Equilibrium of Rigid Bodies

Contents

- Introduction（绪论）
- Free－Body Diagram（受力简图）
－Reactions at Supports and Connections for a Two－Dimensional Structure（支撑与连接处的作用力与反作用力）
－Equilibrium of a Rigid Body in Two Dimensions（两维刚体的平衡条件）
- Equilibrium of a Two－Force Body（二力构件的平衡）
- Equilibrium of a Three－Force Body（三力构件的平衡）

Introduction

- For a rigid body in static equilibrium, the external forces and moments are balanced and will impart no translational or rotational motion to the body.
- The necessary and sufficient condition for the static equilibrium of a body are that the resultant force and couple from all external forces form a system equivalent to zero,

$$
\sum \vec{F}=0 \quad \sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F})=0
$$

- Resolving each force and moment into its rectangular components leads to 6 scalar equations which also express the conditions for static equilibrium,

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

Free-Body Diagram

First step in the static equilibrium analysis of a rigid body is identification of all forces acting on the body with a free-body diagram.

- Select the extent of the free-body and detach it from the ground and all other bodies.
- Indicate point of application, magnitude, and direction of external forces, including the rigid body weight.
- Indicate point of application and assumed direction of unknown applied forces. These usually consist of reactions through which the ground and other bodies oppose the possible motion of the rigid body.
- Include the dimensions necessary to compute the moments of the forces.

Reactions at Supports and Connections

- Reactions equivalent to a force with known line of action.

Reactions at Supports and Connections

Equilibrium of a Rigid Body in Two Dimensions

(b)

- For all forces and moments acting on a twodimensional structure,

$$
F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O}
$$

- Equations of equilibrium become

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{A}=0
$$

where A is any point in the plane of the structure.

- The 3 equations can be solved for no more than 3 unknowns.
- The 3 equations can not be augmented with additional equations, but they can be replaced

$$
\sum F_{x}=0 \quad \sum M_{A}=0 \quad \sum M_{B}=0
$$

Sample Problem

A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is held in place by a pin at A and a rocker at B. The center of gravity of the crane is located at G.

Determine the components of the reactions at A and B.

SOLUTION:

- Create a free-body diagram for the crane.
- Determine B by solving the equation for the sum of the moments of all forces about A. Note there will be no contribution from the unknown reactions at A.
- Determine the reactions at A by solving the equations for the sum of all horizontal force components and all vertical force components.
- Check the values obtained for the reactions by verifying that the sum of the moments about B of all forces is zero.

- Create the free-body diagram.
- Determine B by solving the equation for the sum of the moments of all forces about A.

$$
\begin{aligned}
& \sum M_{A}=0:+B(1.5 \mathrm{~m})-9.81 \mathrm{kN}(2 \mathrm{~m}) \\
&-23.5 \mathrm{kN}(6 \mathrm{~m})=0 \\
& B=+107.1 \mathrm{kN}
\end{aligned}
$$

- Determine the reactions at A by solving the equations for the sum of all horizontal forces and all vertical forces.

$$
\begin{aligned}
& \sum F_{x}=0: \quad A_{x}+B=0 \\
& A_{x}=-107.1 \mathrm{kN} \\
& \sum F_{y}=0: \quad A_{y}-9.81 \mathrm{kN}-23.5 \mathrm{kN}=0 \\
& A_{y}=+33.3 \mathrm{kN}
\end{aligned}
$$

- Check the values obtained.

Sample Problem

A loading car is at rest on an inclined track. The gross weight of the car and its load is 5500 lb , and it is applied at at G. The cart is held in position by the cable.

Determine the tension in the cable and the reaction at each pair of wheels.

SOLUTION:

- Create a free-body diagram for the car with the coordinate system aligned with the track.
- Determine the reactions at the wheels by solving equations for the sum of moments about points above each axle.
- Determine the cable tension by solving the equation for the sum of force components parallel to the track.
- Check the values obtained by verifying that the sum of force components perpendicular to the track are zero.

- Create a free-body diagram

$$
\begin{aligned}
W_{x} & =+(5500 \mathrm{lb}) \cos 25^{\circ} \\
& =+4980 \mathrm{lb} \\
W_{y} & =-(5500 \mathrm{lb}) \sin 25^{\circ} \\
& =-2320 \mathrm{lb}
\end{aligned}
$$

- Determine the reactions at the wheels.
- Determine the cable tension.

$$
\sum F_{x}=0: \quad+4980 \mathrm{lb}-\mathrm{T}=0
$$

$$
T=+4980 \mathrm{lb}
$$

$$
\begin{aligned}
& \sum M_{A}=0: \quad-(2320 \mathrm{lb}) 25 \mathrm{in} .-(4980 \mathrm{lb}) 6 \mathrm{in} \text {. } \\
& +R_{2}(50 \mathrm{in} .)=0 \\
& R_{2}=1758 \mathrm{lb} \\
& \sum M_{B}=0: \quad+(2320 \mathrm{lb}) 25 \mathrm{in} .-(4980 \mathrm{lb}) 6 \mathrm{in} . \\
& -R_{1}(50 \mathrm{in} .)=0 \\
& R_{1}=562 \mathrm{lb}
\end{aligned}
$$

Sample Problem

SOLUTION:

- Create a free-body diagram for the frame and cable.
- Solve 3 equilibrium equations for the reaction force components and couple at E.

The frame supports part of the roof of a small building. The tension in the cable is 150 kN .

Determine the reaction at the fixed end E.

- Create a free-body diagram for the frame and cable.
- Solve 3 equilibrium equations for the reaction force components and couple.

$$
\begin{aligned}
& \sum F_{x}=0: \quad E_{x}+\frac{4.5}{7.5}(150 \mathrm{kN})=0 \\
& E_{x}=-90.0 \mathrm{kN} \\
& \sum F_{y}=0: \quad E_{y}-4(20 \mathrm{kN})-\frac{6}{7.5}(150 \mathrm{kN})=0 \\
& E_{y}=+200 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
\sum M_{E}=0: & +20 \mathrm{kN}(7.2 \mathrm{~m})+20 \mathrm{kN}(5.4 \mathrm{~m}) \\
& +20 \mathrm{kN}(3.6 \mathrm{~m})+20 \mathrm{kN}(1.8 \mathrm{~m}) \\
& -\frac{6}{7.5}(150 \mathrm{kN}) 4.5 \mathrm{~m}+M_{E}=0
\end{aligned}
$$

$$
M_{E}=180.0 \mathrm{kN} \cdot \mathrm{~m}
$$

Equilibrium of a Two-Force Body

- Consider a plate subjected to two forces \boldsymbol{F}_{1} and \boldsymbol{F}_{2}
- For static equilibrium, the sum of moments about A must be zero. The moment of \boldsymbol{F}_{2} must be zero. It follows that the line of action of \boldsymbol{F}_{2} must pass through A.
- Similarly, the line of action of \boldsymbol{F}_{1} must pass through B for the sum of moments about B to be zero.
- Requiring that the sum of forces in any direction be zero leads to the conclusion that $\boldsymbol{F}_{\boldsymbol{1}}$ and \boldsymbol{F}_{2} must have equal magnitude but opposite sense.

Equilibrium of a Three-Force Body

- Consider a rigid body subjected to forces acting at only 3 points.
- Assuming that their lines of action intersect, the moment of $\boldsymbol{F}_{\boldsymbol{1}}$ and \boldsymbol{F}_{2} about the point of intersection represented by D is zero.
- Since the rigid body is in equilibrium, the sum of the moments of $\boldsymbol{F}_{1}, \boldsymbol{F}_{2}$, and \boldsymbol{F}_{3} about any axis must be zero. It follows that the moment of \boldsymbol{F}_{3} about D must be zero as well and that the line of action of \boldsymbol{F}_{3} must pass through D.
- The lines of action of the three forces must be concurrent or parallel.

Sample Problem

A man raises a 10 kg joist, of length 4 m , by pulling on a rope.

Find the tension in the rope and the reaction at A.

SOLUTION:

- Create a free-body diagram of the joist. Note that the joist is a 3 force body acted upon by the rope, its weight, and the reaction at A.
- The three forces must be concurrent for static equilibrium. Therefore, the reaction \boldsymbol{R} must pass through the intersection of the lines of action of the weight and rope forces. Determine the direction of the reaction force \boldsymbol{R}.
- Utilize a force triangle to determine the magnitude of the reaction force \boldsymbol{R}.

- Create a free-body diagram of the joist.
- Determine the direction of the reaction force \boldsymbol{R}.

$$
\begin{aligned}
& A F=A B \cos 45=(4 \mathrm{~m}) \cos 45=2.828 \mathrm{~m} \\
& C D=A E=\frac{1}{2} A F=1.414 \mathrm{~m} \\
& B D=C D \cot (45+25)=(1.414 \mathrm{~m}) \tan 20=0.515 \mathrm{~m} \\
& C E=B F-B D=(2.828-0.515) \mathrm{m}=2.313 \mathrm{~m} \\
& \tan \alpha=\frac{C E}{A E}=\frac{2.313}{1.414}=1.636 \\
& \alpha=58.6^{\circ}
\end{aligned}
$$

- Determine the magnitude of the reaction force \boldsymbol{R}.

$$
\begin{aligned}
& \frac{T}{\sin 31.4^{\circ}}=\frac{R}{\sin 110^{\circ}}=\frac{98.1 \mathrm{~N}}{\sin 38.6^{\circ}} \\
& T=81.9 \mathrm{~N} \\
& R=147.8 \mathrm{~N}
\end{aligned}
$$

