture and building engineering (Taylor & Francis)

·     Advances in   Structural Engineering (SAGE)

·     Applied   sciences (MDPI)

·     Buildings   (MDPI)

·     Journal of Building Engineering (Elsevier)

·     Thin-walled   structures (Elsevier)

·     Structural   Engineering International (Taylor & Francis)

·     Earthquake and Structures (Techno-Press Journals)

·    Innovative Infrastructure Solutions (Springer)等。


论文和专著

详情见谷歌学术主页:https://scholar.google.com.hk/citations?user=aevz4k8AAAAJ&hl=zh-CN&authuser=1

SCI期刊论文(共55篇,其中一作/通讯50

  1. [1]    Shuling Hu, & Ruibin Zhang*. (2025). Seismic risk assessment of partially self-centering braced frames designed with multiple-objective-based method.Engineering Structures,322, 118981.DOI: 10.1016/j.engstruct.2024.118981.

  2. [2]    Qiu, C., Sun, S., Shuling Hu*, Du, X., & Liu, H. (2024). Earthquake induced peak floor accelerations in self-centering frames with large ‘post-yield’stiffness ratios.Journal of Constructional Steel Research,223, 109073.DOI: 10.1016/j.jcsr.2024.109073.

  3. [3]    Shuling Hu, Ke Ke*, & M. Shahria Alam. (2024). A novel seismic risk estimation methodology for steel frames with viscoelastic dampers considering temperature variabilities.Journal of Building Engineering, 110895.DOI: 10.1016/j.jobe.2024.110895.

  4. [4]    Hou, Z., Shuling Hu*, & Wang, W. (2024). Interpretable machine learning models for predicting probabilistic axial buckling strength of steel circular hollow section members considering discreteness of geometries and material.Advances in Structural Engineering, 13694332241289175.DOI:10.1177/13694332241289175.

  5. [5]    Shuling Hu, Qu, B., Qiu, C., & Zhang, R. (2024). Probabilistic evaluation of spectral acceleration demands on light secondary systems supported by partially self-centering structures.Engineering Structures,315, 118474.DOI: 10.1016/j.engstruct.2024.118474.

  6. [6]    Dai, C., Shuling Hu*, & Wang, W. (2024). Self-centering dual rocking core system with viscous dampers in additional rocking sections.Soil Dynamics and Earthquake Engineering,183, 108813.DOI: 10.1016/j.soildyn.2024.108813.

  7. [7]    Ghasemi, S., Hosseini, M., Shuling Hu*, & Shahram, A. (2024). Seismic isolation strategy via controlled soft first story with innovative multi-stage yielding damper: Experimental and numerical insights. Structures, 70:107553.DOI: 10.1016/j.istruc.2024.107553.

  8. [8]    Dai, C., Shuling Hu*, & Wang, W. (2024). Self-centering multiple rocking core systems for mitigating higher mode effects.Journal of Building Engineering, 109893.DOI: 10.1016/j.jobe.2024.109893.

  9. [9]    Shuling Hu, Yuji Koetaka, Zhipeng Chen*, Songye Zhu, & M. Shahria Alam. (2024). Hybrid self-centering braces with NiTi-SMA U-shaped and frequency-dependent viscoelastic dampers for structural and nonstructural damage control.Engineering Structures, 308, 117920.DOI: 10.1016/j.engstruct.2024.117920.ESI高被引论文)

  10. [10]Shuling Hu, Xuhong Zhou, Ke Ke*, M. Shahria Alam, & Taotao Shi. (2024). Post-earthquake repairability-based methodology for enhancing steel MRFs using self-centering beam-to-column connections. Engineering Structures, 308, 117898.DOI: 10.1016/j.engstruct.2024.117898.ESI高被引论文)

  11. [11]Zhipeng Chen, Shuling Hu*, Songye Zhu, & Bin Wang. (2024). Development of novel two-level SMA-based self-centring steel columns for seismic resilience. Journal of Constructional Steel Research, 217, 108629. DOI: 10.1016/j.jcsr.2024.108629.

  12. [12]Shuling Hu, Ruibin Zhang, M. Shahria Alam, & Zhenghao Ding. (2024). Post-earthquake repairability enhancement of BRBFs considering isotropic hardening with self-centering braces. Journal of Constructional Steel Research, 217, 108638. DOI: 10.1016/j.jcsr.2024.108638.

  13. [13]Ruibin Zhang, & Shuling Hu*. (2024). Optimal design of self-centering braced frames with limited self-centering braces. Journal of Building Engineering, 109201. DOI: 10.1016/j.jobe.2024.109201.ESI高被引论文,热点论文)

  14. [14]Ke Ke, Xuhong Zhou, Shuling Hu*, Yonghui Chen, M. Shahria Alam, Wang, Y., & Zhou, Z. (2024). Development and tests of novel repairable multi-stage yielding steel slit dampers for seismic mitigation. Journal of Building Engineering, 108809. DOI: 10.1016/j.jobe.2024.108809

  15. [15]Chunxue Dai, Shuling Hu*, & Wei Wang. (2024). Additional damped rocking sections for enhancing seismic performance of self-centering dual rocking core system. Journal of Building Engineering, 108723. DOI: 10.1016/j.jobe.2024.108723

  16. [16]Shuling Hu, M. Shahria Alam, Yuelin Zhang, Zhenghao Ding, & Xiuzhang He. (2024). Partially self-centering braces with NiTi-and Fe-SMA U-shaped dampers. Thin-Walled Structures, 111605. DOI: 10.1016/j.tws.2024.111605ESI高被引论文)

  17. [17]Shuling Hu & Songye Zhu. (2024). Probabilistic floor spectra for fully self-centering structures with flag-shaped hysteretic behavior. Journal of Building Engineering, 82, 108325. DOI: 10.1016/j.jobe.2023.108325

  18. [18]Wang, T., Dong, Y., Wang, L., Lu, D., Shuling Hu*, Tan, Y., & Li, Z. (2024). Global reliability assessment of coupled transmission tower-insulator-line systems considering soil-structure interaction subjected to multi-hazard of wind and ice.Journal of Constructional Steel Research,223, 109004.DOI: 10.1016/j.jcsr.2024.109004

  19. [19]Shuling Hu & Xiaoming Lei. (2023). Machine learning and genetic algorithm-based framework for the life-cycle cost-based optimal design of self-centering building structures. Journal of Building Engineering. 78, 107671. DOI: 10.1016/j.jobe.2023.107671

  20. [20]Shuling Hu, Ruibin Zhang*, & Wei Wang. (2023). Hybrid self-centering dual rocking core system for seismic resilience by controlling both structural and nonstructural damage. Engineering Structures, 295, 116796. DOI: 10.1016/j.engstruct.2023.116796

  21. [21]Ruibin Zhang, Shuling Hu*, & Wei Wang. (2023). Probabilistic residual displacement-based design for enhancing seismic resilience of BRBFs using self-centering braces. Engineering Structures, 295, 116808. DOI: 10.1016/j.engstruct.2023.116808

  22. [22]Shuling Hu & Songye Zhu. (2023). Life-cycle benefits estimation for hybrid seismic-resistant self-centering braced frames. Earthquake Engineering & Structural Dynamics. 3914. DOI: 10.1002/eqe.3914ESI高被引论文)

  23. [23]Shuling Hu, Wei Wang, & Yongchang Lu. (2023). Explainable machine learning models for probabilistic buckling stress prediction of steel shear panel dampers. Engineering Structures, 288, 116235. https://doi.org/10.1016/j.engstruct.2023.1162352023 Best Paper Award, Editor's Featured Paper奖)

  24. [24]Shuling Hu, Wei Wang, M. Shahria Alam, Songye Zhu, & Ke Ke. (2023). Machine learning-aided peak displacement and floor acceleration-based design of hybrid self-centering braced frames, Journal of Building Engineering. 72, 106429. https://doi.org/10.1016/j.jobe.2023.106429

  25. [25]Shuling Hu, Wei Wang, M. Shahria Alam, & Ke Ke. (2023). Life-cycle benefits estimation of self-centering building structures. Engineering Structures, 284, 115982. https://doi.org/10.1016/j.engstruct.2023.115982ESI高被引论文)

  26. [26]Shuling Hu, Canxing Qiu, & Songye Zhu. (2023). Floor acceleration control of self-centering braced frames using viscous dampers. Journal of Building Engineering, 105944. https://doi.org/10.1016/j.jobe.2023.105944ESI高被引论文)

  27. [27]Chunxue Dai, Shuling Hu*, & WeiWang. (2023). Direct displacement-based design of SEDRC system considering higher mode effects. Journal of Building Engineering, 106407. https://doi.org/10.1016/j.jobe.2023.106407

  28. [28]Ke Ke, Yonghui Chen, Xuhong Zhou, Michael C.H. Yam, & Shuling Hu*. (2023). Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism. Thin-Walled Structures, 182, 110249. (Corresponding author) https://doi.org/10.1016/j.tws.2022.110249ESI高被引论文,热点论文)

  29. [29]Shuling Hu, Songye Zhu, Wei Wang, & M. Shahria Alam. (2022). Structural and nonstructural damage assessment of steel buildings equipped with self-centering energy-absorbing rocking core systems: A comparative study. Journal of Constructional Steel Research, 198, 107559. https://doi.org/10.1016/j.jcsr.2022.107559

  30. [30]Shuling Hu, Songye Zhu, M. Shahria Alam, & Wei Wang. (2022). Machine learning-aided peak and residual displacement-based design method for enhancing seismic performance of steel moment-resisting frames by installing self-centering braces. Engineering Structures, 271, 114935. https://doi.org/10.1016/j.engstruct.2022.114935

  31. [31]Shuling Hu, Songye Zhu, & Wei Wang. (2022). Machine learning-driven probabilistic residual displacement-based design method for improving post-earthquake repairability of steel moment-resisting frames using self-centering braces. Journal of Building Engineering, 61, 105225. https://doi.org/10.1016/j.jobe.2022.105225

  32. [32]Shuling Hu, Canxing Qiu, & Songye Zhu. (2022). Machine learning-driven performance-based seismic design of hybrid self-centering braced frames with SMA braces and viscous dampers. Smart Materials and Structures, 31, 105024. https://doi.org/10.1088/1361-665X/ac8efc

  33. [33]Shuling Hu, Wei Wang, & Jiawen Yu. (2022). Experimental and design strategy of precast exterior wall panels with damage-control function for steel buildings. Journal of Building Engineering, 61, 105205. https://doi.org/10.1016/j.jobe.2022.105205

  34. [34]Shuling Hu, Songye Zhu, & Wei Wang. (2022). Hybrid self-centering companion spines for structural and nonstructural damage control. Engineering Structures, 266, 114603. https://doi.org/10.1016/j.engstruct.2022.114603

  35. [35]Shuling Hu, Wei Wang, & Xiaogang Lin. (2022). Two-stage machine learning framework for developing probabilistic strength prediction models of structural components: An application for RHS-CHS T-joint. Engineering Structures, 266, 114548. https://doi.org/10.1016/j.engstruct.2022.114548

  36. [36]Chunxue Dai, Shuling Hu*, & WeiWang. (2022). Performance-based design of steel frames with self-centering modular panel. Journal of Building Engineering, 104841. https://doi.org/10.1016/j.jobe.2022.104841

  37. [37]Shuling Hu, Wei Wang, &M. Shahria Alam. (2022). Hybrid self-centering rocking core system with friction spring and viscous dampers for seismic resilienceEngineering Structures257: 114102.https://doi.org/10.1016/j.engstruct.2022.114102

  38. [38]Shuling Hu, Wei Wang, &M. Shahria Alam. (2022). Performance-based design method for retrofitting steel moment-resisting frames with self-centering energy-absorbing dual rocking core system. Journal of Constructional Steel Research. 188: 106986.https://doi.org/10.1016/j.jcsr.2021.106986

  39. [39]Shuling Hu, Wei Wang, & M. Shahria Alam. (2021). Probabilistic nonlinear displacement ratio prediction of self-centering energy-absorbing dual rocking core system under near-fault ground motions using machine learning.Journal of Earthquake Engineering. 1-32.https://doi.org/10.1080/13632469.2021.2009060

  40. [40]Shuling Hu, Wei Wang, & Bing Qu.(2021). Self-centering companion spines with friction spring dampers: Validation test and direct displacement-based design. Engineering Structures. 238, 112191. https://doi.org/10.1016/j.engstruct.2021.112191

  41. [41]Shuling Hu, Wei Wang, & M. Shahria Alam. (2021). Comparative Study on Seismic Fragility Assessment of Self-Centering Energy-Absorbing Dual Rocking Core versus Buckling Restrained Braced Systems under Mainshock–Aftershock Sequences. Journal of Structural Engineering (ASCE), 147(9), 04021124. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003082

  42. [42]Shuling Hu, Wei Wang, &M. Shahria Alam. (2021). Performance-based design of self-centering energy-absorbing dual rocking core system. Journal of Constructional Steel Research. 181, 106630. https://doi.org/10.1016/j.jcsr.2021.106630

  43. [43]Shuling Hu, & Wei Wang. (2021). Seismic design and performance evaluation of low-rise steel buildings with self-centering energy-absorbing dual rocking core systems under far-field and near-fault ground motions. Journal of Constructional Steel Research, 179, 106545. https://doi.org/10.1016/j.jcsr.2021.106545

  44. [44]Shuling Hu, & Wei Wang. (2021). Comparative seismic fragility assessment of mid-rise steel buildings with non-buckling (BRB and SMA) braced frames and self-centering energy-absorbing dual rocking core system. Soil Dynamics and Earthquake Engineering, 142, 106546. https://doi.org/10.1016/j.soildyn.2020.106546

  45. [45]Shuling Hu, Wei Wang, Bing Qu, & M. Shahria Alam. (2020). Self-centering energy-absorbing rocking core system with friction spring damper: Experiments, modeling and design. Engineering Structures, 225, 111338. https://doi.org/10.1016/j.engstruct.2020.111338

  46. [46]Shuling Hu, Wei Wang, & Bing Qu. (2020). Seismic evaluation of low-rise steel building frames with self-centering energy-absorbing rigid cores designed using a force-based approach. Engineering Structures, 204, 110038. https://doi.org/10.1016/j.engstruct.2019.110038

  47. [47]Shuling Hu, Wei Wang, & Bing Qu. (2020). Seismic economic losses in mid-rise steel buildings with conventional and emerging lateral force resisting systems. Engineering Structures, 204, 110021. https://doi.org/10.1016/j.engstruct.2019.110021

  48. [48]Shuling Hu, Wei Wang, M. Shahria Alam, & Bing Qu. (2020). Improving the Seismic Performance of Beam-through Concentrically Braced Frames Using Energy-absorbing Rocking Core. Journal of Earthquake Engineering, 1-16. https://doi.org/10.1080/13632469.2020.1813660

  49. [49]Shuling Hu, Wei Wang, Bing Qu, & M. Shahria Alam (2020). Development and validation test of a novel Self-centering Energy-absorbing Dual Rocking Core (SEDRC) system for seismic resilience. Engineering Structures, 211, 110424. https://doi.org/10.1016/j.engstruct.2020.110424

  50. [50]Shuling Hu, Wei Wang, & Bing Qu. (2018). Enhancing seismic performance of tension-only concentrically braced beam-through frames through implementation of rocking cores. Engineering Structures, 169, 68-80. https://doi.org/10.1016/j.engstruct.2018.05.035

  51. [51]Ruibin Zhang, Wei Wang, Changyu Yang, Shuling Hu, & M. Shahria Alam. (2023). Hybrid test and numerical study of beam-through frame enhanced by friction spring-based self-centering rocking core. Engineering Structures, 274, 115157. https://doi.org/10.1016/j.engstruct.2022.115157

  52. [52]Ding, Z., Kuok, S. C., Lei, Y., Yu, Y., Zhang, G., Shuling Hu, & Yuen, K. V. (2024). A Novel Bayesian Empowered Piecewise Multi-Objective Sparse Evolution for Structural Condition Assessment.International Journal of Structural Stability and Dynamics, 2550101.DOI: 10.1142/S0219455425501019

  53. [53]Cheng Fang, Wei Wang, Canxing Qiu, Shuling Hu, Gregory A.MacRae, & Matthew R. Eatherton. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities.Journal of Constructional Steel Research, 191, 107172. https://doi.org/10.1016/j.jcsr.2022.107172ESI高被引论文)

  54. [54]Wei Wang, Cheng Fang, Yashuo Zhao, Richard Sause, Shuling Hu, & James Ricles. (2019). Self‐centering friction spring dampers for seismic resilience. Earthquake Engineering & Structural Dynamics, 48(9), 1045-1065. ESI高被引论文)https://doi.org/10.1002/eqe.3174

  55. [55]Cheng Fang, Qiuming Zhong, Wei Wang, Shuling Hu, & Canxing Qiu. (2018). Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes. Engineering Structures, 177, 579-597. https://doi.org/10.1016/j.engstruct.2018.10.013

EI期刊论文(共4篇,均为一/通讯)

[1]    王伟, 胡书领*, 邹超, & 陈越时. (2019). 节点性能对分层装配支撑钢框架抗震性能的影响研究. 工程力学, 36(4), 206-213. (EI, 通讯作者)

[2]    胡书领, & 王伟. (2020). 基于摇摆核心提升分层装配式钢框架结构抗震性能的设计方法. 建筑结构学报, 41(7), 74-80. (EI)

[3]    王伟,胡书领*, & 邹超. (2021). 基于增量动力分析的梁贯通式支撑钢框架地震易损性研究. 建筑结构学报, 42(4), 42-49. (EI, 通讯作者)

[4]    胡书领, & 王伟. (2022). 自复位消能摇摆模块复合钢框架协同抗侧机理与抗震加固设计方法. 工程力学, 39(11), 1-12. (EI)


专利、软件著作权

[1]    胡书领, 王伟. 一种地震免损双核心自复位摇摆模块, 专利号: ZL201810432436.6.

[2]    王伟, 胡书领. 一种用于摇摆核心的地震免损自复位耗能装置, 专利号: ZL201810431671.1.

[3]    王伟, 胡书领, 周新文.一种地震免损分层预制装配式自复位摇摆钢框架结构体系, 专利号: ZL201810432430.9.


荣誉和奖励

·         2024年上海市技术发明奖二等奖(4/10

·       2024Alexander von Humboldt Research Fellowship (德国洪堡学者)

·       2024Marie Skłodowska-Curie Research Fellowship (欧盟玛丽居里学者)

·       2024Engineering Structures2023 Best Paper Award

·       2023Engineering StructuresFeatured Paper Award

·       2022JSPS Postdoctoral Fellowship (外国人特别研究员) from Japan Society for the Promotion of Science (日本学术振兴会)

·       2022年同济大学优秀博士论文

·       2021年同济大学优秀毕业生

·       2020年获同济大学优秀学生荣誉称号

·       2020年获博士研究生国家奖学金

·       2019年国家公派出国留学奖学金

·       2018年获同济大学高耸结构奖学金

·       2015年获第八届全国大学生计算机设计大赛三等奖

·       2015年获第八届全国大学生先进制图与技能大赛一等奖

·       2014年获第六届全国大学生数学竞赛江苏赛区一等奖


指导学生

招收硕士和博士研究生,将协助优秀研究生申请国家留学奖学金、加拿大Banting博士后奖学金、欧盟玛丽居里奖学金、德国洪堡奖学金、日本学术振兴会奖学金等,提供赴香港、加拿大、日本、德国、希腊交流机会。