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A uniform rod is subjected to a slowly increasing load.

The total work done by the load for a deformation x1,

which results in an increase of strain energy in the rod.
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The elementary work done by the load P as the rod 

elongates by a small dx is

which is equal to the area of width dx under the load-

deformation diagram.
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In the case of a linear elastic deformation,

Work Done by External Load
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• Work done by surface and body forces on elastic solids 

is stored inside the body in the form of strain energy. 

F

T n

U

Energy Conversion

4



To eliminate the effects of size, evaluate the strain-

energy per unit volume,

1

1

0

0

0

d

d

x

x x

U P x

V A L

U strain energy density



 



 





As the material is unloaded, the stress returns to zero but 

there is a permanent deformation.  Only the strain 

energy represented by the triangular area is recovered.

Remainder of the energy spent in deforming the material is 

dissipated as heat.

The total strain energy density resulting from the 

deformation is equal to the area under the curve to 1.

Strain Energy Density
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In an element with a nonuniform stress distribution,
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For values of U0 < UY , i.e., below the proportional 

limit,
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Under axial loading, d d
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For a rod of uniform cross-section,

Strain Energy for Normal Stress

0E 
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For a beam subjected to a bending load,
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Setting  dV = dA dx,
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For an end-loaded cantilever beam,
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Strain Energy for Normal Stress
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For a material subjected to plane shearing 

stresses,
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For values of xy within the proportional limit,
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The total strain energy is found from
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Strain Energy for Shear Stress
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For a shaft subjected to a torsional load,

Setting  dV = dA dx,
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In the case of a uniform shaft,
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Strain Energy for Shear Stress

9



Strain Energy for Hydrostatic Stress

 

 

 
 

1 2 3

2 2

0

3 1 2 3

3 2

3 2

3 1 2 3

3 1 21 1 1

2 2 2 2

kk

kk m kk m m

p
p

E G

p E G
K

V

U p
K E


   








    

 
     



 
  
 


    

10

0;    0.5K   



x

y

z
dx

dz

dy

0
d d

d d d

d d d

ij ij

x x y y z z

xy xy yz yz zx zx

U  

     

     



  

  

• Strain energy density of 

non-linearly elastic 

material under 

generalized 3-D stress 

states

• Strain energy density of 

linearly elastic material under 

generalized 3-D stress states
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Strain Energy Density for a General Stress State

• In Terms of Strain

• In Terms of Stress
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(a) Spherical 

stress tensor

(b) Deviatoric stress 

tensor
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   • Volumetric energy density:

• Distortion energy density:
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Decomposition of Strain Energy Density
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Strain Energy Density in terms of Displacement
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Strain Energy Density for Plane Elasticity
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Strain Energy Density for a General Stress State
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The Variation Operator

• Assuming u(x) is the minimizing path for a functional:

• Introducing a family of varied functions:

• We call εη(x) the variation of u(x) and write

• The delta operator (δ) represents a small arbitrary change 

in the dependent variable u for a fixed value of the 

independent variable x, i.e. we do not associate a δx with 

a δu.

   , , d
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The difference between δu and a differential du

• A differential du has a dx associated with it.

• Consider the variation for the derivative:
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• In a similar manner:        d d d du x x u x x u x x u x x      

• Consider a functional:

• Its variation:
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Minimization of a Functional

• Consider the problem of minimizing

• For a varied path, the integrand may be written as
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• Expanding the above in a Taylor series yields
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• The minimizing process leads to Euler-Lagrange equation.

• Essential vs. natural BCs…
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Principle of Virtual Work

• A kinematically admissible displacement field is one 

possessing continuous first partial derivatives in the 

interior of a domain B and satisfying all displacement 

boundary conditions on Su.

• A statically admissible stress field is one that satisfies 

the equilibrium equation over the interior of a domain B

and all stress boundary conditions over St.

• A kinematically admissible displacement variation δu

(virtual displacement) is one possessing continuous 

first partial derivatives in the interior of a domain B and 

zero on Su.



• Now consider a body with statically admissible stress 

field and subjected to kinematically admissible virtual 

displacements.

• The work done by the external loads against the virtual 

displacements is
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Principle of Virtual Work
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• In indicial notation

• Recall that, δu = 0 on Su.
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Principle of Virtual Work

• Applying the divergence theorem on the surface integral:
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• Balance between the external and internal virtual work is 

an alternative statement of equilibrium condition.
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Principle of Virtual Work

d d : d
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F u T u σ ε

• Principle of Virtual Work:

• All forces and stresses are constant and need not to be 

actual forces and stresses.

• The stresses are independent of the virtual deformations.

• This principle is independent of any constitutive law.

• This principle is NOT about energy conservation, i.e. it is 

valid when energy is not conserved (plasticity, e.g.).

• This principle is applicable to simplified one- and two-

dimensional theories as well, i.e. δWE = Fiδui.
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Principle of Minimum Total Potential Energy

• For an elastic solid

0

0d d d
ij

ij

I ij ij
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where U is the strain energy.

• If we define the potential energy of applied loads as

d d d d
t t

i i i i
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• For prescribed (constant) body and surface forces

d d d d
t t

i i i i
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  0.U V    

• Principle of Minimum Total Potential Energy

• Restricted to elastic solids, both linear and nonlinear.
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• Elastic strain energy due to a strain variation
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• The corresponding potential energy variation 
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• Principle of Minimum Total Potential Energy

• For an arbitrary displacement variation, the principle of 

minimum total potential energy yields the equilibrium 

equation and traction BCs.

Principle of Minimum Total Potential Energy
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Castigliano’s First Theorem

• Consider an elastic system subjected to a set of generalized 

loads Fi (forces & moments) with corresponding 

generalized displacements ui (deflection, rotation, angle of 

twist & extension/contraction). Subsequently,

• Express the variation of strain energy in terms of virtual 

displacements δui, i.e. δU = δU(δui).

• The total potential energy variation may be expressed as

1 1
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• For equilibrium, we must require
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• For arbitrary displacement variations:
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u
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Castigliano’s First Theorem

• This theorem is simply an application of the minimum 

total potential energy.

• This theorem is valid for both linear and nonlinear elastic 

solids. The specific material behavior only affects the way 

how elastic strain energy is calculated.

• This theorem requires one to write the elastic strain energy 

in terms of generalized displacements, , i.e. U = U(ui).

i

i

U
F

u
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Approximate Methods

• Minimizing the total potential energy is equivalent to 

satisfying the equilibrium condition and traction BCs 
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• The Principle of Minimum Total Potential Energy states

0,   inside ;               on .
ij

i i j ij t

j

F V T n S
x





  



• In many instances, the solution to the above is untenable.

• Approximate methods need to be developed.

• The first will be to approximate the total potential energy.

• The second will be to approximate the d.e.

• Both are precursors to the Finite Element Method.
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Ritz Method

• Based on approximating the displacement field as a 

linear combination of trial functions

0 0 0
; ; ,

m m m m m m
u u A u v v B v w w C w       

• where u0, um, v0, vm, w0, wm are known functions and Am,

Bm, Cm, represent undetermined coefficients.

• u0, v0, w0 must satisfy the displacement BCs on Su.

• um, vm, wm must be differentiable inside V, zero on Su, 

linearly independent and complete (trig or poly functions).

• The displacement variation is thus  

;  ;  ,
m m m m m m m
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u
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Ritz Method

• We now have reduced Π(u, v, w) to Π(Am, Bm, Cm). The 

standard variation procedure yields

0    0
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A B C
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• For arbitrary variation of the coefficients Am, Bm, Cm
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• Given the total potential energy

Am, Bm, Cm are determined 

from these equations.
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• Recall the principle of minimum total potential Energy

Galerkin Method

• The Galerkin method for finding an approximate solution 

of a d.e. involves the direct use of the d.e. itself.

• No variational statement is required and hence the method 

has broader range of application.

• We still assume an approximate solution for displacements
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• Substitute the displacement variation into the principle

Galerkin Method

• If the proposed displacements satisfy not only the 

displacement BCs on Su, but also the traction BCs on St, i.e.
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• Then, for arbitrary Am, Bm, Cm
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Galerkin Method
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0 0 0
; ;
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• Am, Bm, Cm are determined from these equations.



• In terms of displacements
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Galerkin Method

0 0 0
; ;
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• Am, Bm, Cm are determined from these equations.
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Ritz Method: Application to Plane Elasticity
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• Am, Bm are determined from these equations.
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Ritz Method: Application to Plane Elasticity

• The thin-plate is rolling-supported at 

the left and bottom edge.

• Propose an approximate displacement 

solution based on Ritz method and 

solve the plane stress  problem. Neglect 

body forces.
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• Note how the displacement BCs are satisfied.
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• If take only one term, i.e., 1 1 1 1
,          ,    u A x v B y u x v y    

• Substitute back into the principle

• For the present case, A1 and B1 yield the exact solution. 

Just a special case!

Ritz Method: Application to Plane Elasticity
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• Consider a variable cross-section rod subjected to a 

uniformly distributed load and a concentrated load.
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• Assume:

• Note how the displacement BCs are satisfied.
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• The standard variation procedure yields:

• Solving the above two equations for A1 and A2, an 

approximate solution are constructed.
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Ritz Method: Application to Axial Loading
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• Consider a beam subjected to a uniformly distributed load
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• Assume:

• Note how the displacement BCs are satisfied.
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• Note the orthogonality of trigonometric functions

Ritz Method: Application to Beam Theory
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• Upon evaluating the integrals
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• The standard variation procedure yields:

• The approximate solution is found

• Symmetry requires all even terms vanish. 
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Ritz Method: Application to Beam Theory



40

• Consider a simply-supported beam enhanced by an elastic 

column as shown.

• We may still assume:
1

sin
n

n

n x
v a

L







 

2
2
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20 0

1 d 1
d d 2

2 d 2

L Lv
U V EI x qv x kv L

x

 
       

 
 

• The rest is left as an exercise!

Ritz Method: Application to Beam Theory



• In terms of stresses

Galerkin Method: Application to Plane Elasticity

d 0,    d 0
xy xy yx

x m y m
F u A F v A

x y x y

        
        

      
 

0 0
;

m m m m
u u A u v v B v    

• Am, Bm are determined from these equations.

• In terms of displacements

2

2

2
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2
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1
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G u v
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x x y
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Plane strain: 3 4

3
Plane stress: 

1
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• For the thin plate shown, the 

displacements along the top edge are 

confined to

• Propose an approximate displacement 

solution based on Galerkin method 

and solve the plane stress  problem. 

Neglect body forces. 

 2 2
0;   1 .u v x a   

2

2 2

1 2 3 42

2 2

2 2

1 2 3 42 2

1 1

1 1 1

x x y y
u A A y A x A y

a a b b

x y x y y
v B B y B x B y

a b a b b


   
           

  

     
                

    

2 21 1
d 0,    d 0

1 1
m m

u v u v
u u A v v A

x x y y x y

 

 

             
             

             
 

Exercise

• Note the symmetry property of the proposed displacements.

42



v

Galerkin Method: Application to Beam Theory

• u = w = 0, 

• v must also satisfy the 

force BCs.

0 m m
v v B v 

• The second equation of the Galerkin method yields

• Note the sign conventions of deflection, slope and moments.

0 0
0 0

0 0
0 0

0 0
0

4

4 0

d 0

d d d 0

d d 0

d d 0

xy
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m m m mx b x L

L a

m m m mx
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x

q

Ly

Sample Problem

• Let us revisit the beam problem

1

sin
m

m

m x
v B

L







• We may still assume:

• The displacement BCs are satisfied:    0 0v v L 

• The traction BCs are also satisfied, i.e.

       0 0 0,    0M EIv M L EIv L    

• Galerkin method yields

4

40 0
d d 0

L L

m m

d v
EI v x qv x
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0

4

0
1

sin d sins 0in d
L

n

L

n

n n x
EI B

L L

m x m x
x q x

L L

  



 


 
     


    

• Plug in the proposed deflection

• Note the orthogonality of trigonometric functions
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• The same solution as that of Ritz method.

Sample Problem
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Complementary Strain Energy Density

• Recall that the strain energy density is defined as 0
d d

ij ij
U  

• Similarly, we define the complementary strain energy 

density

• It is the area “to the left” of the stress-strain curve.

• For a linear elastic solid, U0 = U0
*.

• U0 is often expressed in terms of displacements or strains.

• U0
* is often expressed in terms of forces or stresses.

*

0
d d

ij ij
U  
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Principle of Complementary Virtual Work

• Thus far we have focused on varying the displacement 

field while keeping the stress field fixed.

• Here we consider varying the stresses while holding 

displacements fixed. 

• Consider a statically admissible variation in stresses

0;    
    0; 0   o

o
n

n

ij

ij

i j i

ij ij

i

j i t

j

j

ij t

j
F n T S

S
x

x



  








   


  




  





• A statically admissible stress field is one that satisfies 

the equilibrium equation over the interior of a domain B

and all stress boundary conditions over St.

0;    on
ij

i j ij i t

j

F n T S
x





  





• The internal complementary virtual work done by the 

virtual stresses against strains

Principle of Complementary Virtual Work

• On Su, a variation in surface traction is induced

   on
i j ij u

T n S 
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d d di
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j i ij
S

i i
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S u
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n
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• is equal to the external complementary virtual work 

done by the virtual tractions against displacements on Su.



Principle of Complementary Virtual Work

• All displacements and strains are constant and need not 

to be actual displacements and strains.

• The strain and displacement fields are independent of the 

virtual stresses.

• This principle is independent of any constitutive law.

• This principle is applicable to simplified one- and two-

dimensional theories as well, i.e. δWE
* = uiδTi.

* *
d d

u

I ij ij i i E
V S

W V u T S W       
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Principle of Total Complementary Energy

• For an elastic solid
*0* *

0

*

d d d
ij

ij

I ij ij
V V V

W V V U V
U

U   


  





  

where U* is the complementary strain energy.

• The complementary potential energy of applied loads

d d d d
i i i i

V S V S
V V S u F V u T S          u F u T

• For prescribed (constant) displacements
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Principle of Total Complementary Energy

• Of all stress fields that satisfy the equations of 

equilibrium and stress BCs on St, the actual one is 

distinguished by a minimum value of the complementary 

energy.

• Since the actual stress must satisfy the compatibility 

condition, this principle is an alternative statement to 

stress compatibility.

• Restricted to elastic bodies, both linear and nonlinear.

• This principle implies that the stress variation must 

satisfy the equilibrium equation with zero body forces 

inside V and traction BCs on St.
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Castigliano’s Second Theorem

• Consider an elastic system subjected to a set of generalized 

loads Fi (forces & moments) with corresponding 

generalized displacements ui (deflection, rotation, angle of 

twist & extension/contraction). Subsequently,

• Express the variation of complimentary energy in terms of 

virtual loads δFi, i.e. δU* = δU*(δFi).

• The total complementary energy variation Π* is

* * *

1

* *

1

n

k

n

k k

k

k

k

U V U u F U u F     
 

 
      

 
  

• For equilibrium, we must require
* * *

* *

1

0
n

i k k i k ik i i i

ki i i i

U U
F U u F F u F u F

F F F F
     



       
            

        


• For arbitrary force variations:
*

i

i

U
u

F
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Castigliano’s Second Theorem

• This theorem is simply an application of the 

complementary total potential energy.

• This theorem is valid for both linear and nonlinear elastic 

solids. The specific material behavior only affects the way 

how complementary energy is calculated.

• This theorem requires one to write the complementary 

energy in terms of generalized forces, , i.e. U* = U *(Fi).

*

i

i

U
u

F








Application to Beams and Trusses

• For linearly elastic bodies: *
.U U

• In the case of a beam:
2

*

0

0

d
2

d

L

L

i

i i

M
U U x

EI

U M M
u x

P EI P

 

 
  

 





• In the case of a truss:

2
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Approximate Solution

• Minimizing the total complementary energy requires

 * * *
0 d d

t

ij

i i j ij
V S

j

U V u V u n S
x


  


     


 

• The Principle of Total Complementary Energy states

0,   inside ;             0  on .
ij

i j ij t

j

V T n S
x


 


  



• In many instances, the solution to the above is untenable.

• Approximate methods need to be developed.

• We aim to find an approximate stress solution that satisfies 

the equilibrium condition inside V and the traction BCs on 

St.



Approximate Solution of Virtual Stresses

• Based on approximating the stress field as a linear 

combination of trial functions: 0 m

ij ij m ij

m

A   

• where σij
0 and σij

m are known functions and Am represent 

undetermined coefficients.

• Am stay the same for all six stress components, since 

altogether six stresses must satisfy compatibility.

• σij
0 must satisfy the equilibrium condition inside V and the 

traction BCs on St.

• σij
m represent linearly independent functions, preferably 

form a complete base, and must satisfy

0,   inside ;             0  on .

m

ij m

j ij t

j

V n S
x





 


56



ij m

ij m ij m

m mm

A A
A


   


 


 

Approximate Solution of Virtual Stresses

• The stress variation is thus:

• We now have reduced Π*(σij) to Π*(Am). The standard 

variation procedure yields

• For arbitrary variation of the coefficient Am
* *

0 d
u

m

i j ij
S

m m

U
u n S

A A


 
  

 


 

* * * * *

*

*

0 d d

d d

u u

u u

i i i j ij
S S

m m

i j ij m m i j ij m
S S

m mm

U V U u T S U u n S

U
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• If ui = 0 on Su or no Su at all, the solution can further be 

simplified to *
0.

m
U A  
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Application to Plane Elasticity with St Only

2 2 2

2 2
, ,           , .

x y xy x y

V V
V V F F

y x x y x y

  
  

    
         
     

• Recall that for a conservative body force field, the in-

plane stress components of a plane problem are

0 m m

m

A   

• Instead of dealing with all three stresses, we choose to 

approximate the single Airy stress function as a linear 

combination of trial functions

• where ψ0 and ψm are known functions and Am represent 

undetermined coefficients.
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• The stress field resulted from ψ0 must satisfy the in-plane 

equilibrium condition and the traction BCs on St.

Application to Plane Elasticity with St Only

• With the help Airy stress function, the equilibrium 

conditions are automatically satisfied.

• ψm represents m linearly independent functions, preferably 

forms a complete base, and results in stresses that satisfy

0 0 0 0

0 0 00

,   on 

+ 0,   + 0
xy xy y
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Application to Plane Elasticity with St Only

* * * *
0 d

u

i i
S

U V U u T S          

• The principle of total complementary energy states

• If ui = 0 on Su or no Su at all: δV* = 0.
*

* *

0
0 d d d

ij ij ij
V V V

ij

U
U U V V V    




   


  

• For plane elasticity, the principle is reduced to

 *
0 2 d

x x y y xy xy
A

U A         
• For plane strain problem (linear elasticity)

• For plane stress (linear elasticity)

2 2
1 1 1
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• If the plane domain is simply-connected, V is harmonic, 

and there is St only

 The governing Airy function equation is biharmonic.

 The stress field is independent of elastic constants.

 The stress field is identical for plane strain and plane 

stress.
• The principle can thus be reduced by setting ν = 0:

   * 1
0 2 d 2 d

x x y y xy xy x x y y xy xy
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Application to Plane Elasticity with St Only
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2 2 22 2 2

2 2 2 2

2 2 22 2 2

2 2 2 2

0 2 d

2 d

2 d
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• Plug in the expressions of stresses and stress variations

• For arbitrary variation of the coefficient Am

2 2 22 2 2

2 2 2 2
2 d 0.m m m

A
V V A

y y x x x y x y

            
        

           


Application to Plane Elasticity with St Only
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Sample Problem

• Determine the stress field in the 

rectangular thin plate. F = 0.
2

2
( ) 1 , ( ) 0;

( ) 0,    ( ) 0

x x a xy x a

y y b xy y b
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• Solution: approximate the Airy stress function as
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• ψ0 satisfies the tractions BCs and ψm satisfies the zero-

traction BCs, as required.
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Sample Problem

• Include A1 only and substitute into the principle
2 2 22 2 2

2 2 2 2

2 4

1 2 4 4 2

2 d 0

64 256 64

7 49 7

m m m

A
A

y y x x x y x y

b b q
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a a a b

         
   

        

 
      

 



• For square plate:
2

2 2 2

2 2 2

2
2 2

1 6 2 2

2 2

2 2 2

3
1 0.170 1 1

3
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0.680 1 1
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• Higher accuracy can be achieved by including more terms.
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Application to Torsion of Cylinders

• Two non-trivial stresses in terms of

Prandtl Stress Function  = (x,y)

,
xz yz

y x

 
 

 
  

 

• The principle of total complementary energy
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Application to Torsion of Cylinders

•  = (x,y)

• Relative angle of twist between ends: αL

• Variation of Torque at ends: δT

 * *
0 d

2 d dd
A

A

A

T
L

U V A L
G y y x x

L
A L

G y y x x
x y

   







  

   


    
     

    

    
   

    






• The total complementary energy results in

2 d 0
A

G A
x x y y

   


    
   

    


•  = (x,y): Prandtl Stress Function for torsion.
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.
m m

m

A 

Application to Torsion of Cylinders

• Propose an approximate solution of the form:

• where Am are undetermined coefficients and ψm are known 

functions that satisfy ψm = 0 on lateral boundaries. 

• The total complementary energy results in
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• For arbitrary δAm: 2 d 0m m

m
A

G A
x x y y
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Sample Problem: Torsion of Rectangular Cylinder

• Boundary equation scheme does not work.

• Membrane analogy: ψ = 0 at the boundaries; 

symmetric about x & y.

• Propose an approximate solution

   2 2 2 2 2 2

mn mn

m n

mn
x a y b xA A y    

2 d 0mn mn

mn
A

G A
x x y y

  


   
   

    


• m×n equations for m×n coefficients Amn

• If we take three terms only:

• The principle results in three equations

       2 2 2 2 2 2

00 00 10 10 01 01 00 10 01
.A A A x a y b A A x A y          
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00 00
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01 01
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2 d d 0
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a b
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x x y y

G x y
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x x y y

  


  


  


 

 

 

   
   

    

   
   

    

   
   

    

 

 

 

• Substitute ψ and ψmn into the above and implement the 

calculation

     4 2 2 4 2 2 2 2

00 10 01

35 105 105
19 13 9 , 9 , 9

8 8 8

G G G
A a a b b A a b A a b

  
      

  

• where 6 4 2 2 4 6
45 509 509 45 .a a b a b b    

Sample Problem: Torsion of Rectangular Cylinder

• Higher accuracy is achieved by including more terms.
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Outline

• Work Done by External Load

• Strain Energy

• The Delta Operator

• Principle of Virtual Work

• Principle of Minimum Potential Energy

• Castigliano’s First Theorem

• Displacement Variation: Ritz Method

• Displacement Variation: Galerkin Method

• Complimentary Strain Energy

• Principle of Complimentary Virtual Work

• Principle of Minimum Complimentary Potential Energy

• Castigliano’s Second Theorem

• Stress Variation

• Stress Variation: Application to Plane Elasticity

• Stress Variation: Application to Torsion of Cylinders
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