1. The bar has a cross-sectional area of $400 \mathrm{~mm}^{2}$. If it is subjected to a uniform axial distributed loading along its length and to two concentrated loads as shown, determine the average normal stress in the bar as a function of x.

2. The bar has a cross-sectional area A and is subjected to the axial load P. Determine the average normal and average shear stresses acting over the shaded section, which is oriented at θ from the horizontal. Plot the variation of these stresses as a function of $\theta\left(0 \leq \theta \leq 90^{\circ}\right)$.

3. Rods $A B$ and $B C$ have diameters of 4 mm and 6 mm , respectively. If the vertical load of 8 kN is applied to the ring at B, determine the angle θ of $\operatorname{rod} B C$ so that the average normal stress in each rod is equivalent. What is this stress?

4. The two-member frame is subjected to the distributed loading shown. Determine the average normal stress and average shear stress acting at sections $a-a$ and $b-b$. Member $C B$ has a square cross section of 35 mm on each side. Take $w=8 \mathrm{kN} / \mathrm{m}$.

