Energy Method and Variational Principle

Outline

- Work Done by External Load
- Strain Energy
- The Delta Operator
- Principle of Virtual Work
- Principle of Minimum Potential Energy
- Castigliano's First Theorem
- Displacement Variation: Ritz Method
- Displacement Variation: Galerkin Method
- Complimentary Strain Energy
- Principle of Complimentary Virtual Work
- Principle of Minimum Complimentary Potential Energy
- Castigliano's Second Theorem
- Stress Variation
- Stress Variation: Application to Plane Elasticity
- Stress Variation: Application to Torsion of Cylinders

Work Done by External Load

A uniform rod is subjected to a slowly increasing load.

The elementary work done by the load P as the rod elongates by a small $d x$ is

$$
d U=P \mathrm{~d} x=\text { elementary work }
$$

which is equal to the area of width $d x$ under the loaddeformation diagram.

The total work done by the load for a deformation x_{1},

$$
U=\int_{0}^{x_{1}} P \mathrm{~d} x=\text { total work }=\text { strain energy }
$$

which results in an increase of strain energy in the rod.

In the case of a linear elastic deformation,

$$
U=\int_{0}^{x_{1}} k x \mathrm{~d} x=\frac{1}{2} k x_{1}^{2}=\frac{1}{2} P_{1} x_{1}
$$

Energy Conversion

- Work done by surface and body forces on elastic solids is stored inside the body in the form of strain energy.

Strain Energy Density

To eliminate the effects of size, evaluate the strainenergy per unit volume,

$$
\begin{aligned}
& \frac{U}{V}=\int_{0}^{x_{1}} \frac{P}{A} \frac{\mathrm{~d} x}{L} \\
& U_{0}=\int_{0}^{\varepsilon_{1}} \sigma_{x} \mathrm{~d} \varepsilon_{x}=\text { strain energy density }
\end{aligned}
$$

The total strain energy density resulting from the deformation is equal to the area under the curve to ε_{1}.

As the material is unloaded, the stress returns to zero but there is a permanent deformation. Only the strain energy represented by the triangular area is recovered.

Remainder of the energy spent in deforming the material is dissipated as heat.

Strain Energy for Normal Stress

In an element with a nonuniform stress distribution,

$$
U_{0}=\lim _{\Delta V \rightarrow 0} \frac{\Delta U}{\Delta V}=\frac{\mathrm{d} U}{\mathrm{~d} V} \quad U=\int U_{0} \mathrm{~d} V=\text { total strain energy }
$$

For values of $U_{0}<U_{Y}$, i.e., below the proportional limit,

$$
U=\int \frac{\sigma_{x}^{2}}{2 E} \mathrm{~d} V=\text { elastic strain energy } \Rightarrow E>0
$$

Under axial loading, $\sigma_{x}=P / A \quad \mathrm{~d} V=A \mathrm{~d} x$

$$
U=\int_{0}^{L} \frac{P^{2}}{2 A E} \mathrm{~d} x=\frac{1}{2} \int_{0}^{L} E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x
$$

For a rod of uniform cross-section,

$$
U=\frac{P^{2} L}{2 A E}
$$

Strain Energy for Normal Stress

For a beam subjected to a bending load,

$$
U=\int \frac{\sigma_{x}^{2}}{2 E} \mathrm{~d} V=\int \frac{M^{2} y^{2}}{2 E I^{2}} \mathrm{~d} V
$$

Setting $\mathrm{d} V=\mathrm{d} A \mathrm{~d} x$,

$$
\begin{aligned}
U & =\int_{0}^{L} \int_{A} \frac{M^{2} y^{2}}{2 E I^{2}} \mathrm{~d} A \mathrm{~d} x=\int_{0}^{L} \frac{M^{2}}{2 E I^{2}}\left(\int_{A} y^{2} \mathrm{~d} A\right) \mathrm{d} x \\
& =\int_{0}^{L} \frac{M^{2}}{2 E I} \mathrm{~d} x=\frac{1}{2} \int_{0}^{L} E I\left(\frac{\mathrm{~d}^{2} w}{\mathrm{~d} x^{2}}\right)^{2} \mathrm{~d} x \\
& \Rightarrow E>0
\end{aligned}
$$

For an end-loaded cantilever beam,

$$
\begin{aligned}
M & =-P x \\
U & =\int_{0}^{L} \frac{P^{2} x^{2}}{2 E I} \mathrm{~d} x=\frac{P^{2} L^{3}}{6 E I}
\end{aligned}
$$

Strain Energy for Shear Stress

For a material subjected to plane shearing stresses,

$$
U_{0}=\int_{0}^{\gamma_{x y}} \tau_{x y} \mathrm{~d} \gamma_{x y}
$$

For values of $\tau_{x y}$ within the proportional limit,

$$
U_{0}=\frac{1}{2} G \gamma_{x y}^{2}=\frac{1}{2} \tau_{x y} \gamma_{x y}=\frac{\tau_{x y}^{2}}{2 G}
$$

The total strain energy is found from

$$
\begin{gathered}
U=\int U_{0} \mathrm{~d} V=\int \frac{\tau_{x y}^{2}}{2 G} \mathrm{~d} V=\int \frac{(1+v)}{E} \tau_{x y}^{2} \mathrm{~d} V \\
\Rightarrow G>0 ; \quad v>-1
\end{gathered}
$$

Strain Energy for Shear Stress

For a shaft subjected to a torsional load,

$$
U=\int \frac{\tau_{x y}^{2}}{2 G} \mathrm{~d} V=\int \frac{T^{2} \rho^{2}}{2 G J^{2}} \mathrm{~d} V
$$

Setting $\mathrm{d} V=\mathrm{d} A \mathrm{~d} x$,

$$
\begin{aligned}
U & =\int_{0}^{L} \int_{A} \frac{T^{2} \rho^{2}}{2 G J^{2}} \mathrm{~d} A \mathrm{~d} x=\int_{0}^{L} \frac{T^{2}}{2 G J^{2}}\left(\int_{A} \rho^{2} \mathrm{~d} A\right) \mathrm{d} x \\
& =\int_{0}^{L} \frac{T^{2}}{2 G J} \mathrm{~d} x=\frac{1}{2} \int_{0}^{L} G J\left(\frac{\mathrm{~d} \varphi}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x
\end{aligned}
$$

In the case of a uniform shaft,

$$
U=\frac{T^{2} L}{2 G J}
$$

Strain Energy for Hydrostatic Stress

$$
\begin{aligned}
& \varepsilon_{k k}=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=-p \frac{3(1-2 v)}{E}=\frac{-3 p}{3 \lambda+2 G} \\
& K=\frac{-p}{\Delta V}=\frac{E}{3(1-2 v)}=\frac{3 \lambda+2 G}{3}
\end{aligned}
$$

$$
U_{0}=\frac{1}{2}(-p) \varepsilon_{k k}=\frac{1}{2} \sigma_{m} \varepsilon_{k k}=\frac{1}{2 K} \sigma_{m}^{2}=\frac{3(1-2 v)}{2 E} \sigma_{m}^{2}
$$

$$
\Rightarrow K>0 ; \quad v<0.5
$$

Strain Energy Density for a General Stress State

- Strain energy density of non-linearly elastic material under generalized 3-D stress states

$$
\begin{aligned}
& \mathrm{d} U_{0}=\sigma_{i j} \mathrm{~d} \varepsilon_{i j} \\
& =\sigma_{x} \mathrm{~d} \varepsilon_{x}+\sigma_{y} \mathrm{~d} \varepsilon_{y}+\sigma_{z} \mathrm{~d} \varepsilon_{z} \\
& \quad+\tau_{x y} \mathrm{~d} \gamma_{x y}+\tau_{y z} \mathrm{~d} \gamma_{y z}+\tau_{z x} \mathrm{~d} \gamma_{z x}
\end{aligned}
$$

- Strain energy density of linearly elastic material under generalized 3-D stress states

$$
U_{0}=\frac{1}{2} \sigma_{i j} \varepsilon_{i j}=\frac{1}{2}\left[\begin{array}{l}
\sigma_{x} \varepsilon_{x}+\sigma_{y} \varepsilon_{y}+\sigma_{z} \varepsilon_{z} \\
+\tau_{x y} \gamma_{x y}+\tau_{y z} \gamma_{y z}+\tau_{z x} \gamma_{z x}
\end{array}\right]
$$

- In Terms of Strain

$$
U_{0}=\frac{1}{2} \sigma_{i j} \varepsilon_{i j}=\frac{1}{2}\left(\lambda \varepsilon_{k k} \delta_{i j}+2 G \varepsilon_{i j}\right) \varepsilon_{i j}=\frac{1}{2} \lambda \varepsilon_{k k} \varepsilon_{i j}+G \varepsilon_{i j} \varepsilon_{i j}
$$

$$
=\frac{1}{2} \lambda\left(\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}\right)^{2}+G\left(\varepsilon_{x}^{2}+\varepsilon_{y}^{2}+\varepsilon_{z}^{2}+\frac{1}{2} \gamma_{x y}^{2}+\frac{1}{2} \gamma_{y z}^{2}+\frac{1}{2} \gamma_{z x}^{2}\right)
$$

- In Terms of Stress

$$
\begin{aligned}
U_{0} & =\frac{1}{2} \sigma_{i j} \varepsilon_{i j}=\frac{1}{2} \sigma_{i j}\left(\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \sigma_{k k} \delta_{i j}\right)=\frac{1+v}{2 E} \sigma_{i j} \sigma_{i j}-\frac{v}{2 E} \sigma_{k k} \sigma_{i j} \\
& =\frac{1+v}{2 E}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}+2 \tau_{x y}^{2}+2 \tau_{y z}^{2}+2 \tau_{z x}^{2}\right)-\frac{v}{2 E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)^{2}
\end{aligned}
$$

Decomposition of Strain Energy Density

(a) Spherical
stress tensor

(b) Deviatoric stress tensor

- Volumetric energy density: $U_{V}=\frac{3(1-2 v)}{2 E} \sigma_{m}{ }^{2}=\frac{(1-2 v)}{6 E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)^{2}$
- Distortion energy density:

$$
\begin{aligned}
U_{D} & =U_{0}-U_{V}=\frac{1+v}{2 E}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}+2 \tau_{x y}^{2}+2 \tau_{y z}^{2}+2 \tau_{z x}^{2}\right)-\frac{v}{2 E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)^{2}-\frac{(1-2 v)}{6 E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)^{2} \\
& =\frac{1+v}{2 E}\left(\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}+2 \tau_{x y}^{2}+2 \tau_{y z}^{2}+2 \tau_{z x}^{2}\right)-\frac{(1+v)}{6 E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)^{2} \\
& =\frac{1+v}{6 E}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}\right]+\frac{1+v}{E}\left(\tau_{\mathrm{xy}}{ }^{2}+\tau_{\mathrm{yz}}{ }^{2}+\tau_{\mathrm{zx}}{ }^{2}\right)
\end{aligned}
$$

Strain Energy Density in terms of Displacement

$$
\begin{aligned}
& U_{0}=\frac{1}{2} \lambda \varepsilon_{k k} \varepsilon_{j j}+G \varepsilon_{i j} \varepsilon_{i j}=\frac{1}{2} \lambda u_{k, k} u_{j, j}+G \varepsilon_{i j} \varepsilon_{i j} \\
& =\frac{1}{2} \lambda\left(\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}\right)^{2}+G\left(\varepsilon_{x}^{2}+\varepsilon_{y}^{2}+\varepsilon_{z}^{2}+\frac{1}{2} \gamma_{x y}^{2}+\frac{1}{2} \gamma_{y z}^{2}+\frac{1}{2} \gamma_{z x}^{2}\right) \\
& =\frac{1}{2} \lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)^{2}+G\left[\begin{array}{l}
\left.\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}\right] \\
\left.+\frac{1}{2 z}+\frac{\partial w}{\partial x}\right)^{2}+\frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)^{2}
\end{array}\right] \\
& \lambda=\frac{E v}{(1+v)(1-2 v)}, G=\frac{E}{2(1+v)}
\end{aligned}
$$

Strain Energy Density for Plane Elasticity

$$
\begin{aligned}
U_{0} & =\frac{1}{2} \sigma_{\alpha \beta} \varepsilon_{\alpha \beta}=\frac{1}{2} 2 G\left[\varepsilon_{\alpha \beta}-\frac{3-\kappa}{2(1-\kappa)} \varepsilon_{\gamma \gamma} \delta_{\alpha \beta}\right] \varepsilon_{\alpha \beta}=G\left[\varepsilon_{\alpha \beta} \varepsilon_{\alpha \beta}-\frac{3-\kappa}{2(1-\kappa)} \varepsilon_{\gamma \gamma} \varepsilon_{\beta \beta}\right] \\
& =G\left[\left(\varepsilon_{x}\right)^{2}+\left(\varepsilon_{y}\right)^{2}+2\left(\varepsilon_{x y}\right)^{2}-\frac{3-\kappa}{2(1-\kappa)}\left(\varepsilon_{x}+\varepsilon_{y}\right)^{2}\right] \\
& =G\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}-\frac{3-\kappa}{2(1-\kappa)}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{2}\right]
\end{aligned}
$$

For plane strain: $\kappa=3-4 v: U_{0}=G\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+\frac{v}{1-2 v}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{2}\right]$
For plane stress: $\kappa=\frac{3-v}{1+v}: U_{0}=G\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+\frac{v}{1-v}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{2}\right]$

Strain Energy Density for a General Stress State

$$
\begin{aligned}
\sigma_{x} & =-\frac{3 P}{2 c^{3}} x y, \tau_{x y}=-\frac{3 P}{4 c}\left(1-\frac{y^{2}}{c^{2}}\right), \sigma_{y}=\sigma_{z}=\tau_{y z}=\tau_{z x}=0 \\
U_{0} & =\frac{1+v}{2 E}\left(\sigma_{x}^{2}+2 \tau_{x y}^{2}\right)-\frac{v}{2 E} \sigma_{x}^{2}=\frac{1}{2 E} \sigma_{x}^{2}+\frac{1+v}{E} \tau_{x y}^{2} \\
U & =\iiint_{0} U_{0} \mathrm{~d} V=\int_{0}^{1} \int_{-c}^{c} \int_{0}^{L}\left(\frac{1}{2 E} \sigma_{x}^{2}+\frac{1+v}{E} \tau_{x y}^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{-c}^{c} \int_{0}^{L}\left(\frac{1}{2 E} \sigma_{x}^{2}+\frac{1+v}{E} \tau_{x y}^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{2 E} \int_{-c}^{c} \int_{0}^{L} \frac{9 P^{2}}{4 c^{6}} x^{2} y^{2} \mathrm{~d} x \mathrm{~d} y+\frac{1+v}{E} \int_{-c}^{c} \int_{0}^{L} \frac{9 P^{2}}{16 c^{2}}\left(1-\frac{y^{2}}{c^{2}}\right)^{2} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{P^{2} L^{2}}{4 E c^{3}}+\frac{9 P^{2} L(1+v)}{E c}
\end{aligned}
$$

The Variation Operator

- Assuming $u(x)$ is the minimizing path for a functional:

$$
I(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) \mathrm{d} x
$$

- Introducing a family of varied functions: $\tilde{u}(x)=u(x)+\varepsilon \eta(x)$
- We call $\varepsilon \eta(x)$ the variation of $u(x)$ and write

$$
\varepsilon \eta(x)=\delta u(x)=\delta u=\tilde{u}-u, \quad \varepsilon \rightarrow 0, \eta(a)=\eta(b)=0
$$

- The delta operator (δ) represents a small arbitrary change in the dependent variable u for a fixed value of the independent variable x, i.e. we do not associate a δx with a δu.

The difference between δu and a differential $d u$

- A differential $\mathrm{d} u$ has a $\mathrm{d} x$ associated with it.
- Consider the variation for the derivative:

$$
\delta\left(\frac{\mathrm{d} u}{\mathrm{~d} x}\right)=\frac{\mathrm{d} \tilde{u}}{\mathrm{~d} x}-\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}(\tilde{u}-u)=\frac{\mathrm{d}}{\mathrm{~d} x} \delta u
$$

- In a similar manner: $\delta \int u(x) \mathrm{d} x=\int \tilde{u}(x) \mathrm{d} x-\int u(x) \mathrm{d} x=\int \delta u(x) \mathrm{d} x$
- Consider a functional: $F=F\left(u_{1}(x), u_{2}(x), u_{3}(x), x\right)$
- Its variation:

$$
\delta F=\frac{\partial F}{\partial u_{1}} \delta u_{1}+\frac{\partial F}{\partial u_{2}} \delta u_{2}+\frac{\partial F}{\partial u_{3}} \delta u_{3}
$$

- In contrast, the differential is

$$
\mathrm{d} F=\frac{\partial F}{\partial u_{1}} \mathrm{~d} u_{1}+\frac{\partial F}{\partial u_{2}} \mathrm{~d} u_{2}+\frac{\partial F}{\partial u_{3}} \mathrm{~d} u_{3}+\frac{\partial F}{\partial x} \mathrm{~d} x
$$

Minimization of a Functional

- Consider the problem of minimizing $I(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) \mathrm{d} x$
- For a varied path, the integrand may be written as

$$
F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right)
$$

- Expanding the above in a Taylor series yields

$$
F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right)=F\left(x, u, u^{\prime}\right)+\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}\right)+\mathrm{O}\left(\delta^{2}\right)
$$

- The first variation of the functional I is defined by

$$
\begin{aligned}
\delta I & =\int_{a}^{b} \delta F \mathrm{~d} x \approx \int_{a}^{b}\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}\right) \mathrm{d} x \\
& =\int_{a}^{b}\left(\frac{\partial F}{\partial u}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial u^{\prime}}\right) \delta u \mathrm{~d} x+\left.\frac{\partial F}{\partial u^{\prime}} \delta u\right|_{a} ^{b}
\end{aligned}
$$

- The minimizing process leads to Euler-Lagrange equation.
- Essential vs. natural BCs...

Principle of Virtual Work

- A kinematically admissible displacement field is one possessing continuous first partial derivatives in the interior of a domain B and satisfying all displacement boundary conditions on S_{u}.
- A kinematically admissible displacement variation δu (virtual displacement) is one possessing continuous first partial derivatives in the interior of a domain B and zero on S_{u}.
- A statically admissible stress field is one that satisfies the equilibrium equation over the interior of a domain B and all stress boundary conditions over S_{t}.

Principle of Virtual Work

- Now consider a body with statically admissible stress field and subjected to kinematically admissible virtual displacements.
- The work done by the external loads against the virtual displacements is

$$
\delta W_{E}=\iiint_{V} \boldsymbol{F} \cdot \delta \boldsymbol{u} \mathrm{~d} V+\iint_{S_{t}} \boldsymbol{T} \cdot \delta \boldsymbol{u} \mathrm{~d} S
$$

- In indicial notation

$$
\begin{aligned}
\delta W_{E} & =\iiint_{V} \boldsymbol{F} \cdot \delta \boldsymbol{u} \mathrm{~d} V+\iint_{S_{t}} \boldsymbol{T} \cdot \delta \boldsymbol{u} \mathrm{~d} S=\iiint_{V} F_{i} \delta u_{i} \mathrm{~d} V+\iint_{S_{t}} T_{i} \delta u_{i} \mathrm{~d} S \\
& =\iiint_{V} F_{i} \delta u_{i} \mathrm{~d} V+\iint_{S_{t}} n_{j} \sigma_{j i} \delta u_{i} \mathrm{~d} S=\iiint_{V} F_{i} \delta u_{i} \mathrm{~d} V+\iint_{S} n_{j} \sigma_{j i} \delta u_{i} \mathrm{~d} S
\end{aligned}
$$

- Recall that, $\delta u=0$ on S_{u}.

Principle of Virtual Work

- Applying the divergence theorem on the surface integral:

$$
\begin{aligned}
\delta W_{E} & =\iiint_{V}\left[F_{i} \delta u_{i}+\frac{\partial}{\partial x_{j}}\left(\sigma_{j i} \delta u_{i}\right)\right] \mathrm{d} V=\iiint_{V}\left[F_{i} \delta u_{i}+\frac{\partial \sigma_{j i}}{\partial x_{j}} \delta u_{i}+\sigma_{j i} \frac{\partial \delta u_{i}}{\partial x_{j}}\right] \mathrm{d} V \\
& =\iiint_{V}\left[\left(F_{i}+\frac{\partial \sigma_{j i}}{\partial x_{j}}\right) \delta u_{i}+\sigma_{i j}\left(\delta \varepsilon_{i j}+\delta \omega_{i j}\right)\right] \mathrm{d} V \\
& =\iiint_{V}\left[\left(F_{i}+\frac{\partial \sigma_{j i}}{\partial x_{j}}\right) \delta u_{i}+\sigma_{i j} \delta \varepsilon_{i j}\right] \mathrm{d} V \\
& =\iiint_{V}\left(F_{i}+\frac{\partial \sigma_{j i}}{\partial x_{j}}\right) \delta u_{i} \mathrm{~d} V+\delta W_{I}
\end{aligned}
$$

- Balance between the external and internal virtual work is an alternative statement of equilibrium condition.

Principle of Virtual Work

- Principle of Virtual Work:

$$
\begin{gathered}
\delta W_{E}=\iiint_{V} \boldsymbol{F} \cdot \delta \boldsymbol{u} \mathrm{~d} V+\iint_{S_{t}} \boldsymbol{T} \cdot \delta \boldsymbol{u} \mathrm{~d} S=\iiint_{V} \boldsymbol{\sigma}: \delta \boldsymbol{\varepsilon} \mathrm{d} V=\delta W_{I} \\
\delta W_{E}=\iiint_{V} F_{i} \delta u_{i} \mathrm{~d} V+\iint_{S_{t}} T_{i} \delta u_{i} \mathrm{~d} S=\iiint_{V} \sigma_{i j} \delta \varepsilon_{i j} \mathrm{~d} V=\delta W_{I}
\end{gathered}
$$

- All forces and stresses are constant and need not to be actual forces and stresses.
- The stresses are independent of the virtual deformations.
- This principle is independent of any constitutive law.
- This principle is NOT about energy conservation, i.e. it is valid when energy is not conserved (plasticity, e.g.).
- This principle is applicable to simplified one- and twodimensional theories as well, i.e. $\delta W_{E}=F_{i} \delta u_{i}$.

Principle of Minimum Total Potential Energy

- For an elastic solid
$\delta W_{I}=\iiint_{V} \sigma_{i j} \delta \varepsilon_{i j} \mathrm{~d} V=\iiint_{V} \frac{\partial U_{0}}{\partial \varepsilon_{i j}} \delta \varepsilon_{i j} \mathrm{~d} V=\iiint_{V} \delta U_{0} \mathrm{~d} V=\delta U$ where U is the strain energy.
- If we define the potential energy of applied loads as

$$
V=-\iiint_{V} \boldsymbol{F} \cdot \boldsymbol{u} \mathrm{~d} V-\iint_{S_{t}} \boldsymbol{T} \cdot \boldsymbol{u} \mathrm{~d} S=-\iiint_{V} F_{i} u_{i} \mathrm{~d} V-\iint_{S_{t}} T_{i} u_{i} \mathrm{~d} S
$$

- For prescribed (constant) body and surface forces
$\delta V=-\iiint_{V} \boldsymbol{F} \cdot \delta \boldsymbol{u} \mathrm{~d} V-\iint_{S_{t}} \boldsymbol{T} \cdot \delta \boldsymbol{u} \mathrm{~d} S=-\iiint_{V} F_{i} \delta u_{i} \mathrm{~d} V-\iint_{S_{t}} T_{i} \delta u_{i} \mathrm{~d} S$
- Principle of Minimum Total Potential Energy

$$
\delta(U+V)=\delta \Pi=0 .
$$

- Restricted to elastic solids, both linear and nonlinear.

Principle of Minimum Total Potential Energy

- Elastic strain energy due to a strain variation

$$
\begin{aligned}
\delta U & =\iiint_{V} \sigma_{i j} \delta \varepsilon_{i j} \mathrm{~d} V=\iiint_{V} \sigma_{i j} \delta\left(\varepsilon_{i j}+\omega_{i j}\right) \mathrm{d} V=\iiint_{V} \sigma_{i j} \delta \frac{\partial u_{i}}{\partial x_{j}} \mathrm{~d} V=\iiint_{V} \sigma_{i j} \frac{\partial \delta u_{i}}{\partial x_{j}} \mathrm{~d} V \\
& =\iiint_{V}\left[\frac{\partial}{\partial x_{j}}\left(\sigma_{i j} \delta u_{i}\right)-\frac{\partial \sigma_{i j}}{\partial x_{j}} \delta u_{i}\right] \mathrm{d} V=-\iiint_{V} \frac{\partial \sigma_{i j}}{\partial x_{j}} \delta u_{i} \mathrm{~d} V+\iint_{S_{i}} n_{j} \sigma_{i j} \delta u_{i} \mathrm{~d} S
\end{aligned}
$$

- The corresponding potential energy variation

$$
\delta V=-\iiint_{V} F_{i} \delta u_{i} \mathrm{~d} V-\iint_{S_{t}} T_{i} \delta u_{i} \mathrm{~d} S
$$

- Principle of Minimum Total Potential Energy

$$
0=\delta \Pi=\delta(U+V)=-\iiint_{V}\left(\frac{\partial \sigma_{i j}}{\partial x_{j}}+F_{i}\right) \delta u_{i} \mathrm{dV}+\iint_{S_{i}}\left(n_{j} \sigma_{i j}-T_{i}\right) \delta u_{i} \mathrm{~d} S
$$

- For an arbitrary displacement variation, the principle of minimum total potential energy yields the equilibrium equation and traction BCs.

Castigliano's First Theorem

- Consider an elastic system subjected to a set of generalized loads F_{i} (forces \& moments) with corresponding generalized displacements u_{i} (deflection, rotation, angle of twist \& extension/contraction). Subsequently,
- Express the variation of strain energy in terms of virtual displacements δu_{i}, i.e. $\delta U=\delta U\left(\delta u_{i}\right)$.
- The total potential energy variation may be expressed as

$$
\delta \Pi=\delta U+\delta V=\delta U-\sum_{k=1}^{n} F_{k} \delta u_{k}=\delta\left(U-\sum_{k=1}^{n} F_{k} u_{k}\right)
$$

- For equilibrium, we must require

$$
\delta \Pi=\frac{\partial \Pi}{\partial u_{i}} \delta u_{i}=\frac{\partial}{\partial u_{i}}\left(U-\sum_{k=1}^{n} F_{k} u_{k}\right) \delta u_{i}=\left(\frac{\partial U}{\partial u_{i}}-F_{k} \delta_{i k}\right) \delta u_{i}=\left(\frac{\partial U}{\partial u_{i}}-F_{i}\right) \delta u_{i}=0
$$

- For arbitrary displacement variations: $F_{i}=\frac{\partial U}{\partial u_{i}}$

Castigliano's First Theorem

$$
F_{i}=\frac{\partial U}{\partial u_{i}}
$$

- This theorem is simply an application of the minimum total potential energy.
- This theorem is valid for both linear and nonlinear elastic solids. The specific material behavior only affects the way how elastic strain energy is calculated.
- This theorem requires one to write the elastic strain energy in terms of generalized displacements, , i.e. $U=U\left(u_{i}\right)$.

Approximate Methods

- The Principle of Minimum Total Potential Energy states

$$
0=\delta \Pi=\delta(U+V)=-\iiint_{V}\left(\frac{\partial \sigma_{i j}}{\partial x_{j}}+F_{i}\right) \delta u_{i} \mathrm{dV}+\iint_{S_{t}}\left(n_{j} \sigma_{i j}-T_{i}\right) \delta u_{i} \mathrm{~d} S
$$

- Minimizing the total potential energy is equivalent to satisfying the equilibrium condition and traction BCs

$$
\frac{\partial \sigma_{i j}}{\partial x_{j}}+F_{i}=0, \text { inside } V ; \quad T_{i}=n_{j} \sigma_{i j} \text { on } S_{t} .
$$

- In many instances, the solution to the above is untenable.
- Approximate methods need to be developed.
- The first will be to approximate the total potential energy.
- The second will be to approximate the d.e.
- Both are precursors to the Finite Element Method.

Ritz Method

- Based on approximating the displacement field as a linear combination of trial functions

$$
u=u_{0}+\sum A_{m} u_{m} ; v=v_{0}+\sum B_{m} v_{m} ; w=w_{0}+\sum C_{m} w_{m},
$$

- where $u_{0}, u_{m}, v_{0}, v_{m}, w_{0}, w_{m}$ are known functions and A_{m}, B_{m}, C_{m}, represent undetermined coefficients.
- u_{0}, v_{0}, w_{0} must satisfy the displacement BCs on S_{u}.
- u_{m}, v_{m}, w_{m} must be differentiable inside V, zero on S_{u}, linearly independent and complete (trig or poly functions).
- The displacement variation is thus

$$
\delta u=\sum \frac{\partial u}{\partial A_{m}} \delta A_{m}=\sum u_{m} \delta A_{m} ; \quad \delta v=\sum v_{m} \delta B_{m} ; \quad \delta w=\sum w_{m} \delta C_{m},
$$

Ritz Method

- We now have reduced $\Pi(u, \mathrm{v}, \mathrm{w})$ to $\Pi\left(A_{m}, B_{m}, C_{m}\right)$. The standard variation procedure yields

$$
0=\delta \Pi \Rightarrow \quad \sum\left(\frac{\partial \Pi}{\partial A_{m}} \delta A_{m}+\frac{\partial \Pi}{\partial B_{m}} \delta B_{m}+\frac{\partial \Pi}{\partial C_{m}} \delta C_{m}\right)=0
$$

- For arbitrary variation of the coefficients A_{m}, B_{m}, C_{m}

$$
\frac{\partial \Pi}{\partial A_{m}}=0 ; \quad \frac{\partial \Pi}{\partial B_{m}}=0 ; \quad \frac{\partial \Pi}{\partial C_{m}}=0
$$

- Given the total potential energy

$$
\Pi=U-\iiint_{V}\left(F_{x} u+F_{y} v+F_{z} w\right) \mathrm{d} V-\iint_{S_{1}}\left(T_{x} u+T_{y} v+T_{z} w\right) \mathrm{d} S
$$

\Rightarrow| $\frac{\partial U}{\partial A_{m}}-\iiint_{V} F_{x} u_{m} \mathrm{~d} V-\iint_{S_{t}} T_{x} u_{m} \mathrm{~d} S=0 ;$ | $\frac{\partial U}{\partial B_{m}}-\iiint_{V} F_{y} v_{m} \mathrm{~d} V-\iint_{S_{t}} T_{y} v_{m} \mathrm{~d} S=0$ |
| :--- | :---: |
| $\frac{\partial U}{\partial C_{m}}-\iiint_{V} F_{z} w_{m} \mathrm{~d} V-\iint_{S_{t}} T_{z} w_{m} \mathrm{~d} S=0$ | $\begin{array}{l}A_{m}, B_{m}, C_{m} \text { are determined } \\ \text { from these equations. }\end{array}$ |

Galerkin Method

- The Galerkin method for finding an approximate solution of a d.e. involves the direct use of the d.e. itself.
- No variational statement is required and hence the method has broader range of application.
- Recall the principle of minimum total potential Energy

$$
0=\delta \Pi=\delta(U+V)=-\iiint_{V}\left(\frac{\partial \sigma_{i j}}{\partial x_{j}}+F_{i}\right) \delta u_{i} \mathrm{~d} V+\iint_{S_{t}}\left(n_{j} \sigma_{i j}-T_{i}\right) \delta u_{i} \mathrm{~d} S
$$

- We still assume an approximate solution for displacements

$$
\begin{gathered}
u=u_{0}+\sum A_{m} u_{m} ; v=v_{0}+\sum B_{m} v_{m} ; w=w_{0}+\sum C_{m} w_{m} \\
\Rightarrow \delta u=\sum \frac{\partial u}{\partial A_{m}} \delta A_{m}=\sum u_{m} \delta A_{m} ; \delta v=\sum v_{m} \delta B_{m} ; \delta w=\sum w_{m} \delta C_{m},
\end{gathered}
$$

Galerkin Method

- Substitute the displacement variation into the principle
$-\sum \iiint\left[\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x x}}{\partial z}+F_{x x}\right] u_{m} \delta A_{m} \mathrm{~d} V+\sum \iint_{s_{1}}\left(n_{x} \sigma_{x}+n_{y} \tau_{x y}+n_{z} \tau_{x z}-T_{x}\right) u_{m} \delta A_{m} \mathrm{~d} S=0$
$-\sum \iiint\left[\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+F_{y}\right]{ }^{v_{m}} \delta B_{m} \mathrm{~d} V+\sum \iint_{s_{1}}\left(n_{x} \tau_{x y}+n_{y} \sigma_{y}+n_{z} \tau_{y z}-T_{y}\right) \nu_{m} \delta B_{m} \mathrm{~d} S=0$
$-\sum \iiint\left[\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+F_{z}\right] w_{m} \delta C_{m} \mathrm{~d} V+\sum \iint_{s_{1}}\left(n_{x} \tau_{x z}+n_{y} \tau_{y z}+n_{z} \sigma_{z}-T_{z}\right) w_{m} \delta C_{m} \mathrm{~d} S=0$
- If the proposed displacements satisfy not only the displacement BCs on S_{u}, but also the traction BCs on S_{t}, i.e.

$$
\begin{aligned}
& n_{x} \sigma_{x}+n_{y} \tau_{x y}+n_{z} \tau_{x z}-T_{x}=0 \\
& n_{x} \tau_{x y}+n_{y} \sigma_{y}+n_{z} \tau_{y z}-T_{y}=0 \\
& n_{x} \tau_{x z}+n_{y} \tau_{y z}+n_{z} \sigma_{z}-T_{z}=0
\end{aligned}
$$

Galerkin Method

- Then, for arbitrary A_{m}, B_{m}, C_{m}

$$
\begin{aligned}
& \iiint\left[\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+F_{x}\right] u_{m} \mathrm{~d} V=0 \\
& \iiint\left[\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+F_{y}\right] v_{m} \mathrm{~d} V=0 \\
& \iiint\left[\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+F_{z}\right] w_{m} \mathrm{~d} V=0
\end{aligned}
$$

- A_{m}, B_{m}, C_{m} are determined from these equations.

$$
u=u_{0}+\sum A_{m} u_{m} ; v=v_{0}+\sum B_{m} v_{m} ; w=w_{0}+\sum C_{m} w_{m}
$$

Galerkin Method

- In terms of displacements

$$
\begin{aligned}
& \iiint\left[G \nabla^{2} u+(\lambda+G) \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+F_{x}\right] u_{m} \mathrm{~d} V=0 \\
& \iiint\left[G \nabla^{2} v+(\lambda+G) \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+F_{y}\right] v_{m} \mathrm{~d} V=0 \\
& \iiint\left[G \nabla^{2} w+(\lambda+G) \frac{\partial}{\partial z}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+F_{z}\right] w_{m} \mathrm{~d} V=0
\end{aligned}
$$

- A_{m}, B_{m}, C_{m} are determined from these equations.

$$
u=u_{0}+\sum A_{m} u_{m} ; v=v_{0}+\sum B_{m} v_{m} ; w=w_{0}+\sum C_{m} w_{m}
$$

Ritz Method: Application to Plane Elasticity

$$
u=u_{0}+\sum A_{m} u_{m} ; v=v_{0}+\sum B_{m} v_{m}
$$

$$
\frac{\partial U}{\partial A_{m}}-\iint_{A} F_{x} u_{m} \mathrm{~d} A-\int_{S_{t}} T_{x} u_{m} \mathrm{~d} S=0 ; \quad \frac{\partial U}{\partial B_{m}}-\iint_{A} F_{y} v_{m} \mathrm{~d} A-\int_{S_{t}} T_{y} v_{m} \mathrm{~d} S=0
$$

- A_{m}, B_{m} are determined from these equations.

$$
\begin{gathered}
U=G\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}-\frac{3-\kappa}{2(1-\kappa)}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{2}\right] \\
\frac{\partial U}{\partial A_{m}}=\iint_{A} 2 G\left[\frac{\partial u}{\partial x} \frac{\partial u_{m}}{\partial x}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \frac{\partial u_{m}}{\partial y}-\frac{3-\kappa}{2(1-\kappa)}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \frac{\partial u_{m}}{\partial x}\right] \mathrm{d} A \\
\frac{\partial U}{\partial B_{m}}=\iint_{A} 2 G\left[\frac{\partial v}{\partial y} \frac{\partial v_{m}}{\partial y}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \frac{\partial v_{m}}{\partial x}-\frac{3-\kappa}{2(1-\kappa)}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \frac{\partial v_{m}}{\partial y}\right] \mathrm{d} A \\
\text { For plane strain: } \kappa=3-4 v \Rightarrow-\frac{3-\kappa}{2(1-\kappa)}=\frac{v}{1-2 v} \\
\text { For plane stress: } \kappa=\frac{3-v}{1+v} \Rightarrow-\frac{3-\kappa}{2(1-\kappa)}=\frac{v}{1-v}
\end{gathered}
$$

Ritz Method: Application to Plane Elasticity

- The thin-plate is rolling-supported at the left and bottom edge.
- Propose an approximate displacement solution based on Ritz method and solve the plane stress problem. Neglect body forces.

$$
\begin{aligned}
& u=x\left[A_{1}+A_{2} x+A_{3} y+\cdots\right] \\
& v=y\left[B_{1}+B_{2} x+B_{3} y+\cdots\right]
\end{aligned}
$$

- Note how the displacement BCs are satisfied.

Ritz Method: Application to Plane Elasticity

- If take only one term, i.e., $u=A_{1} x, \quad v=B_{1} y \Rightarrow u_{1}=x, \quad v_{1}=y$
- Substitute back into the principle

$$
\Rightarrow \begin{aligned}
& \int_{0}^{b} \int_{0}^{a} 2 G\left[\frac{\partial u}{\partial x} \frac{\partial u_{1}}{\partial x}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \frac{\partial u_{1}}{\partial y}+\frac{v}{1-v}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \frac{\partial u_{1}}{\partial x}\right] \mathrm{d} x \mathrm{~d} y-\int_{0}^{b}\left(-q_{1}\right) u_{1}(a) \mathrm{d} y=0 \\
& \int_{0}^{b} \int_{0}^{a} 2 G\left[\frac{\partial v}{\partial y} \frac{\partial v_{1}}{\partial y}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \frac{\partial v_{1}}{\partial x}+\frac{v}{1-v}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \frac{\partial v_{1}}{\partial y}\right] \mathrm{d} x \mathrm{~d} y-\int_{0}^{a}\left(-q_{2}\right) v_{1}(b) \mathrm{d} x=0
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& \int_{0}^{b} \int_{0}^{a} 2 G\left[A_{1}(1)+\frac{1}{2}(0+0)(0)+\frac{v}{1-v}\left(A_{1}+B_{1}\right)(1)\right] \mathrm{d} x \mathrm{~d} y-\int_{0}^{b}\left(-q_{1}\right) a \mathrm{~d} y=0 \\
& \int_{0}^{b} \int_{0}^{a} 2 G\left[B_{1}(1)+\frac{1}{2}(0+0)(0)+\frac{v}{1-v}\left(A_{1}+B_{1}\right)(1)\right] \mathrm{d} \mathrm{~d} \mathrm{~d} y-\int_{0}^{a}\left(-q_{2}\right) b \mathrm{~d} x=0
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \frac{E a b}{1-v^{2}}\left[A_{1}+v B_{1}\right]+q_{1} a b=0, \quad \frac{E a b}{1-v^{2}}\left[B_{1}+v A_{1}\right]+q_{2} a b=0 \\
\Rightarrow A_{1}=-\frac{q_{1}-v q_{2}}{E}, \quad B_{1}=-\frac{q_{2}-v q_{1}}{E}
\end{gathered}
$$

- For the present case, A_{1} and B_{1} yield the exact solution. Just a special case!

Ritz Method: Application to Axial Loading

- Consider a variable cross-section rod subjected to a uniformly distributed load and a concentrated load.

$\Pi=U+V=\int_{0}^{L} \frac{F_{N}^{2} \mathrm{~d} x}{2 E A}-\int_{0}^{L} f u \mathrm{~d} x-P u_{x=L}=\frac{1}{2} \int_{0}^{L} E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x-\int_{0}^{L} f u \mathrm{~d} x-P u_{x=L}$
- Assume: $u=u_{0}+\sum A_{m} u_{m}=0+A_{1} x+A_{2} x^{2}$
- Note how the displacement BCs are satisfied.
- The standard variation procedure yields: $\frac{\partial \Pi}{\partial A_{1}}=0 ; \frac{\partial \Pi}{\partial A_{2}}=0$.
- Solving the above two equations for A_{1} and A_{2}, an approximate solution are constructed.

Ritz Method: Application to Beam Theory

- Consider a beam subjected to a uniformly distributed load
- Assume:

$$
v=\sum_{m=1}^{\infty} B_{m} \sin \frac{m \pi x}{L}
$$

- Note how the displacement BCs are satisfied.
$\Pi=U+V=\int_{0}^{L} \frac{M^{2} \mathrm{~d} x}{2 E I}-\int_{0}^{L} q v \mathrm{~d} x=\frac{1}{2} \int_{0}^{L} E I\left(\frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)^{2} \mathrm{~d} x-\int_{0}^{L} q v \mathrm{~d} x$
$=\frac{1}{2} \int_{0}^{L} E I\left[-\sum_{m=1}^{\infty} B_{m}\left(\frac{m \pi}{L}\right)^{2} \sin \frac{m \pi x}{L}\right]\left[-\sum_{n=1}^{\infty} B_{n}\left(\frac{n \pi}{L}\right)^{2} \sin \frac{n \pi x}{L}\right] \mathrm{d} x-\int_{0}^{L} q \sum_{m=1}^{\infty} B_{m} \sin \frac{m \pi x}{L} \mathrm{~d} x$
- Note the orthogonality of trigonometric functions

$$
\int_{0}^{L} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} \mathrm{~d} x= \begin{cases}L / 2 & m=n \\ 0 & m \neq n\end{cases}
$$

Ritz Method: Application to Beam Theory

- Upon evaluating the integrals

$$
\Pi=\frac{E I \pi^{4}}{4 L^{3}} \sum_{m=1}^{\infty} m^{4} B_{m}^{2}-\frac{2 q L}{\pi} \sum_{m=1,3,5, \cdots}^{\infty} \frac{B_{m}}{m}
$$

- The standard variation procedure yields:

$$
\frac{\partial \Pi}{\partial B_{m}}=0 \quad \Rightarrow \quad B_{m}= \begin{cases}\frac{4 q L^{4}}{E^{5} \pi^{5}} & m=\text { odd } \\ 0 & m=\text { even }\end{cases}
$$

- The approximate solution is found

$$
v=\frac{4 q L^{4}}{E I \pi^{5}} \sum_{m=1,3,5, \ldots}^{\infty} \frac{1}{m^{5}} \sin \frac{m \pi x}{L}
$$

- Symmetry requires all even terms vanish.

Ritz Method: Application to Beam Theory

- Consider a simply-supported beam enhanced by an elastic column as shown.

- We may still assume: $v=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{L}$

$$
\Rightarrow \Pi=U+V=\frac{1}{2} \int_{0}^{L} E I\left(\frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)^{2} \mathrm{~d} x-\int_{0}^{L} q v \mathrm{~d} x-\frac{1}{2} k v^{2}(L / 2)
$$

- The rest is left as an exercise!

Galerkin Method: Application to Plane Elasticity

- In terms of stresses

$$
\iint\left[\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+F_{x}\right] u_{m} \mathrm{~d} A=0, \quad \iint\left[\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+F_{y}\right] v_{m} \mathrm{~d} A=0
$$

- In terms of displacements

$$
\begin{array}{|l}
\iint\left[G \nabla^{2} u-\frac{2 G}{1-\kappa} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+F_{x}\right] u_{m} \mathrm{~d} A=0 \\
\iint\left[G \nabla^{2} v-\frac{2 G}{1-\kappa} \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+F_{y}\right] v_{m} \mathrm{~d} A=0
\end{array}
$$

$$
\begin{aligned}
& \text { Plane strain: } \kappa=3-4 v \\
& \text { Plane stress: } \kappa=\frac{3-v}{1+v}
\end{aligned}
$$

- A_{m}, B_{m} are determined from these equations.

$$
u=u_{0}+\sum A_{m} u_{m} ; v=v_{0}+\sum B_{m} v_{m}
$$

Exercise

- For the thin plate shown, the displacements along the top edge are confined to $u=0 ; \quad v=-\eta\left(1-x^{2} / a^{2}\right)$.
- Propose an approximate displacement solution based on Galerkin method and solve the plane stress problem. Neglect body forces.

$$
\begin{aligned}
& u=\left(1-\frac{x^{2}}{a^{2}}\right) \frac{x}{a} \frac{y}{b}\left(1-\frac{y}{b}\right)\left[A_{1}+A_{2} y+A_{3} x^{2}+A_{4} y^{2}+\cdots\right] \\
& v=-\eta\left(1-\frac{x^{2}}{a^{2}}\right) \frac{y}{b}+\left(1-\frac{x^{2}}{a^{2}}\right) \frac{y}{b}\left(1-\frac{y}{b}\right)\left[B_{1}+B_{2} y+B_{3} x^{2}+B_{4} y^{2}+\cdots\right]
\end{aligned}
$$

- Note the symmetry property of the proposed displacements.

$$
\iint\left[\nabla^{2} u+\frac{1+v}{1-v} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right] u_{m} \mathrm{~d} A=0, \quad \int\left[\left[\nabla^{2} v+\frac{1+v}{1-v} \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right] v_{m} \mathrm{~d} A=0\right.
$$

Galerkin Method: Application to Beam Theory

- $u=w=0, v=v_{0}+\sum B_{m} v_{m}$
- v must also satisfy the force BCs.

- The second equation of the Galerkin method yields

$$
\begin{aligned}
& \iiint\left[\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+F_{y}\right] v_{m} \mathrm{~d} V=0 \\
& \Rightarrow \int_{0}^{L}\left[\iint_{A} \frac{\partial \tau_{x y}}{\partial x} v_{m} \mathrm{~d} A\right] \mathrm{d} x+\int_{0}^{a} q v_{m} \mathrm{~d} x+\left.P_{0} v_{m}\right|_{x=b}-\left.M_{0} v_{m}^{\prime}\right|_{x=L}=0 \\
& \Rightarrow \int_{0}^{L} \frac{\partial V}{\partial x} v_{m} \mathrm{~d} x+\int_{0}^{a} q v_{m} \mathrm{~d} x+\left.P_{0} v_{m}\right|_{x=b}-\left.M_{0} v_{m}^{\prime}\right|_{x=L}=0 \\
& \Rightarrow \int_{0}^{L}\left(-E I \frac{d^{4} v}{d x^{4}}\right) v_{m} \mathrm{~d} x+\int_{0}^{a} q v_{m} \mathrm{~d} x+\left.P_{0} v_{m}\right|_{x=b}-\left.M_{0} v_{m}^{\prime}\right|_{x=L}=0
\end{aligned}
$$

- Note the sign conventions of deflection, slope and moments.

Sample Problem

- Let us revisit the beam problem
- We may still assume:

- The displacement BCs are satisfied: $v(0)=v(L)=0$
- The traction BCs are also satisfied, i.e.

$$
M(0)=E I v^{\prime \prime}(0)=0, \quad M(L)=E I v^{\prime \prime}(L)=0
$$

- Galerkin method yields

$$
\int_{0}^{L}\left(-E I \frac{d^{4} v}{d x^{4}}\right) v_{m} \mathrm{~d} x+\int_{0}^{L} q v_{m} \mathrm{~d} x=0
$$

Sample Problem

- Plug in the proposed deflection
$\Rightarrow \int_{0}^{L}\left(-E I \sum_{n=1}^{\infty} B_{n}\left(\frac{n \pi}{L}\right)^{4} \sin \frac{n \pi x}{L}\right) \sin \frac{m \pi x}{L} \mathrm{~d} x+\int_{0}^{L} q \sin \frac{m \pi x}{L} \mathrm{~d} x=0$
- Note the orthogonality of trigonometric functions

$$
\begin{aligned}
& \Rightarrow-E I B_{m}\left(\frac{m \pi}{L}\right)^{4} \frac{L}{2}-q \frac{L}{m \pi}(\cos m \pi-1)=0 \\
& \Rightarrow B_{m}=-\frac{2 q L^{4}(\cos m \pi-1)}{E I^{5} \pi^{5}}= \begin{cases}\frac{4 q L^{4}}{E I^{5} \pi^{5}} & m=\text { odd } \\
0 & m=\text { even }\end{cases}
\end{aligned}
$$

- The same solution as that of Ritz method.

Complementary Strain Energy Density

- Recall that the strain energy density is defined as $\mathrm{d} U_{0}=\sigma_{i j} \mathrm{~d} \varepsilon_{i j}$
- Similarly, we define the complementary strain energy density $\mathrm{d} U_{0}^{*}=\varepsilon_{i j} \mathrm{~d} \sigma_{i j}$
- It is the area "to the left" of the stress-strain curve.
- For a linear elastic solid, $U_{0}=U_{0}{ }^{*}$.
- U_{0} is often expressed in terms of displacements or strains.
- $U_{0}{ }^{*}$ is often expressed in terms of forces or stresses.

Principle of Complementary Virtual Work

- Thus far we have focused on varying the displacement field while keeping the stress field fixed.
- Here we consider varying the stresses while holding displacements fixed.
- A statically admissible stress field is one that satisfies the equilibrium equation over the interior of a domain B and all stress boundary conditions over S_{t}.

$$
\frac{\partial \sigma_{i j}}{\partial x_{j}}+F_{i}=0 ; \quad n_{j} \sigma_{i j}=T_{i} \quad \text { on } S_{t}
$$

- Consider a statically admissible variation in stresses

$$
\left.\begin{array}{l}
\sigma_{i j}^{\prime}=\sigma_{i j}+\delta \sigma_{i j} \\
\frac{\partial \sigma_{i j}^{\prime}}{\partial x_{j}}+F_{i}=0 ; \\
n_{j} \sigma_{i j}^{\prime}=T_{i} \quad \text { on } S_{t}
\end{array}\right\} \Rightarrow \frac{\partial \delta \sigma_{i j}}{\partial x_{j}}=0 ; \quad \delta \sigma_{i j}=0 \quad \text { on } S_{t}
$$

Principle of Complementary Virtual Work

- On S_{u}, a variation in surface traction is induced

$$
\delta T_{i}=n_{j} \delta \sigma_{i j} \quad \text { on } S_{u}
$$

- The internal complementary virtual work done by the virtual stresses against strains

$$
\begin{aligned}
\delta W_{i}^{*} & =\iiint_{V} \varepsilon_{i j} \delta \sigma_{i j} \mathrm{~d} V=\iiint_{V}\left(\varepsilon_{i j}+\omega_{i j}\right) \delta \sigma_{i j} \mathrm{~d} V=\iiint_{V} \frac{\partial u_{i}}{\partial x_{j}} \delta \sigma_{i j} \mathrm{~d} V \\
& =\iiint_{V}\left[\frac{\partial}{\partial x_{j}}\left(u_{i} \delta \sigma_{i j}\right)-u_{i} \frac{\partial \delta \sigma / i j}{\partial x_{j}}\right] \mathrm{d} V=\iiint_{V} \frac{\partial}{\partial x_{j}}\left(u_{i} \delta \sigma_{i j}\right) \mathrm{d} V \\
& =\iint_{S} n_{j} u_{i} \delta \sigma_{i j} \mathrm{~d} S=\iint_{S_{i}} n_{j} u_{i} \delta \sigma_{i j} \mathrm{~d} S+\iint_{S_{S_{i}}} n_{j} u_{i} \delta \sigma_{i j} \mathrm{~d} S \\
& =\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S=\delta W_{E}^{*}
\end{aligned}
$$

- is equal to the external complementary virtual work done by the virtual tractions against displacements on S_{u}.

Principle of Complementary Virtual Work

- All displacements and strains are constant and need not to be actual displacements and strains.
- The strain and displacement fields are independent of the virtual stresses.
- This principle is independent of any constitutive law.
- This principle is applicable to simplified one- and twodimensional theories as well, i.e. $\delta W_{E}{ }^{*}=u_{i} \delta T_{i}$.

$$
\delta W_{I}^{*}=\iiint_{V} \varepsilon_{i j} \delta \sigma_{i j} \mathrm{~d} V=\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S=\delta W_{E}^{*}
$$

Principle of Total Complementary Energy

- For an elastic solid

$$
\delta W_{I}^{*}=\iiint_{V} \varepsilon_{i j} \delta \sigma_{i j} \mathrm{~d} V=\iiint_{V} \frac{\partial U_{0}^{*}}{\partial \sigma_{i j}} \delta \sigma_{i j} \mathrm{~d} V=\iiint_{V} \delta U_{0}^{*} \mathrm{~d} V=\delta U^{*}
$$ where U^{*} is the complementary strain energy.

- The complementary potential energy of applied loads

$$
V=-\iiint_{V} \boldsymbol{u} \cdot \boldsymbol{F} \mathrm{~d} V-\iint_{S} \boldsymbol{u} \cdot \boldsymbol{T} \mathrm{~d} S=-\iiint_{V} u_{i} F_{i} \mathrm{~d} V-\iint_{S} u_{i} T_{i} \mathrm{~d} S
$$

- For prescribed (constant) displacements

$$
\begin{aligned}
& \delta V^{*}=-\iiint_{V} \boldsymbol{u} \cdot \delta \boldsymbol{F} \mathrm{~d} V-\iint_{S} \boldsymbol{u} \cdot \delta \boldsymbol{T} \mathrm{~d} S=-\iiint_{V} u_{i} \delta F_{i} \mathrm{~d} V-\iint_{S} u_{i} \delta T_{i} \mathrm{~d} S \\
&=-\iiint_{V} u_{i}\left(-\frac{\partial \delta \sigma / i}{\partial x_{j}}\right) \mathrm{d} V-\iint_{S_{I}} u_{i} n_{j} \delta \delta \sigma_{i j} \mathrm{~d} S-\iint_{S_{i}} u_{i} \delta T_{i} \mathrm{~d} S \\
&=-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S=-\delta W_{E}^{*} \quad \delta W_{I}^{*}=\delta W_{E}^{*} \\
& \Rightarrow \delta\left(U^{*}+V^{*}\right)=\delta \Pi^{*}=0
\end{aligned}
$$

Principle of Total Complementary Energy

- Of all stress fields that satisfy the equations of equilibrium and stress BCs on S_{t}, the actual one is distinguished by a minimum value of the complementary energy.
- Since the actual stress must satisfy the compatibility condition, this principle is an alternative statement to stress compatibility.
- Restricted to elastic bodies, both linear and nonlinear.
- This principle implies that the stress variation must satisfy the equilibrium equation with zero body forces inside V and traction BCs on S_{t}.

Castigliano's Second Theorem

- Consider an elastic system subjected to a set of generalized loads F_{i} (forces \& moments) with corresponding generalized displacements u_{i} (deflection, rotation, angle of twist \& extension/contraction). Subsequently,
- Express the variation of complimentary energy in terms of virtual loads δF_{i}, i.e. $\delta U^{*}=\delta U^{*}\left(\delta F_{i}\right)$.
- The total complementary energy variation Π^{*} is

$$
\delta \Pi^{*}=\delta U^{*}+\delta V^{*}=\delta U^{*}-\sum_{k=1}^{n} u_{k} \delta F_{k}=\delta\left(U^{*}-\sum_{k=1}^{n} u_{k} F_{k}\right)
$$

- For equilibrium, we must require

$$
\begin{aligned}
& \delta \Pi^{*}=\frac{\partial \Pi^{*}}{\partial F_{i}} \delta F_{i}=\frac{\partial}{\partial F_{i}}\left(U^{*}-\sum_{k=1}^{n} u_{k} F_{k}\right) \delta F_{i}=\left(\frac{\partial U^{*}}{\partial F_{i}}-u_{k} \delta_{i k}\right) \delta F_{i}=\left(\frac{\partial U^{*}}{\partial F_{i}}-u_{i}\right) \delta F_{i}=0 \\
& \text { - For arbitrary force variations: } u_{i}=\frac{\partial U^{*}}{\partial F_{i}}
\end{aligned}
$$

Castigliano's Second Theorem

$$
u_{i}=\frac{\partial U^{*}}{\partial F_{i}}
$$

- This theorem is simply an application of the complementary total potential energy.
- This theorem is valid for both linear and nonlinear elastic solids. The specific material behavior only affects the way how complementary energy is calculated.
- This theorem requires one to write the complementary energy in terms of generalized forces, , i.e. $U^{*}=U^{*}\left(F_{i}\right)$.

Application to Beams and Trusses

- For linearly elastic bodies: $U^{*}=U$.
- In the case of a beam:

$$
\begin{aligned}
U^{*} & =U=\int_{0}^{L} \frac{M^{2}}{2 E I} \mathrm{~d} x \\
\Rightarrow \quad u_{i} & =\frac{\partial U}{\partial P_{i}}=\int_{0}^{L} \frac{M}{E I} \frac{\partial M}{\partial P_{i}} \mathrm{~d} x
\end{aligned}
$$

- In the case of a truss:

$$
\begin{aligned}
U^{*} & =U=\sum_{k=1}^{n} \frac{F_{k}^{2} L_{k}}{2 E_{k} A_{k}} \\
\Rightarrow \quad u_{i} & =\frac{\partial U}{\partial P_{i}}=\sum_{k=1}^{n} \frac{F_{k} L_{k}}{E_{k} A_{k}} \frac{\partial F_{k}}{\partial P_{i}}
\end{aligned}
$$

Approximate Solution

- The Principle of Total Complementary Energy states

$$
0=\delta \Pi^{*}=\delta\left(U^{*}+V^{*}\right)=\iiint_{V} u_{i} \frac{\partial \delta \sigma_{i j}}{\partial x_{j}} \mathrm{~d} V-\iint_{S_{t}} u_{i} n_{j} \delta \sigma_{i j} \mathrm{~d} S
$$

- Minimizing the total complementary energy requires

$$
\frac{\partial \delta \sigma_{i j}}{\partial x_{j}}=0, \text { inside } V ; \quad \delta T_{i}=n_{j} \delta \sigma_{i j}=0 \text { on } S_{t} .
$$

- In many instances, the solution to the above is untenable.
- Approximate methods need to be developed.
- We aim to find an approximate stress solution that satisfies the equilibrium condition inside V and the traction BCs on S_{t}.

Approximate Solution of Virtual Stresses

- Based on approximating the stress field as a linear combination of trial functions: $\sigma_{i j}=\sigma_{i j}^{0}+\sum_{m} A_{m} \sigma_{i j}^{m}$
- where $\sigma_{i j}{ }^{0}$ and $\sigma_{i j}{ }^{m}$ are known functions and A_{m} represent undetermined coefficients.
- A_{m} stay the same for all six stress components, since altogether six stresses must satisfy compatibility.
- $\sigma_{i j}{ }^{0}$ must satisfy the equilibrium condition inside V and the traction BCs on S_{t}.
- $\sigma_{i j}{ }^{m}$ represent linearly independent functions, preferably form a complete base, and must satisfy

$$
\frac{\partial \sigma_{i j}^{m}}{\partial x_{j}}=0, \text { inside } V ; \quad n_{j} \sigma_{i j}^{m}=0 \text { on } S_{t} .
$$

Approximate Solution of Virtual Stresses

- The stress variation is thus: $\delta \sigma_{i j}=\sum_{m} \frac{\partial \sigma_{i j}}{\partial A_{m}} \delta A_{m}=\sum_{m} \sigma_{i j}^{m} \delta A_{m}$
- We now have reduced $\Pi^{*}\left(\sigma_{i j}\right)$ to $\Pi^{*}\left(A_{m}\right)$. The standard variation procedure yields

$$
\begin{aligned}
& 0=\delta \Pi^{*}=\delta U^{*}+\delta V^{*}=\delta U^{*}-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S=\delta U^{*}-\iint_{S_{u}} u_{i} n_{j} \delta \sigma_{i j} \mathrm{~d} S \\
& =\delta U^{*}-\iint_{S_{u}} u_{i} n_{j} \sum_{m} \sigma_{i j}^{m} \delta A_{m} \mathrm{~d} S=\sum \frac{\partial U^{*}}{\partial A_{m}} \delta A_{m}-\sum_{m}\left(\iint_{S_{u}} u_{i} n_{j} \sigma_{i j}^{m} \mathrm{~d} S\right) \delta A_{m}
\end{aligned}
$$

- For arbitrary variation of the coefficient A_{m}

$$
\frac{\partial \Pi^{*}}{\partial A_{m}}=0 \quad \Rightarrow \quad \frac{\partial U^{*}}{\partial A_{m}}=\iint_{S_{u}} u_{i} n_{j} \sigma_{i j}^{m} d S
$$

- If $u_{i}=0$ on S_{u} or no S_{u} at all, the solution can further be simplified to

$$
\partial U^{*} / \partial A_{m}=0 .
$$

Application to Plane Elasticity with S_{t} Only

- Recall that for a conservative body force field, the inplane stress components of a plane problem are
$\sigma_{x}=\frac{\partial^{2} \psi}{\partial y^{2}}+V, \sigma_{y}=\frac{\partial^{2} \psi}{\partial x^{2}}+V, \tau_{x y}=-\frac{\partial^{2} \psi}{\partial x \partial y}$

$$
F_{x}=-\frac{\partial V}{\partial x}, \quad F_{y}=-\frac{\partial V}{\partial y} .
$$

- Instead of dealing with all three stresses, we choose to approximate the single Airy stress function as a linear combination of trial functions

$$
\psi=\psi_{0}+\sum_{m} A_{m} \psi_{m}
$$

- where ψ_{0} and ψ_{m} are known functions and A_{m} represent undetermined coefficients.

Application to Plane Elasticity with S_{t} Only

- The stress field resulted from ψ_{0} must satisfy the in-plane equilibrium condition and the traction BCs on S_{t}.

$$
\begin{aligned}
& \frac{\partial \sigma_{x}^{0}}{\partial x}+\frac{\partial \tau_{x y}^{0}}{\partial y}+F_{x}=0, \frac{\partial \tau_{x y}^{0}}{\partial x}+\frac{\partial \sigma_{y}^{0}}{\partial y}+F_{y}=0 \\
& n_{x} \sigma_{x}^{0}+n_{y} \tau_{x y}^{0}=T_{x}, n_{x} \tau_{x y}^{0}+n_{y} \sigma_{y}^{0}=T_{y} \quad \text { on } S_{t} \\
& \hline
\end{aligned}
$$

- ψ_{m} represents m linearly independent functions, preferably forms a complete base, and results in stresses that satisfy

$$
\begin{gathered}
\frac{\partial \sigma_{x}^{m}}{\partial x}+\frac{\partial \tau_{x y}^{m}}{\partial y}=0, \frac{\partial \tau_{x y}^{m}}{\partial x}+\frac{\partial \sigma_{y}^{m}}{\partial y}=0 \\
n_{x} \sigma_{x}^{m}+n_{y} \tau_{x y}^{m}=0, n_{x} \tau_{x y}^{m}+n_{y} \sigma_{y}^{m}=0 \quad \text { on } S_{t}
\end{gathered}
$$

- With the help Airy stress function, the equilibrium conditions are automatically satisfied.

Application to Plane Elasticity with S_{t} Only

- The principle of total complementary energy states

$$
0=\delta \Pi^{*}=\delta U^{*}+\delta V^{*}=\delta U^{*}-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S
$$

- If $u_{i}=0$ on S_{u} or no S_{u} at all: $\delta V^{*}=0$.

$$
0=\delta U^{*}=\iiint_{V}^{u} \delta U_{0}^{*} \mathrm{~d} V=\iiint_{V} \frac{\partial U^{*}}{\partial \sigma_{i j}} \delta \sigma_{i j} \mathrm{~d} V=\iiint_{V} \varepsilon_{i j} \delta \sigma_{i j} \mathrm{~d} V
$$

- For plane elasticity, the principle is reduced to

$$
0=\delta U^{*}=\iint_{A}\left(\varepsilon_{x} \delta \sigma_{x}+\varepsilon_{y} \delta \sigma_{y}+2 \varepsilon_{x y} \delta \tau_{x y}\right) \mathrm{d} A
$$

- For plane strain problem (linear elasticity)

$$
\varepsilon_{x}=\frac{1-v^{2}}{E}\left(\sigma_{x}-\frac{v}{1-v} \sigma_{y}\right), \varepsilon_{y}=\frac{1-v^{2}}{E}\left(\sigma_{y}-\frac{v}{1-v} \sigma_{x}\right), \varepsilon_{x y}=\frac{1+v}{E} \sigma_{x y}
$$

- For plane stress (linear elasticity)

$$
\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right), \quad \varepsilon_{x y}=\frac{1+v}{E} \sigma_{x y}, \quad \varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right)
$$

Application to Plane Elasticity with S_{t} Only

- If the plane domain is simply-connected, V is harmonic, and there is S_{t} only
\checkmark The governing Airy function equation is biharmonic. The stress field is independent of elastic constants.
\checkmark The stress field is identical for plane strain and plane stress.
- The principle can thus be reduced by setting $\boldsymbol{v}=\mathbf{0}$:

$$
\begin{gathered}
0=\delta U^{*}=\iint_{A}\left(\varepsilon_{x} \delta \sigma_{x}+\varepsilon_{y} \delta \sigma_{y}+2 \varepsilon_{x y} \delta \tau_{x y}\right) \mathrm{d} A=\frac{1}{E} \iint_{A}\left(\sigma_{x} \delta \sigma_{x}+\sigma_{y} \delta \sigma_{y}+2 \sigma_{x y} \delta \tau_{x y}\right) \mathrm{d} A \\
\psi=\psi_{0}+\sum_{m} A_{m} \psi_{m} \Rightarrow \delta \psi=\sum \frac{\partial \psi}{\partial A_{m}} \delta A_{m}=\sum \psi_{m} \delta A_{m} \\
\Rightarrow \begin{array}{l}
\delta \sigma_{x}=\frac{\partial^{2} \delta \psi}{\partial y^{2}}=\frac{\partial^{2}}{\partial y^{2}} \sum \psi_{m} \delta A_{m}=\sum \frac{\partial^{2} \psi_{m}}{\partial y^{2}} \delta A_{m}, \delta \sigma_{y}=\frac{\partial^{2} \delta \psi}{\partial x^{2}}=\sum \frac{\partial^{2} \psi_{m}}{\partial x^{2}} \delta A_{m}, \\
\delta \tau_{x y}=-\frac{\partial^{2} \delta \psi}{\partial x \partial y}=-\sum \frac{\partial^{2} \psi_{m}}{\partial x \partial y} \delta A_{m}
\end{array},
\end{gathered}
$$

Application to Plane Elasticity with S_{t} Only

- Plug in the expressions of stresses and stress variations

$$
\begin{aligned}
0 & =\iint_{A}\left[\sigma_{x} \delta \sigma_{x}+\sigma_{y} \delta \sigma_{y}+2 \sigma_{x y} \delta \tau_{x y}\right] \mathrm{d} A \\
& =\iint_{A}\left[\left(\frac{\partial^{2} \psi}{\partial y^{2}}+V\right) \sum \frac{\partial^{2} \psi_{m}}{\partial y^{2}} \delta A_{m}+\left(\frac{\partial^{2} \psi}{\partial x^{2}}+V\right) \sum \frac{\partial^{2} \psi_{m}}{\partial x^{2}} \delta A_{m}+2 \frac{\partial^{2} \psi}{\partial x \partial y} \sum \frac{\partial^{2} \psi_{m}}{\partial x \partial y} \delta A_{m}\right] \mathrm{d} A \\
& =\sum \delta A_{m} \iint_{A}\left[\left(\frac{\partial^{2} \psi}{\partial y^{2}}+V\right) \frac{\partial^{2} \psi_{m}}{\partial y^{2}}+\left(\frac{\partial^{2} \psi}{\partial x^{2}}+V\right) \frac{\partial^{2} \psi_{m}}{\partial x^{2}}+2 \frac{\partial^{2} \psi}{\partial x \partial y} \frac{\partial^{2} \psi_{m}}{\partial x \partial y}\right] \mathrm{d} A
\end{aligned}
$$

- For arbitrary variation of the coefficient A_{m}
$\iint_{A}\left[\left(\frac{\partial^{2} \psi}{\partial y^{2}}+V\right) \frac{\partial^{2} \psi_{m}}{\partial y^{2}}+\left(\frac{\partial^{2} \psi}{\partial x^{2}}+V\right) \frac{\partial^{2} \psi_{m}}{\partial x^{2}}+2 \frac{\partial^{2} \psi}{\partial x \partial y} \frac{\partial^{2} \psi_{m}}{\partial x \partial y}\right] \mathrm{d} A=0$.

Sample Problem

- Determine the stress field in the rectangular thin plate. $\boldsymbol{F}=\mathbf{0}$.

$$
\begin{gathered}
\left(\sigma_{x}\right)_{x= \pm a}=q\left(1-\frac{y^{2}}{b^{2}}\right), \quad\left(\tau_{x y}\right)_{x= \pm a}=0 ; \\
\left(\sigma_{y}\right)_{y= \pm b}=0, \quad\left(\tau_{x y}\right)_{y= \pm b}=0
\end{gathered}
$$

- Solution: approximate the Airy stress function as

$$
\begin{aligned}
\psi & =\psi_{0}+\sum_{m} A_{m} \psi_{m}=\psi_{0}+\sum_{m} A_{m} \psi_{m} \\
& =\frac{1}{2} q y^{2}\left(1-\frac{y^{2}}{6 b^{2}}\right)+\left(x^{2}-a^{2}\right)^{2}\left(y^{2}-b^{2}\right)^{2}\left(A_{1}+A_{2} x^{2}+A_{3} y^{2}+\cdots\right)
\end{aligned}
$$

- ψ_{0} satisfies the tractions BCs and ψ_{m} satisfies the zerotraction BCs , as required.

Sample Problem

- Include A_{1} only and substitute into the principle

$$
\begin{aligned}
& \iint_{A}\left[\frac{\partial^{2} \psi}{\partial y^{2}} \frac{\partial^{2} \psi_{m}}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial x^{2}} \frac{\partial^{2} \psi_{m}}{\partial x^{2}}+2 \frac{\partial^{2} \psi}{\partial x \partial y} \frac{\partial^{2} \psi_{m}}{\partial x \partial y}\right] \mathrm{d} A=0 \\
& \Rightarrow A_{1}\left(\frac{64}{7}+\frac{256}{49} \cdot \frac{b^{2}}{a^{2}}+\frac{64}{7} \cdot \frac{b^{4}}{a^{4}}\right)=\frac{q}{a^{4} b^{2}}
\end{aligned}
$$

- For square plate:

$$
A_{1}=0.0425 \frac{q}{a^{6}} \Rightarrow\left\{\begin{array}{l}
\left.a^{2}\right)\binom{1}{a^{2}} \\
\sigma_{y}=-0.170 q\left(1-\frac{3 x^{2}}{a^{2}}\right)\left(1-\frac{y^{2}}{a^{2}}\right)^{2} \\
\tau_{x y}=-0.680 q\left(1-\frac{x^{2}}{a^{2}}\right)\left(1-\frac{y^{2}}{a^{2}}\right) \frac{x y}{a^{2}}
\end{array}\right.
$$

- Higher accuracy can be achieved by including more terms.

Application to Torsion of Cylinders

- Two non-trivial stresses in terms of Prandtl Stress Function $\psi=\psi(x, y)$

$$
\tau_{x z}=\frac{\partial \psi}{\partial y}, \tau_{y z}=-\frac{\partial \psi}{\partial x}
$$

- The principle of total complementary energy

$$
\begin{aligned}
0 & =\delta \Pi^{*}=\delta U^{*}+\delta V^{*}=\iiint_{V} \varepsilon_{i j} \delta \sigma_{i j} \mathrm{~d} V-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S \\
& =\iiint_{V}\left[2 \varepsilon_{x z} \delta \tau_{x z}+2 \varepsilon_{y z} \delta \tau_{y z}\right] \mathrm{d} V-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S \\
& =\frac{1}{G} \iiint_{V}\left[\tau_{x z} \delta \tau_{x z}+\tau_{y z} \delta \tau_{y z}\right] \mathrm{d} V-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S \\
& =\frac{1}{G} \iiint_{V}\left[\frac{\partial \psi}{\partial y} \frac{\partial \delta \psi}{\partial y}+\frac{\partial \psi}{\partial x} \frac{\partial \delta \psi}{\partial x}\right] \mathrm{d} V-\iint_{S_{u}} u_{i} \delta T_{i} \mathrm{~d} S
\end{aligned}
$$

Application to Torsion of Cylinders

- $\psi=\psi(x, y)$
- Relative angle of twist between ends: αL
- Variation of Torque at ends: δT

$$
\begin{aligned}
0 & =\delta U^{*}+\delta V^{*}=\frac{L}{G} \iint_{A}\left[\frac{\partial \psi}{\partial y} \frac{\partial \delta \psi}{\partial y}+\frac{\partial \psi}{\partial x} \frac{\partial \delta \psi}{\partial x}\right] \mathrm{d} A-(\alpha L) \delta T \\
& =\frac{L}{G} \iint_{A}\left[\frac{\partial \psi}{\partial y} \frac{\partial \delta \psi}{\partial y}+\frac{\partial \psi}{\partial x} \frac{\partial \delta \psi}{\partial x}\right] \mathrm{d} A-2 \alpha L \iint_{A} \delta \psi \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

- The total complementary energy results in

$$
\iint_{A}\left[\frac{\partial \psi}{\partial x} \frac{\partial \delta \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \delta \psi}{\partial y}-2 G \alpha \delta \psi\right] \mathrm{d} A=0
$$

- $\psi=\psi(x, y)$: Prandtl Stress Function for torsion.

Application to Torsion of Cylinders

- Propose an approximate solution of the form: $\psi=\sum A_{m} \psi_{m}$.
- where A_{m} are undetermined coefficients and ψ_{m} are known functions that satisfy $\psi_{m}=0$ on lateral boundaries.
- The total complementary energy results in

$$
\begin{gathered}
\Rightarrow \iint_{A}\left[\frac{\partial \psi}{\partial x}\left(\frac{\partial}{\partial x} \sum \frac{\partial \psi}{\partial A_{m}} \delta A_{m}\right)+\frac{\partial \psi}{\partial y}\left(\frac{\partial}{\partial y} \sum \frac{\partial \psi}{\partial A_{m}} \delta A_{m}\right)-2 G \alpha\left(\sum \frac{\partial \psi}{\partial A_{m}} \delta A_{m}\right)\right] \mathrm{d} A=0 \\
=\sum \delta A_{m} \iint_{A}\left[\frac{\partial \psi}{\partial x}\left(\frac{\partial}{\partial x} \frac{\partial \psi}{\partial A_{m}}\right)+\frac{\partial \psi}{\partial y}\left(\frac{\partial}{\partial y} \frac{\partial \psi}{\partial A_{m}}\right)-2 G \alpha \frac{\partial \psi}{\partial A_{m}}\right] \mathrm{d} A=0 \\
=\sum \delta A_{m} \iint_{A}\left[\frac{\partial \psi}{\partial x} \frac{\partial \psi_{m}}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \psi_{m}}{\partial y}-2 G \alpha \psi_{m}\right] \mathrm{d} A=0
\end{gathered}
$$

- For arbitrary $\delta A_{m}: \iiint_{A}\left[\frac{\partial \psi}{\partial x} \frac{\partial \psi_{m}}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \psi_{m}}{\partial y}-2 G \alpha \psi_{m}\right] \mathrm{d} A=0$

Sample Problem: Torsion of Rectangular Cylinder

- Boundary equation scheme does not work.
- Membrane analogy: $\psi=0$ at the boundaries; symmetric about $x \& y$.
- Propose an approximate solution

$$
\psi=\sum A_{m n} \psi_{m n}=\left(x^{2}-a^{2}\right)\left(y^{2}-b^{2}\right) \sum A_{m n} x^{2 m} y^{2 n}
$$

- $m \times n$ equations for $m \times n$ coefficients $A_{m n}$

$$
\iint_{A}\left[\frac{\partial \psi}{\partial x} \frac{\partial \psi_{m n}}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \psi_{m n}}{\partial y}-2 G \alpha \psi_{m n}\right] \mathrm{d} A=0
$$

- If we take three terms only:
$\psi=\sum\left[A_{00} \psi_{00}+A_{10} \psi_{10}+A_{01} \psi_{01}\right]=\left(x^{2}-a^{2}\right)\left(y^{2}-b^{2}\right)\left(A_{00}+A_{10} x^{2}+A_{01} y^{2}\right)$.
- The principle results in three equations

Sample Problem: Torsion of Rectangular Cylinder

$$
\begin{aligned}
& \int_{-a}^{a} \int_{-b}^{b}\left[\frac{\partial \psi}{\partial x} \frac{\partial \psi_{00}}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \psi_{00}}{\partial y}-2 G \alpha \psi_{00}\right] \mathrm{d} x \mathrm{~d} y=0 \\
& \int_{-a}^{a} \int_{-b}^{b}\left[\frac{\partial \psi}{\partial x} \frac{\partial \psi_{10}}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \psi_{10}}{\partial y}-2 G \alpha \psi_{10}\right] \mathrm{d} x \mathrm{~d} y=0 \\
& \int_{-a}^{a} \int_{-b}^{b}\left[\frac{\partial \psi}{\partial x} \frac{\partial \psi_{01}}{\partial x}+\frac{\partial \psi}{\partial y} \frac{\partial \psi_{01}}{\partial y}-2 G \alpha \psi_{01}\right] \mathrm{d} x \mathrm{~d} y=0
\end{aligned}
$$

- Substitute ψ and $\psi_{m n}$ into the above and implement the calculation

$$
A_{00}=\frac{35 G \alpha}{8 \Delta}\left(19 a^{4}+13 a^{2} b^{2}+9 b^{4}\right), A_{10}=\frac{105 G \alpha}{8 \Delta}\left(9 a^{2}+b^{2}\right), A_{01}=\frac{105 G \alpha}{8 \Delta}\left(a^{2}+9 b^{2}\right)
$$

- where $\Delta=45 a^{6}+509 a^{4} b^{2}+509 a^{2} b^{4}+45 b^{6}$.
- Higher accuracy is achieved by including more terms.

Outline

- Work Done by External Load
- Strain Energy
- The Delta Operator
- Principle of Virtual Work
- Principle of Minimum Potential Energy
- Castigliano's First Theorem
- Displacement Variation: Ritz Method
- Displacement Variation: Galerkin Method
- Complimentary Strain Energy
- Principle of Complimentary Virtual Work
- Principle of Minimum Complimentary Potential Energy
- Castigliano's Second Theorem
- Stress Variation
- Stress Variation: Application to Plane Elasticity
- Stress Variation: Application to Torsion of Cylinders

