Axial Loading

Concept of Stress & Strain

mi@sev.edu.cn

Contents

- Introduction (拉压变形简介)
- Diagram of Axial Forces (轴力图)
- Concept of Stresses (应力的概念)
- General Stress State of a Point (点的一般应力状态)
- Stresses Acting on Cross Sections (拉压杆横截面上的应力)
- Saint-Venant's Principle (圣维南原理)
- Stresses Acting on Oblique Sections (拉压杆斜截面上的应力)
- Deformation of Axially Loaded Bars (拉压杆的变形)
- Elastic Constants of Engineering Materials(常见工程材料的弹性常数)
- Nonuniform Tension/compression (非均匀拉压)
- Strain Energy (应变能)
- Strain Energy Density (应变能密度)
- Mechanical Behavior of Materials (材料的力学性能)
- Nominal Stress-strain Curve (名义应力应变曲线)
- Stress and Deformation Indices of Low-carbon Steel (低碳钢的应力和变形指标)

Contents

- Yield Stress, Ultimate Stress and Percent Elongation of Engineering Materials (常见工程材料的屈服应力、强度极限和断后伸长率)
- Strain (Work) Hardening (冷作硬化)
- Mechanical Behavior of General Ductile Materials under Tension (塑性材料的 拉伸力学性能)
- Mechanical Behavior of Brittle Materials under Tension(脆性材料的拉伸)
- Mechanical Behavior of Low-carbon Steel under Compression (低碳钢的压缩)
- Mechanical Behavior of Cast Iron under Compression (铸铁的压缩力学性能)
- Mechanical Behavior of Creet (混凝土的力学性能)
- Mechanical Behavior of Wood (木材的力学性能)
- Mechanical Behavior of Composite Materials (复合材料的力学性能)
- Mechanical Behavior of Viscoelastic Materials(粘弹性材料的力学性能)
- Strength Condition (强度条件)
- Failure of Brittle vs. Ductile Bars under Tension(脆性和塑性杆件的拉伸失效)
- Stress Concentration (拉压杆中的应力集中现象)

Introduction

Introduction

- Load: equal and opposite forces along bar axis
- **Deformation:** extension (contraction) along bar axis and contraction (extension) transversely

Internal Forces Illustrated by Method of Sections

Internal Force

• The change of interaction force among various parts of a solid body, introduced by external loading.

The Method of Section

Sign Convention of Axial Forces

 $F_{\rm N}$ (+)

- Coordinate: a right-handed system
 - **O:** Centroid of the cross-section
 - *x*: Cross-section normal (Bar axis)
- Forces: F_{N} , F_{Sy} , F_{Sz}
- Moments: T, M_y, M_z
- Axial Force (F_N)
 - \circ Along bar axis
 - $_{\circ}~$ Extends or contracts the bar along bar axis
 - Positive for tension; Negative for compression
 - Assuming positive for all unknown axial forces

Procedure of Method of Sections

- Sectioning the member
- Taking either portion
- Substituting the other portion with internal forces
- Equilibrating

Diagram of Axial Forces

- Abscissa: position of cross sections
- Ordinate: axial force
- Positive for tension; negative for compression.

Concept of Stresses

Given ΔF as the force transmitted across ΔA , a stress traction vector can be defined as

$$t = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$$

Units: Pa (N/m²), 1 MPa = 10^{6} Pa, 1 GPa = 10^{9} Pa.

General Stress State of a Point

All stress components shown in the above figure are positive.

Stresses Acting on Cross Sections

Assumption: stresses are uniformly distributed on the cross sections

of axially loaded bars (Saint-Venant's Principle)

Saint-Venant's Principle

- $$\begin{split} \sigma_{\min} &= 0.973 \sigma_{\text{ave}} \\ \sigma_{\max} &= 1.027 \sigma_{\text{ave}} \end{split}$$
- $\sigma_{\min} = 0.668 \sigma_{\text{ave}}$ $\sigma_{\max} = 1.387 \sigma_{\text{ave}}$
- $\sigma_{\min} = 0.198 \sigma_{\text{ave}}$ $\sigma_{\max} = 2.575 \sigma_{\text{ave}}$

- Loads transmitted through rigid plates result in uniform distribution of stress and strain.
- Concentrated loads result in large stresses in the vicinity of the load application point.
- Stress and strain distributions become uniform at a relatively short distance from the load application points.

• Saint-Venant's Principle:

Stress distribution may be assumed independent of the mode of load application except in the immediate vicinity of load application points.

$$A_1 = 2A_2$$

$$\sigma_{A2} = 2\sigma_{A1}$$

- For the compound roof structure shown, determine the axial stress developed in members AE and EG. q = 20kN/m, $A_{AE} = A_{EG} = 23$ cm².
- Solution
- 1. Reaction force

$$0 = \sum F_y \implies F_{RA} = F_{RB} = \frac{ql}{2} = 177.4 \text{ kN}$$

1

$$0 = \sum M_{C} = \frac{q}{2} (4.37 + 4.5)^{2}$$
$$-F_{RA} (4.37 + 4.5) + F_{EG} (1.2 + 1)$$
$$\Rightarrow F_{EG} = 356 \text{ kN}$$

3. Equilibrium at joint *E*

$$F_{EG} = F_{AE} \cos \alpha$$
$$= F_{AE} \frac{4.37}{\sqrt{4.37^2 + 1^2}}$$
$$\Rightarrow F_{AE} = 366 \text{ kN}$$

4. Axial stresses in members

AE and EG

$$\sigma_{EG} = \frac{F_{EG}}{A_{EG}} = \frac{356(10^3)}{23(10^{-4})} = 155 \text{ MPa}$$
$$\sigma_{AE} = \frac{F_{AE}}{A_{AE}} = \frac{366(10^3)}{23(10^{-4})} = 159 \text{ MPa}$$

Stresses Acting on Oblique Sections

$$A_{\alpha} = \frac{A}{\cos \alpha}$$
$$p_{\alpha} = \frac{F}{A_{\alpha}} = \frac{F}{A} \cos \alpha = \sigma \cos \alpha$$
$$\sigma_{\alpha} = p_{\alpha} \cos \alpha = \sigma \cos^{2} \alpha$$
$$\tau_{\alpha} = p_{\alpha} \sin \alpha = \frac{\sigma}{2} \sin 2\alpha$$

 α : defined as the angle measured from cross section normal to oblique cross section normal.

- On cross section: maximum normal stress; zero shearing stress.
- On 45° oblique cross section: maximum shearing stress.

$$\tau_{\max} = \tau_{45^0} = \frac{\sigma}{2} \sin(90^0) = \frac{\sigma}{2} , \quad \sigma_{45^0} = \sigma \cos^2(45^0) = \frac{\sigma}{2}$$

• On 90° oblique cross section: zero normal and shearing stress.

Deformation of Axially Loaded Bars

• Longitudinal (axial) & transverse strains

• Longitudinal strain:

• Transverse strain:

$$\varepsilon' = \frac{\Delta b}{b}$$

• Connection between longitudinal and transverse strain

$$\varepsilon' = -\nu \varepsilon \qquad \nu = -\varepsilon' / \varepsilon$$

• *v*: Poisson's ratio

Deformation of Axially Loaded Bars

• Consider a differential cube of side length *a*, *b* and *c*

- This linear relation is referred to as the one-dimensional Hooke's law, with *E* denoting the Young's modulus.
- The measurement of axial deformation

$$\Delta L = L\varepsilon = L\frac{\sigma}{E} = \frac{LF_{\rm N}}{AE} = \frac{F_{\rm N}L}{EA}$$

• EA: Tension (Compression) rigidity

Elastic Constants of Engineering Materials

Material	Modulus of elasticity E		Shear modulus of elasticity G		Determine
	ksi	GPa	ksi	GPa	ratio ν
Aluminum alloys 2014-T6 6061-T6 7075-T6	10,000–11,400 10,600 10,000 10,400	70–79 73 70 72	3,800-4,300 4,000 3,800 3,900	26–30 28 26 27	0.33 0.33 0.33 0.33
Brass	14,000–16,000	96-110	5,200-6,000	36-41	0.34
Bronze	14,000–17,000	96–120	5,200-6,300	36-44	0.34
Cast iron	12,000-25,000	83-170	4,600-10,000	32-69	0.2–0.3
Concrete (compression)	2,500-4,500	17–31			0.1–0.2
Copper and copper alloys	16,000-18,000	110-120	5,800-6,800	40-47	0.33-0.36
Glass	7,000–12,000	48-83	2,700-5,100	19-35	0.17-0.27
Magnesium alloys	6,000-6,500	41-45	2,200-2,400	15–17	0.35
Monel (67% Ni, 30% Cu)	25,000	170	9,500	66	0.32

Elastic Constants of Engineering Materials

Material	Modulus of elasticity E		Shear modulus of elasticity G		Deimen's
	ksi	GPa	ksi	GPa	ratio v
Nickel	30,000	210	11,400	80	0.31
Plastics Nylon Polyethylene	300–500 100–200	2.1–3.4 0.7–1.4			0.4 0.4
Rock (compression) Granite, marble, quartz Limestone, sandstone	6,000–14,000 3,000–10,000	40–100 20–70			0.2–0.3 0.2–0.3
Rubber	0.1–0.6	0.0007-0.004	0.03-0.2	0.0002-0.001	0.45-0.50
Steel	28,000-30,000	190-210	10,800-11,800	75-80	0.27-0.30
Titanium alloys	15,000-17,000	100-120	5,600-6,400	39-44	0.33
Tungsten	50,000-55,000	340-380	21,000-23,000	140-160	0.2
Wood (bending) Douglas fir Oak Southern pine	1,600–1,900 1,600–1,800 1,600–2,000	11–13 11–12 11–14			

Nonuniform Tension/compression

- Pure tension/compression formula refers to a prismatic bar subjected to axial forces acting only at the ends.
- Nonuniform tension/compression differs from pure tension in that the bar need not to be prismatic and the applied axial forces may act anywhere along the axis of the bar.
- Bars in nonuniform tension/compression can be analyzed by applying the formulas of pure tension/compression to finite segments of the bar and then adding the results, or by applying the formulas to differential elements of the bar and then integrating.

• Consider an axially loaded bar with varied cross section. Given: E = 210 GPa; Section 1 (circular): $d_1 = 20$ mm; Section 2 (square): side length a = 25 mm, $\sigma_2 = -30$ MPa; Section 3 (circular) $d_3=12$ mm. Find: Total change in bar length $\triangle L$.

$$F = \sigma_2 A_2 = -30 \text{ MPa} \times 25^2 \text{ mm}^2 = -18.75 \text{ kN}$$
$$\Delta L = \frac{F_{N_1} L_1}{EA_1} + \frac{F_{N_2} L_2}{EA_2} + \frac{F_{N_3} L_3}{EA_3} = \frac{-18750}{210 \times 10^9} \left(\frac{0.2}{\frac{\pi \times 0.02^2}{4}} + \frac{0.4}{0.025^2} + \frac{0.2}{\frac{\pi \times 0.012^2}{4}} \right) = -0.272 \text{ mm}$$

- Determine the elongation of the bar due to the end load *P*.
- Solution:

$$d_{x} = d_{A} + \frac{x}{L} (d_{B} - d_{A})$$
$$A(x) = \frac{\pi d_{x}^{2}}{4} = \frac{\pi}{4} \left(d_{A} + \frac{x}{L} (d_{B} - d_{A}) \right)^{2}$$

$$\Delta_{L} = \int_{0}^{L} \frac{F_{N} dx}{EA(x)} = \int_{0}^{L} \frac{4P dx}{E\pi \left(d_{A} + \frac{x}{L} (d_{B} - d_{A}) \right)^{2}}$$
$$= \frac{4PL}{\pi E (d_{B} - d_{A})} \int_{0}^{L} \frac{d \left(d_{A} + \frac{x}{L} (d_{B} - d_{A}) \right)}{\left(d_{A} + \frac{x}{L} (d_{B} - d_{A}) \right)^{2}}$$
$$= \frac{4PL}{\pi E (d_{B} - d_{A})} \left[-\frac{1}{d_{A} + \frac{x}{L} (d_{B} - d_{A})} \right]_{0}^{L}$$
$$= \frac{4PL}{\pi E (d_{B} - d_{A})} \left[\frac{1}{d_{A}} - \frac{1}{d_{B}} \right] = \frac{4PL}{\pi E d_{A} d_{B}}$$

- Cannot be assumed as a prismatic bar that has the diameter $(d_A+d_B)/2$.
- For the special case of a prismatic bar: $\Delta_L = \frac{4PL}{\pi Ed^2} = \frac{PL}{EA}$ 27

- Deformation of a uniform bar due to gravity. Given: cross section area A, density ρ, Young's modulus E. Find: Maximum normal stress and axial length change.
- Solution:
- 1. Axial forces and stresses

$$q = \rho gA; \ F_{N}(x) = \rho gAx; \ \sigma(x) = F_{N}(x)/A = \rho gx, \ \sigma_{max} = \rho gL$$
2. Deformation:
$$\mathbf{d}(\Delta L) = \frac{F_{N}(x)dx}{EA} \Rightarrow \Delta L = \int_{0}^{l} \frac{F_{N}(x)dx}{EA} = \int_{0}^{l} \frac{\rho gAxdx}{EA} = \frac{\rho gL^{2}}{2E}$$

$$\int_{0}^{l} \frac{f_{N}(x)}{F_{N}(x)} = \frac{F_{N}(x)}{F_{N}(x)}$$

- The rigid bar *BDE* is supported by two links *AB* and *CD*.
- Link AB is made of aluminum (E = 70 GPa) and has a cross-sectional area of 500 mm². Link CD is made of steel (E = 200 GPa) and has a cross-sectional area of (600 mm²).
- For the 30-kN force shown, determine the deflection a) of *B*, b) of *D*, and c) of *E*.

SOLUTION:

- Apply a free-body analysis to the bar *BDE* to find the forces exerted by links *AB* and *DC*.
- Evaluate the deformation of links *AB* and *DC* or the displacements of *B* and *D*.
- Work out the geometry to find the deflection at *E* given the deflections at *B* and *D*.

- SOLUTION:
- Free body: Bar *BDE*

• Displacement of B:

$$\begin{array}{c}
A = 500 \text{ mm}^{2} \\
B = 70 \text{ GPa}
\end{array}$$

$$\begin{array}{c}
A = 500 \text{ mm}^{2} \\
E = 70 \text{ GPa}
\end{array}$$

$$\begin{array}{c}
B = \frac{\left(-60 \times 10^{3} \text{ N}\right)\left(0.3 \text{ m}\right)}{\left(500 \times 10^{-6} \text{ m}^{2}\right)\left(70 \times 10^{9} \text{ Pa}\right)} \\
= -514 \times 10^{-6} \text{ m}
\end{array}$$

$$\begin{array}{c}
\delta_{B} = 0.514 \text{ mm}^{2}$$

$$\sum M_B = 0$$

$$0 = -(30 \text{ kN} \times 0.6 \text{ m}) + F_{CD} \times 0.2 \text{ m}$$

$$F_{CD} = +90 \text{ kN} \quad tension$$

 $\sum M_{D} = 0$ $0 = -(30 \text{ kN} \times 0.4 \text{ m}) - F_{AB} \times 0.2 \text{ m}$ $F_{AB} = -60 \text{ kN} \quad compression$

• Displacement of D:

$$\delta_D = \frac{PL}{AE}$$

$$= \frac{(90 \times 10^3 \text{ N})(0.4 \text{ m})}{(600 \times 10^{-6} \text{ m}^2)(200 \times 10^9 \text{ Pa})}$$

$$= 300 \times 10^{-6} \text{ m}$$

$$\delta_D = 0.300 \text{ mm} \checkmark$$

• Displacement of *E*:

$$\frac{BB'}{DD'} = \frac{BH}{HD}$$
$$\frac{0.514 \text{ mm}}{0.300 \text{ mm}} = \frac{(200 \text{ mm}) - x}{x}$$
$$x = 73.7 \text{ mm}$$

 $\delta_E = 1.928 \,\mathrm{mm} \downarrow$

• Given: tension rigidity of bar 1, 2 and 3 = EA, *AB* rigid, *F* and *L*. Find: the vertical and horizontal displacement at *C*.

$$\Delta x_C = \Delta y_C = \frac{FL}{2EA}$$

• Determine the vertical and horizontal displacement of A. AB is rigid.

Sample Problem (Poisson's Ratio)

• A circular tube of inner diameter d = 60 mm and outer diameter D = 80 mm is subjected to an axial load of F = 200 kN, determine the wall thickness under the deformed state. E = 200 GPa, v = 0.3.

• Solution:

$$\varepsilon = \frac{\sigma}{E} = \frac{F}{EA} = \frac{200(10^3)}{200(10^9)\pi(80^2 - 60^2)(10^{-6})/4} = 455(10^{-6})$$

$$\varepsilon' = -v\varepsilon = -0.3(455)(10^{-6}) = -136.5(10^{-6})$$

$$\delta' = \frac{(D-d)}{2}(1+\varepsilon') = 10(1-136.5(10^{-6})) = 9.998635 \text{ mm}$$

$$S' = \pi D(1+\varepsilon') = (251.327412)(1-136.5(10^{-6})) = 251.293106 \text{ mm}$$

$$s' = \pi d(1+\varepsilon') = (188.495559)(1-136.5(10^{-6})) = 188.469830 \text{ mm}$$

• Poisson's ratio is the same for all transverse directions. (Isotropy)

Sample Problem (Large Deformation)

Given: d = 1 mm, ε = 0.0035, E = 210 GPa. Determine the axial A stress in wire, the displacement of C, and the force F.

- Solution:
- 1. Axial stress in the wire: $\sigma = E\varepsilon = 210(10^9)(0.0035) = 735$ MPa
- 2. The displacement of C

$$\Delta L_{AC} = L_{AC} \varepsilon = (1)(0.0035) = 0.0035 \text{ m}$$

$$\Delta_C = \sqrt{(L_{AC} + \Delta L_{AC})^2 - L_{AC}^2} = \sqrt{2L_{AC}\Delta L_{AC} + \Delta L_{AC}^2} = \sqrt{2(1)(0.0035) + 0.0035^2} = 0.0837 \text{ m}$$

3. The force F (Equilibrium must be analyzed under the deformed state.)

$$F = 2F_{\rm N} \sin \angle BAC = 2(\sigma A) \frac{\Delta_C}{L'_{AC}} = 2(735)(10^6) \left(\pi (10^{-3})^2 / 4\right) \frac{0.0837}{1.0035} = 96.3 \text{ N}$$
Sample Problem (Pressure Vessel)

For the thin-walled pressure vessel shown, D, δ, and p denote the vessel inner diameter, wall thickness and pressure respectively. Determine: the axial stress, circumferential stress, and the elongation of vessel circumference, diameter and length.

$$\sum F_{axial} = 0$$

$$\Rightarrow \sigma_a (\pi D\delta) = p(\pi D^2/4) \sigma_a(\pi D) \delta$$

$$\Rightarrow \sigma_a = \frac{pD}{4\delta}$$

$$\sum F_{circumferential} = 0$$

$$\Rightarrow \sigma_c (2\delta \times b) = \int_0^{\pi} \sin \theta p b \frac{D}{2} d\theta$$

$$\Rightarrow 2\delta b \sigma_c = p b D$$

$$\Rightarrow \sigma_c = \frac{pD}{2\delta}$$

$$\sigma_c = \sigma_c$$

• *b*: an arbitrarily chosen axial length

- Circumferential stress: $\sigma_c = pD/2\delta$
- Axial stress: $\sigma_a = pD/4\delta$
- Radial stress: $\sigma_D = -p$

• Elongation of the vessel circumference

$$\Delta_{c} = \frac{F_{\rm N}L}{EA} = \frac{\left(\sigma_{t} \,\mathcal{A}\right) \left(\pi \left(D + \delta\right)\right)}{E \,\mathcal{A}} = \frac{pD}{2\delta} \frac{\pi \left(D + \delta\right)}{E} = \frac{\pi pD^{2}}{2E\delta} \left(1 + \frac{\delta}{D}\right) \approx \frac{\pi pD^{2}}{2E\delta}$$

• Elongation of the vessel diameter

$$\Delta_D = \frac{\Delta_t}{\pi} = \frac{pD^2}{2E\delta} \left(1 + \frac{\delta}{D}\right) \approx \frac{pD^2}{2E\delta}$$

• Elongation of the vessel length

$$\Delta_{a} = \frac{F_{\rm N}L}{EA} = \frac{\left(\sigma_{a} \,\mathcal{A}\right)l}{E \,\mathcal{A}} = \frac{pDl}{4E\delta}$$

• Transverse strain

$$\varepsilon_c = \frac{\Delta_t}{L_t} = \frac{pD}{2E\delta} \qquad = \varepsilon_D = \frac{\Delta_D}{L_D} = \frac{pD}{2E\delta}$$

Strain Energy

• Strain energy is developed in solid materials due to elastic deformation induced by external loading.

• Strain energy and work in pure tension/compression

$$U = W = \frac{1}{2} F_{\rm N} \Delta L = \frac{F_{\rm N}^2 L}{2EA} = \frac{EA(\Delta L)^2}{2L}$$

• The one-half is due to the assumption that external loading is applied gradually, starting from zero.

Strain Energy

• Nonuniform tension/compression

Strain Energy Density (Energy per Unit Volume)

• Consider a differential cube of side length *a*, *b* and *c*

$$U = \frac{1}{2} F \Delta L = \frac{1}{2} [\sigma(bc)](a\varepsilon) \sigma$$

$$\Rightarrow u = \frac{U}{V} = \frac{1}{2} \sigma\varepsilon$$

• Total strain energy calculated from density

$$U = \int_{V} u dV = \int_{V} \frac{1}{2} \sigma \varepsilon dV = A \int_{L} \frac{1}{2} \sigma \varepsilon dx = A \int_{L} \frac{1}{2} \frac{F_{N}}{A} \frac{F_{N}}{EA} dx = \int_{L} \frac{F_{N}^{2} dx}{2EA}$$

• For constant E, F_N , and A

$$U = \frac{F_N^2 L}{2EA}$$

Mechanical Behavior of Materials

- Mechanical behavior of materials focus on the strength and deformation characteristics of solid materials under external loading.
- Tensile specimen

Typical tensile specimen with a reduced gauge section and larger shoulders.

- For circular tensile specimen L = 10d, $5d = 11.3\sqrt{A}$, $5.65\sqrt{A}$
 - For square tensile specimen L = 11.3b, 5.65*b*.
- Compressive specimen: $L = 1 \sim 3d, 1 \sim 3b$

Mechanical Behavior of Materials

Nominal Stress-strain Curve

• Find more animations at http://em2lab.yolasite.com/.

Stress and Deformation Indices of Low-carbon Steel

- σ_p : Proportional limit
- σ_e : Elastic limit
- σ_Y : Yield stress
- σ_u : Ultimate stress

- Percent elongation: $\delta = (L_{\text{final}} - L_{\text{initial}}) / L_{\text{initial}} \times 100\%$
- Percent reduction in area $\psi = (A_{\text{initial}} - A_{\text{final}}) / A_{\text{initial}} \times 100\%$

Yield Stress, Ultimate Stress and Percent Elongation

Material	Yield stress σ_Y		Ultimate stress σ_U		Percent elongation
	ksi	MPa	ksi	MPa	length)
Aluminum alloys 2014-T6 6061-T6 7075-T6	5–70 60 40 70	35–500 410 270 480	15-80 70 45 80	100-550 480 310 550	1–45 13 17 11
Brass	10-80	70-550	30–90	200-620	4-60
Bronze	12-100	82–690	30-120	200-830	5-60
Cast iron (tension)	17–42	120-290	10–70	69-480	0–1
Cast iron (compression)			50-200	340-1,400	
Concrete (compression)			1.5-10	10–70	
Copper and copper alloys	8–110	55-760	33-120	230-830	4-50
Glass Plate glass Glass fibers			5–150 10 1,000–3,000	30–1,000 70 7,000–20,000	0
Magnesium alloys	12-40	80-280	20-50	140-340	2–20
Monel (67% Ni, 30% Cu)	25-160	170-1,100	65-170	450-1,200	2–50
Nickel	15-90	100-620	45-110	310-760	2–50

Yield Stress, Ultimate Stress and Percent Elongation

Material	Yield stress σ_Y		Ultimate stress σ_U		Percent elongation
	ksi	MPa	ksi	MPa	length)
Steel wire	40-150	280-1,000	80-200	550-1,400	5-40
Titanium alloys	110-150	760-1,000	130-170	900-1,200	10
Tungsten			200-600	1,400-4,000	0-4
Wood (bending) Douglas fir Oak Southern pine	5–8 6–9 6–9	30–50 40–60 40–60	8–12 8–14 8–14	50–80 50–100 50–100	
Wood (compression parallel to grain) Douglas fir Oak Southern pine	4-8 4-6 4-8	30–50 30–40 30–50	6–10 5–8 6–10	40–70 30–50 40–70	

Yield Stress, Ultimate Stress and Percent Elongation

Material	Yield stress σ_Y		Ultimate stress σ_U		Percent elongation
	ksi	MPa	ksi	MPa	length)
Plastics Nylon Polyethylene			6–12 1–4	40–80 7–28	20–100 15–300
Rock (compression) Granite, marble, quartz Limestone, sandstone			8–40 3–30	50–280 20–200	
Rubber	0.2-1.0	1–7	1–3	7–20	100-800
Steel High-strength Machine Spring Stainless Tool	50–150 50–100 60–240 40–100 75	340–1,000 340–700 400–1,600 280–700 520	80–180 80–125 100–270 60–150 130	550–1,200 550–860 700–1,900 400–1,000 900	5-25 5-25 3-15 5-40 8
Steel, structural ASTM-A36 ASTM-A572 ASTM-A514	30–100 36 50 100	200–700 250 340 700	50–120 60 70 120	340-830 400 500 830	10–40 30 20 15

Exercise

 Based on the three stress-strain curves shown in the figure, which one of the following regarding ultimate stress, Young's modulus and percent elongation is correct?

A:
$$\sigma_u(1) = \sigma_u(2) > \sigma_u(3)$$

 $E(1) > E(2) > E(3)$
 $\varepsilon(1) > \varepsilon(2) > \varepsilon(3)$
B: $\sigma_u(2) > \sigma_u(1) > \sigma_u(3)$
 $E(2) > E(1) > E(3)$
 $\varepsilon(1) > \varepsilon(2) > \varepsilon(3)$

Strain (Work) Hardening

- Unloading at point *B* during hardening stage down to zero force. *EB* almost parallel to *OA*. (Unloading law)
- Deformation in the hardening stage is composed of elastic ($\triangle L_e$) and plastic elongation ($\triangle L_p$).
- If the test sample is reloaded at point *E*, the linear elastic (proportional) limit substantially increases. As a result, the overall deformation the sample can endure decreases.
- In engineering practice, strain hardening is often employed to increase the maximum resistance force within linear elastic scope.

Sample Problem

• Given: E = 200 GPa, unloading at $\sigma = 310$ MPa during hardening stage, total strain $\varepsilon_e + \varepsilon_p = 0.02155$. Find: ε_e and ε_p .

Remark: in experimental reports, strain often takes the unit of micro-strain, i.e. 0.02 (ε)=20000 (με)

$$1\mu\varepsilon = 10^{-6}\varepsilon$$

- Low-carbon steel loading and unloading experiments. Given: E = 210 GPa, $\sigma_p = 210$ MPa. Find: 1. normal stress at the strain level $\varepsilon = 0.001$ (under linear elastic limit); 2. normal stress at a point in hardening stage, unloading from which results in $\varepsilon = 0.08$ and $\varepsilon_p = 0.078$.
 - Solution :
 - 1. Under linear elastic limit

 $\sigma = E\varepsilon = 210 \times 10^9 \times 0.001 (Pa) = 210 (MPa) \le \sigma_p$

2. During hardening stage:

 $\sigma = E\varepsilon_e = 210 \times 10^9 \times (0.08 - 0.078) (Pa) = 420 (MPa)$

Mechanical Behavior of General Ductile Materials under Tension

- Possess distinctive σ_Y and σ_u
- May not have yielding and/or localized deformation stage
- Relatively large extension rate after fracture ($\delta \ge 5\%$)

• If there is no obvious yielding stage: take the normal stress corresponding to 0.2% plastic strain as yield limit ($\sigma_{p0.2}$)

Mechanical Behavior of Brittle Materials under Tension

- σ - ε is a slightly curved line and approximately obeys the Hooke's law
- No yielding, hardening and localized deformation stage
- The ultimate stress is the only index
- Relatively small percent elongation after fracture ($\delta = 2\%$ -5%)
- Tangential modulus: slope at any point of σ - ε curve
- secant modulus: can be defined at $\varepsilon = 0.1\%$

Mechanical Behavior of Low-carbon Steel under Compression

- *E*, σ_p , σ_Y take the same values as in tensile tests.
- Cannot obtain compressive ultimate stress due to the (constant) initial cross-sectional area used in normal stress calculation.
- Compressive mechanical behavior of low-carbon steel is obtained from its tensile indices.

Mechanical Behavior of Cast Iron under Compression

- There is only very short linear σ - ε curve (only approximately follows Hooke's law).
- Missing yielding stage (no obvious σ_Y).
- Much larger compressive ultimate stress (typically 4-5 times that of tensile strength limit).
- Final damage is in the form of shearing along a surface 45⁰ from axis.

Mechanical Behavior of Concrete

- Compressive ultimate stress is much larger than its tensile counterpart (5-20 times)
- Compressive behavior depends on the frictional state at sample ends
- Under frictional end-condition, sample is composed of two trapezoidal cones under mirror-symmetry upon damage
- σ - ε comprises a short straight line, followed by an obvious curve.
- Elastic modulus can be defined by the slope of secant line at $\sigma = 0.4\sigma_u$
- Small compressive ratio after fracture.

Mechanical Behavior of Wood

- Material behavior is transversely isotropic.
- Longitudinal tensile strength is unstable due to knots.
- Longitudinal compressive strength is insensitive to knots.
- Much larger longitudinal compressive strength than the transverse one.
- Most often used as compressive or support bars in engineering

Mechanical Behavior of Composite Materials

• Mechanical properties of composite materials is mostly determined by the way how fibers are arranged (anisotropic).

Influence from temperature, stress concentration (geometric factors), and strain rate (viscoelasticity)

- High ultimate stress and low plasticity under low temperature.
- Low ultimate stress and low plasticity under high stress concentration state
- Low ultimate stress and high plasticity under high strain rate

Mechanical Behavior of Viscoelastic Materials

- $\sigma = \varepsilon \cdot f(t)$ linear visco-elasticity
- $\sigma = f(\varepsilon, t)$ non-linear visco-elasticity
- Creep: increasing strain with time under constant stress

В

Stress-Strain Curve with CreepCreep Example• Relaxation: decreasing stress with time under constant strain

Stress-Strain Curve with Stress Relaxation

Strength Condition

- Limit stress (σ_{lim}): the stress under which mechanical components get damaged.
- **Damage Criteria:** yielding (σ_y) for ductile materials; fracture (σ_y) for brittle materials
- Allowable Stress [σ]: the maximum stress allowed in engineering practice. It is typically taken as one nth (Safety Factor) of the limit stress
- **Strength Condition:**

$$\sigma_{\max} \leq \frac{\sigma_{\lim}}{n} = [\sigma]$$

Strength Analysis:

Strength check: (1)

(2)

- $\sigma_{_{
 m ma}}$ Cross-section design:
- Find allowable load: (3)

$$A \ge F_{N \max} / [\sigma]$$

$$F_{N \max} \le A[\sigma]$$

Sample Problem

- Given: d = 14 mm, $[\sigma] = 170$ MPa, uniaxial tension load F = 2.5 kN. Check the strength condition of the circular bar.
- Solution

$$\sigma_{\max} = \frac{F_{N,\max}}{A} = \frac{2.5 \times 10^3}{\frac{\pi}{4} \times 14^2 \times 10^{-6}} \text{Pa} = 162 \text{ MPa} < [\sigma]$$

• The strength condition is satisfied.

Sample Problem

- Given: $A_{AC} = 450 \text{ mm}^2$, $A_{BC} = 250 \text{ mm}^2$, $E_{AC} = E_{BC}$, $[\sigma] = 100 \text{ MPa}$. Find: the maximum allowable load F of the truss.
- Solution:
- 1. Find F_{NAC} and F_{NBC}
- Method of joint at C:

$$\sum F_x = 0, F_{\text{NBC}} \sin 45^0 - F_{\text{NAC}} \sin 30^0 = 0$$

$$\sum F_y = 0, F_{NBC} \cos 45^0 - F_{NAC} \cos 30^0 - F = 0$$

We get: $F_{NAC} = 0.732F$, $F_{NBC} = 0.517F$

2. Allowable axial force in bar AC and BC

$$F_{\text{NAC}} = 0.732F \le A[\sigma] = 450 \times 10^{-6} \text{ m}^2 \times 100 \times 10^6 \text{ Pa}$$

so: $[F] \le 61.48 \text{ kN}$

$$F_{\text{NBC}} = 0.517F \le A[\sigma] = 250 \times 10^{-6} \text{m}^2 \times 100 \times 10^6 \text{Pa}$$

So: $[F] \le 48.36 \text{ kN}$

3. Allowable load [*F*]

Take the smaller value: $[F] \leq 48.36$ kN.

Sample Problem

- Given: F = 75 kN, $[\sigma] = 160$ MPa. Find: the minimum A_{AB} and A_{BC} .
- Solution:
- 1. Find F_{NAB} and F_{NBC} By the Method of joint at *B*: $\sum F_y = 0, F_{\text{NBC}} \cos 45^0 + F = 0$ $\sum F_x = 0, F_{\text{NBC}} \cos 45^0 + F_{\text{NAC}} = 0$ We get: $F_{\text{NAC}} = F$, $F_{\text{NBC}} = -1.414F$
- 2. Minimum cross-sectional area

$$A_{AB} \ge \frac{F_{\text{NAB}}}{[\sigma]} = \frac{75 \times 10^3}{160 \times 10^6} = 4.687 \times 10^{-4} \text{ m}^2 = 4.687 \text{ cm}^2$$
$$A_{BC} \ge \frac{|F_{\text{NBC}}|}{[\sigma]} = \frac{106 \times 10^3}{160 \times 10^6} = 6.629 \times 10^{-4} \text{ m}^2 = 6.629 \text{ cm}^2$$

Failure of Brittle vs. Ductile Bars under Tension

Brittle

Ductile

• Under uniaxial tension, brittle bars break along crosssections while ductile ones glide along 45⁰ sections during yielding?

Stress Concentration

• Stress concentration: rapid stress increase at specific locations where geometric defects and/or abrupt cross-sectional area change occurs

• Stress-concentration factor for flat bars with circular holes

71

• Stress-concentration factor for flat bars with shoulder fillets. The dashed line is for a full quarter-circular fillet. 3.0 R = 2 1.5 Р 2.5 3 $K = \frac{\sigma_{\text{max}}}{\sigma_{\text{nom}}}$ $\sigma_{\rm nom} = \frac{P}{ct}$ K t =thickness 2.0R =1.5 0.15 0.05 0.10 0.25 0.20 0.30 $\frac{R}{c}$
• Stress-concentration factor for round bars with shoulder fillets. The dashed line is for a full quarter-circular fillet. 3.0 R $\frac{D_2}{2} = 2$ Da D_1 1.5 2.5 $K = \frac{\sigma_{\text{max}}}{\sigma_{\text{nom}}}$ $\sigma_{\rm nom} = \frac{P}{\pi D_1^2/4}$ K 1.1 2.0R =1.5 0.05 0.10 0.15 0.25 0.30 0.20 R

Sample Problem

Determine the largest axial load *P* that can be safely supported by a flat steel bar consisting of two portions, both 10 mm thick, and respectively *c* = 40 and *b* = 60 mm wide, connected by fillets of radius R = 8 mm. Assume an allowable normal stress of 165 MPa.

SOLUTION:

- Determine the geometric ratios and the stress concentration factor.
- Find the allowable average normal stress using the material allowable normal stress and the stress concentration factor.
- Apply the definition of normal stress to find the allowable load.

• Determine the geometric ratios and the stress concentration factor.

• Determine the geometric ratios and the stress concentration factor.

$$\frac{b}{c} = \frac{60 \text{ mm}}{40 \text{ mm}} = 1.50$$
 $\frac{R}{c} = \frac{8 \text{ mm}}{40 \text{ mm}} = 0.20$ $\Rightarrow K = 1.82$

• Find the allowable average normal stress using the material allowable normal stress and the stress concentration factor.

$$\sigma_{\text{ave}} = \frac{\sigma_{\text{max}}}{K} = \frac{165\text{MPa}}{1.82} = 90.7 \text{ MPa}$$

• Apply the definition of normal stress to find the allowable load.

$$P = A\sigma_{ave} = (40 \text{ mm})(10 \text{ mm})(90.7 \text{ MPa}) = 36.3 \times 10^3 \text{ N}$$

Contents

- Introduction (拉压变形简介)
- Diagram of Axial Forces (轴力图)
- Concept of Stresses (应力的概念)
- General Stress State of a Point (点的一般应力状态)
- Stresses Acting on Cross Sections (拉压杆横截面上的应力)
- Saint-Venant's Principle (圣维南原理)
- Stresses Acting on Oblique Sections (拉压杆斜截面上的应力)
- Deformation of Axially Loaded Bars (拉压杆的变形)
- Elastic Constants of Engineering Materials(常见工程材料的弹性常数)
- Nonuniform Tension/compression (非均匀拉压)
- Strain Energy (应变能)
- Strain Energy Density (应变能密度)
- Mechanical Behavior of Materials (材料的力学性能)
- Nominal Stress-strain Curve (名义应力应变曲线)
- Stress and Deformation Indices of Low-carbon Steel (低碳钢的应力和变形指标)

Contents

- Yield Stress, Ultimate Stress and Percent Elongation of Engineering Materials (常见工程材料的屈服应力、强度极限和断后伸长率)
- Strain (Work) Hardening (冷作硬化)
- Mechanical Behavior of General Ductile Materials under Tension (塑性材料的 拉伸力学性能)
- Mechanical Behavior of Brittle Materials under Tension(脆性材料的拉伸)
- Mechanical Behavior of Low-carbon Steel under Compression (低碳钢的压缩)
- Mechanical Behavior of Cast Iron under Compression (铸铁的压缩力学性能)
- Mechanical Behavior of Creet (混凝土的力学性能)
- Mechanical Behavior of Wood (木材的力学性能)
- Mechanical Behavior of Composite Materials (复合材料的力学性能)
- Mechanical Behavior of Viscoelastic Materials(粘弹性材料的力学性能)
- Strength Condition (强度条件)
- Failure of Brittle vs. Ductile Bars under Tension(脆性和塑性杆件的拉伸失效)
- Stress Concentration (拉压杆中的应力集中现象)