1. For a concentrated force applied on a small circular hole inside an infinite thin-plate, investigate the suitability of the following Airy Stress Function

$$
\psi=A r \ln r \cos \theta+B r \theta \sin \theta,
$$

where A and B are constants to be determined from force equilibrium and single-valued displacement condition.

2. Determine the stresses in a wedge subjected to uniform shear on both lateral surface $\theta= \pm \alpha$, as shown below.

3. Show that the Airy Stress Function

$$
\psi=\frac{\tau_{0} r^{2}}{\pi}\left[\sin ^{2} \theta \ln r+\theta \sin \theta \cos \theta-\sin ^{2} \theta\right]
$$

gives the solution to the problem of an elastic half space loaded by a uniformly distributed shear over the free surface $(x \leqslant 0)$, as shown in the figure. Identify locations where the stresses are singular.

4. Show that the curved beam problem with the special end loadings $M=-T(a+b) / 2$ can be solved by the Airy stress function

$$
\psi=\left[A r^{3}+\frac{B}{r}+C r+D r \ln r\right] \cos \theta
$$

As a result, the solution for an arbitrary end moment may be generated by superimposing this solution with the pure bending solution developed in class.

5. For the problem of a half space under uniform normal loading as shown in the left figure, show that the maximum shear stress (the radius of Mohr's circle) can be expressed by

$$
\tau_{\max }=\frac{p}{\pi} \sin \left(\theta_{1}-\theta_{2}\right)
$$

Plot the distribution of lines of constant maximum shear stress, and compare the results with the photoelastic fringes shown in the right figure.

