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Preface

The subject of Elasticity can be approached from several points of view, de-
pending on whether the practitioner is principally interested in the mathe-
matical structure of the subject or in its use in engineering applications and,
in the latter case, whether essentially numerical or analytical methods are
envisaged as the solution method. My first introduction to the subject was in
response to a need for information about a specific problem in Tribology. As a
practising Engineer with a background only in elementary Mechanics of Ma-
terials, I approached that problem initially using the concepts of concentrated
forces and superposition. Today, with a rather more extensive knowledge of
analytical techniques in Elasticity, I still find it helpful to go back to these
roots in the elementary theory and think through a problem physically as
well as mathematically, whenever some new and unexpected feature presents
di�culties in research. This way of thinking will be found to permeate this
book. My engineering background will also reveal itself in a tendency to work
examples through to final expressions for stresses and displacements, rather
than leave the derivation at a point where the remaining manipulations would
be mathematically routine.

The first edition of this book, published in 1992, was based on a one
semester graduate course on Linear Elasticity that I have taught at the Uni-
versity of Michigan since 1983. In two subsequent revisions, the amount of
material has almost doubled and the character of the book has necessarily
changed, but I remain committed to my original objective of writing for those
who wish to find the solution of specific practical engineering problems. With
this in mind, I have endeavoured to keep to a minimum any dependence
on previous knowledge of Solid Mechanics, Continuum Mechanics or Math-
ematics. Most of the text should be readily intelligible to a reader with an
undergraduate background of one or two courses in elementary Mechanics of
Materials and a rudimentary knowledge of partial di↵erentiation. Cartesian
tensor notation and the index convention are used in a few places to shorten
the derivation of some general results, but these sections are presented so as
to be as far as possible self-explanatory.

Modern practitioners of Elasticity are necessarily influenced by develop-
ments in numerical methods, which promise to solve all problems with no more
information about the subject than is needed to formulate the description of
a representative element of material in a relatively simple state of stress. As
a researcher in Solid Mechanics, with a primary interest in the physical be-
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haviour of the systems I am investigating, rather than in the mathematical
structure of the solutions, I have frequently had recourse to numerical meth-
ods of all types and have tended to adopt the pragmatic criterion that the
best method is that which gives the most convincing and accurate result in
the shortest time. In this context, ‘convincing’ means that the solution should
be capable of being checked against reliable closed-form solutions in suitable
limiting cases and that it is demonstrably stable and in some sense conver-
gent. Measured against these criteria, the ‘best’ solution to many practical
problems is often not a direct numerical method, such as the finite element
method, but rather one involving some significant analytical steps before the
final numerical evaluation. This is particularly true in three-dimensional prob-
lems, where direct numerical methods are extremely computer-intensive if any
reasonably accuracy is required, and in problems involving infinite or semi-
infinite domains, discontinuities, bonded or contacting material interfaces or
theoretically singular stress fields. By contrast, I would immediately opt for a
finite element solution of any two-dimensional problem involving finite bodies
with relatively smooth contours, unless it happened to fall into the (surpris-
ingly wide) class of problems to which the solution can be written down in
closed form. The reader will therefore find my choice of topics significantly bi-
assed towards those fields identified above where analytical methods are most
useful.

As in the second edition, I encourage the reader to become familiar
with the use of symbolic mathematical languages such as MapleTM and
MathematicaTM, since these tools open up the possibility of solving consid-
erably more complex and hence interesting and realistic elasticity problems.
They also enable the student to focus on the formulation of the problem (e.g.
the appropriate governing equations and boundary conditions) rather than
on the algebraic manipulations, with a consequent improvement in insight
into the subject and in motivation. Finally, they each posess post-processing
graphics facilities that enable the user to explore important features of the
resulting stress state. The reader can access numerous files for this purpose
at the website www.elasticity.org or at my University of Michigan homepage
http://www-personal.umich.edu/ jbarber/elasticity/book.html, including the
solution of sample problems, electronic versions of the tables in Chapters
21,22, and algorithms for the generation of spherical harmonic potentials.
Some hints about the use of this material are contained in Appendix A, and
more detailed tips about programming are included at the above websites.
Those who have never used Maple or Mathematica will find that it takes
only a few hours of trial and error to learn how to write programs to solve
boundary-value problems in elasticity.

This new edition contains four additional chapters, including two con-
cerned with the use of complex-variable methods in two-dimensional elastic-
ity. In keeping with the style of the rest of the book, I have endeavoured to
present this material in a such a way as to be usable by a reader with minimal
previous experience of complex analysis who wishes to solve specific elasticity
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problems. This necessarily involves glossing over some of the finer points of the
underlying mathematics. The reader wishing for a more complete and rigorous
treatment will need to refer to more specialized works on this topic. I have
emphasised the relation between the complex and real (Airy and Prandtl)
stress functions, including algorithms for obtaining the complex function for
a stress field for which the real stress function is already known. The com-
plex variable methods and notation developed in Chapter 19 are also used
in the development of a hierarchical treatment of three-dimensional problems
for prismatic bars of fairly general cross-section in Chapter 28. The other
major addition is a new chapter on variational methods, including the use
of the Rayleigh-Ritz method and Castigliano’s second theorem in developing
approximate solutions to elasticity problems.

The new edition contains numerous additional end-of-chapter problems.
As with previous editions, a full set of solutions to these problems is available
to bona fide instructors on request to the author. Some of these problems
are quite challenging, indeed several were the subject of substantial technical
papers within the not too distant past, but they can all be solved in a few
hours using Maple or Mathematica. Many texts on Elasticity contain problems
which o↵er a candidate stress function and invite the student to ‘verify’ that it
defines the solution to a given problem. Students invariably raise the question
‘How would we know to choose that form if we were not given it in advance?’
I have tried wherever possible to avoid this by expressing the problems in the
form they would arise in Engineering — i.e. as a body of a given geometry
subjected to prescribed loading. This in turn has required me to write the
text in such a way that the student can approach problems deductively. I
have also generally opted for explaining di�culties that might arise in an
‘obvious’ approach to the problem, rather than steering the reader around
them in the interests of brevity.

I have taken this opportunity to correct the numerous typographical errors
in the second edition, but no doubt despite my best e↵orts, the new material
will contain more. Please communicate any errors to me.

As in previous editions, I would like to thank my graduate students and
more generally scientific correspondents worldwide whose questions continue
to force me to re-examine my knowledge of the subject. I am also grateful
to Professor John Dundurs for permission to use Table 9.1 and to the Royal
Society of London for permission to reproduce Figures 13.2, 13.3. Vikram
Gavini, David Hills and Alexander Korsunsky were kind enough to read drafts
of the complex-variable chapters and made useful suggestions on presentation,
but they are in no way responsible for my rather idiosyncratic approach to
this subject.

J.R.Barber
Ann Arbor

2009



Part I

GENERAL CONSIDERATIONS



1

INTRODUCTION

The subject of Elasticity is concerned with the determination of the stresses
and displacements in a body as a result of applied mechanical or thermal
loads, for those cases in which the body reverts to its original state on the
removal of the loads. In this book, we shall further restrict attention to the
case of linear infinitesimal elasticity, in which the stresses and displacements
are linearly proportional to the applied loads and the displacements are small
in comparison with the characteristic length dimensions of the body. These
restrictions ensure that linear superposition can be used and enable us to
employ a wide range of series and transform techniques which are not available
for non-linear problems.

Most engineers first encounter problems of this kind in the context of the
subject known as Mechanics of Materials, which is an important constituent of
most undergraduate engineering curricula. Mechanics of Materials di↵ers from
Elasticity in that various plausible but unsubstantiated assumptions are made

is the assumption that plane sections remain plane in the bending of a slender
beam. Elasticity makes no such assumptions, but attempts to develop the

laws of motion, Euclidian geometry and Hooke’s law. Approximations are
often introduced towards the end of the solution, but these are mathematical
approximations used to obtain solutions of the governing equations rather
than physical approximations that impose artificial and strictly unjustifiable
constraints on the permissible deformation field.

However, it would be a mistake to draw too firm a distinction between
the two approaches, since practitioners of each have much to learn from the

full exploration of the practical consequences of the results, is often able to

mathematical perspective. Indeed, we shall make extensive use of physical
parallels in this book and pursue many problems to conclusions relevant to
practical applications, with the hope of deepening the reader’s understanding

 

provide insights into the problem that are less easily obtained from a purely

3 

solution directly and rigorously from its first principles, which are Newton’s

J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172,

about the deformation process in the course of the analysis. A typical example

other. Mechanics of Materials, with its emphasis on physical reasoning and a
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of the underlying structure of the subject. Conversely, the mathematical rigour
of Elasticity gives us greater confidence in the results, since, even when we have
to resort to an approximate solution, we can usually estimate its accuracy with
some confidence — something that is very di�cult to do with the physical
approximations used in Mechanics of Materials1. Also, there is little to be
said for using an ad hoc approach when, as is often the case, a more rigorous
treatment presents no serious di�culty.

1.1 Notation for stress and displacement

It is assumed that the reader is more or less familiar with the concept of stress
and strain from elementary courses on Mechanics of Materials. This section is
intended to introduce the notation used, to refresh the reader’s memory about
some important ideas, and to record some elementary but useful results.

1.1.1 Stress

Components of stress will all be denoted by the symbol � with appropriate
su�ces. The second su�x denotes the direction of the stress component and
the first the direction of the outward normal to the surface upon which it acts.
This notation is illustrated in Figure 1.1 for the Cartesian coördinate system
x, y, z.

Figure 1.1: Notation for stress components.

Notice that one consequence of this notation is that normal (i.e. tensile and
compressive) stresses have both su�ces the same (e.g. �xx,�yy,�zz in Figure
1.1) and are positive when tensile. The remaining six stress components in
Figure 1.1 (i.e. �xy,�yx,�yz,�zy,�zx,�xz) have two di↵erent su�ces and are
shear stresses.
1 In fact, the only practical way to examine the e↵ect of these approximations is to

relax them, by considering the same problem, or maybe a simpler problem with
similar features, in the context of the theory of Elasticity.



1.1 Notation for stress and displacement 5

Books on Mechanics of Materials often use the symbol ⌧ for shear stress,
whilst retaining � for normal stress. However, there is no need for a di↵erent
symbol, since the su�ces enable us to distinguish normal from shear stress
components. Also, we shall find that the use of a single symbol with appro-
priate su�ces permits matrix methods to be used in many derivations and
introduces considerable economies in the notation for general results.

The equilibrium of moments acting on the block in Figure 1.1 requires
that

�xy = �yx ; �yz = �zy and �zx = �xz . (1.1)

This has the incidental advantage of rendering mistakes about the order of
su�ces harmless! (In fact, a few books use the opposite convention.) Readers
who have not encountered three-dimensional problems before should note that
there are two shear stress components on each surface and one normal stress
component. There are some circumstances in which it is convenient to combine
the two shear stresses on a given plane into a two-dimensional vector in the
plane — i.e. to refer to the resultant shear stress on the plane. An elementary
situation where this is helpful is in the Mechanics of Materials problem of
determining the distribution of shear stress on the cross-section of a beam
due to a transverse shear force2. For example, we note that in this case, the
resultant shear stress on the plane must be tangential to the edge at the
boundary of the cross-section, since the shear stress complementary to the
component normal to the edge acts on the traction-free surface of the beam
and must therefore be zero. This of course is why the shear stress in a thin-
walled section tends to follow the direction of the wall.

We shall refer to a plane normal to the x-direction as an ‘x-plane’ etc. The
only stress components which act on an x-plane are those which have an x as
the first su�x (This is an immediate consequence of the definition).

Notice also that any x-plane can be defined by an equation of the form
x=c, where c is a constant. More precisely, we can define a ‘positive x-plane’
as a plane for which the positive x-direction is the outward normal and a
‘negative x-plane’ as one for which it is the inward normal. This distinction
can be expressed mathematically in terms of inequalities. Thus, if part of the
boundary of a solid is expressible as x= c, the solid must locally occupy one
side or the other of this plane. If the domain of the solid is locally described
by x<c, the bounding surface is a positive x-plane, whereas if it is described
by x>c, the bounding surface is a negative x-plane.

The discussion in this section suggests a useful formalism for correctly
defining the boundary conditions in problems where the boundaries are par-
allel to the coördinate axes. We first identify the equations which define the
boundaries of the solid and then write down the three traction components
which act on each boundary. For example, suppose we have a rectangular solid
defined by the inequalities 0 < x < a, 0 < y < b, 0 < z < c. It is clear that the
2 For the elasticity solution of this problem, see Chapter 17.
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surface y = b is a positive y-plane and we deduce immediately that the cor-
responding traction boundary conditions will involve the stress components
�yx,�yy,�yz — i.e. the three components that have y as the first su�x. This
procedure insures against the common student mistake of assuming (for exam-
ple) that the component �xx must be zero if the surface y=b is to be traction
free. (Note : Don’t assume that this mistake is too obvious for you to fall into
it. When the problem is geometrically or algebraically very complicated, it is
only too easy to get distracted.)

Stress components can be defined in the same way for other systems of
orthogonal coördinates. For example, components for the system of cylindrical
polar coördinates (r, ✓, z) are shown in Figure 1.2.

Figure 1.2: Stress components in polar coördinates.

(This is a case where the definition of the ‘✓-plane’ through an equation, ✓=↵,
is easier to comprehend than ‘the plane normal to the ✓-direction’. However,
note that the ✓-direction is the direction in which a particle would move if ✓
were increased with r, z constant.)

1.1.2 Index and vector notation and the summation convention

In expressing or deriving general results, it is often convenient to make use of
vector notation. We shall use bold face symbols to represent vectors and single
su�ces to define their components in a given coördinate direction. Thus, the
vector V can be written

V = iVx + jVy + kVz = {Vx, Vy, Vz}T , (1.2)

where where i, j, k are unit vectors in directions x, y, z respectively.
In the last expression in (1.2), we have used the convenient linear algebra

notation for a vector, but to take full advantage of this, we also need to
replace Vx, Vy, Vz by V

1

, V
2

, V
3

or more generally by Vi, where the index i takes
the values 1, 2, 3. Further compression is then achieved by using the Einstein

summation convention according to which terms containing a repeated latin
index are summed over the three values 1, 2, 3. For example, the expression
�ii is interpreted as
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�ii ⌘
3

X

i=1

�ii = �
11

+ �
22

+ �
33

. (1.3)

Any expression with one free index has a value associated with each
coördinate direction and hence represents a vector. A more formal connec-
tion between the two notations can be established by writing

V = e
1

V
1

+ e
2

V
2

+ e
3

V
3

= eiVi , (1.4)

where e
1

= i, e
2

= j, e
3

= k and then dropping the implied unit vector ei in
the right-hand side of (1.4).

The position of a point in space is identified by the position vector,

r = ix + jy + kz , (1.5)

which in the index notation is simply written as xi, whilst the Cartesian stress
components

� =

2

4

�
11

�
12

�
13

�
21

�
22

�
23

�
31

�
32

�
33

3

5 (1.6)

are written as �ij .

1.1.3 Vector operators in index notation

All the well-known vector operations can be performed using index notation
and the summation convention. For example, if two vectors are represented
by Pi, Qi respectively, their scalar (dot) product can be written concisely as

P · Q = P
1

Q
1

+ P
2

Q
2

+ P
3

Q
3

= PiQi , (1.7)

because the repeated index i in the last expression implies the summation
over all three product terms. The vector (cross) product

P ⇥ Q =

�

�

�

�

�

�

i j k
P

1

P
2

P
3

Q
1

Q
2

Q
3

�

�

�

�

�

�

(1.8)

can be written in index notation as

P ⇥ Q = ✏ijkPiQj , (1.9)

where ✏ijk is the alternating tensor which is defined to be 1 if the indices are
in cyclic order (e.g. 2,3,1), –1 if they are in reverse cyclic order (e.g. 2,1,3)
and zero if any two indices are the same. Notice that the only free index in
the right-hand side of (1.9) is k, so (for example) the x

1

-component of P ⇥ Q
is recovered by setting k=1.
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The gradient of a scalar function � can be written

r� = i
@�

@x
+ j

@�

@y
+ k

@�

@z
=

@�

@xi
, (1.10)

the divergence of a vector V is

div V ⌘r·V =
@V

1

@x
1

+
@V

2

@x
2

+
@V

3

@x
3

=
@Vi

@xi
(1.11)

using (1.7, 1.10) and the curl of a vector V is

curl V ⌘r⇥V = ✏ijk
@Vj

@xi
, (1.12)

using (1.9, 1.10). We also note that the Laplacian of a scalar function can be
written in any of the forms

r2� =
@2�

@x2

+
@2�

@y2

+
@2�

@z2

= div r� =
@2�

@xi@xi
. (1.13)

1.1.4 Vectors, tensors and transformation rules

Vectors can be conceived in a mathematical sense as ordered sets of numbers or
in a physical sense as mathematical representations of quantities characterized
by magnitude and direction. A link between these concepts is provided by the
transformation rules. Suppose we know the components (Vx, Vy) of the vector
V in a given two-dimensional Cartesian coördinate system (x, y) and we wish
to determine the components (V 0

x, V 0
y) in a new system (x0, y0) which is inclined

to (x, y) at an angle ✓ in the anticlockwise direction as shown in Figure 1.3.
The required components are

V 0
x = Vx cos ✓ + Vy sin ✓ ; V 0

y = Vy cos ✓ � Vx sin ✓ . (1.14)

Figure 1.3: The coördinate systems x, y and x0, y0.

We could define a vector as an entity, described by its components in a
specified Cartesian coördinate system, which transforms into other coördinate
systems according to rules like equations (1.14) — i.e. as an ordered set of
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numbers which obey the transformation rules (1.14). The idea of magnitude
and direction could then be introduced by noting that we can always choose
✓ such that (i) V 0

y =0 and (ii) V 0
x >0. The corresponding direction x0 is then

the direction of the resultant vector and the component V 0
x is its magnitude.

Now stresses have two su�ces and components associated with all possible
combinations of two coördinate directions, though we note that equation (1.1)
shows that the order of the su�ces is immaterial. (Another way of stating this
is that the matrix of stress components (1.6) is always symmetric). The stress
components satisfy a more complicated set of transformation rules which can
be determined by considering the equilibrium of an infinitesimal wedge-shaped
piece of material. The resulting equations in the two-dimensional case are
those associated with Mohr’s circle — i.e.

�0xx = �xx cos2 ✓ + �yy sin2 ✓ + 2�xy sin ✓ cos ✓ (1.15)
�0xy = �xy

�

cos2 ✓ � sin2 ✓
�

+ (�yy � �xx) sin ✓ cos ✓ (1.16)

�0yy = �yy cos2 ✓ + �xx sin2 ✓ � 2�xy sin ✓ cos ✓ , (1.17)

where we use the notation �0xx rather than �x0x0 in the interests of clarity.
As in the case of vectors we can define a mathematical entity which has

a matrix of components in any given Cartesian coördinate system and which
transforms into other such coördinate systems according to rules like (1.15–
1.17). Such quantities are called second order Cartesian tensors. Notice in-
cidentally that the alternating tensor introduced in equation (1.9) is not a
second order Cartesian tensor.

We know from Mohr’s circle that we can always choose ✓ such that �0xy =0,
in which case the directions x0, y0 are referred to as principal directions and the
components �0xx,�0yy as principal stresses. Thus another way to characterize a
second order Cartesian tensor is as a quantity defined by a set of orthogonal
principal directions and a corresponding set of principal values.

As with vectors, a pragmatic motivation for abstracting the mathematical
properties from the physical quantities which exhibit them is that many dif-
ferent physical quantities are naturally represented as second order Cartesian
tensors. Apart from stress and strain, some commonly occurring examples are
the second moments of area of a beam cross-section (Ix, Ixy, Iy), the second
partial derivatives of a scalar function (@2f/@x2; @2f/@x@y; @2f/@y2) and the
influence coe�cient matrix Cij defining the displacement u due to a force F
for a linear elastic system, i.e.

ui = CijFj , (1.18)

where the summation convention is implied.
It is a fairly straightforward matter to prove that each of these quanti-

ties obeys transformation rules like (1.15–1.17). It follows immediately (for
example) that every beam cross-section has two orthogonal principal axes of
bending about which the two principal second moments are respectively the
maximum and minimum for the cross-section.
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A special tensor of some interest is that for which the Mohr’s circle de-
generates to a point. In the case of stresses, this corresponds to a state of
hydrostatic stress, so-called because a fluid at rest cannot support shear stress
(the constitutive law for a fluid relates velocity gradient to shear stress) and
hence �0xy =0 for all ✓. The only Mohr’s circle which satisfies this condition is
one of zero radius, from which we deduce immediately that all directions are
principal directions and that the principal values are all equal. In the case of
the fluid, we obtain the well-known result that the pressure in a fluid at rest
is equal in all directions.

It is instructive to consider this result in the context of other systems
involving tensors. For example, consider the second moments of area for the
square cross-section shown in Figure 1.4. By symmetry, we know that Ox, Oy
are principal directions and that the two principal second moments are both
equal to a4/12. It follows that the Mohr’s circle of second moments has zero
radius and hence (i) that the second moment about any other axis must also
be a4/12 and (ii) that the product inertia I 0xy must be zero about all axes,
showing that the axis of curvature is always aligned with the applied moment.
These results are not at all obvious merely from an examination of the section.

Figure 1.4: A beam of square cross-section.

As a second example, Figure 1.5 shows an elastic system consisting of three
identical but arbitrary structures connecting a point, P , to a rigid support,
the structures being inclined to each other at angles of 120o.

The structures each have elastic properties expressible in the form of an
influence function matrix as in equation (1.18) and are generally such that
the displacement u is not colinear with the force F . However, the overall

influence function matrix for the system has the same properties in three
di↵erent coördinate systems inclined to each other at 120o, since a rotation of
the Figure through 120o leaves the system unchanged. The only Mohr’s circle
which gives equal components after a rotation of 120o is that of zero radius.
We therefore conclude that the support system of Figure 1.5 is such that (i)
the displacement of P always has the same direction as the force F and (ii) the
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sti↵ness or compliance of the system is the same in all directions3. These two
examples illustrate that there is sometimes an advantage to be gained from
considering a disparate physical problem that shares a common mathematical
structure with that under investigation.

Figure 1.5: Support structure with three similar but unsymmetrical
components.

Three-dimensional transformation rules

In three dimensions, the vector transformation rules (1.14) are most conve-
niently written in terms of direction cosines lij , defined as the cosine of the
angle between unit vectors in the directions x0i and xj respectively. We then
obtain

V 0
i = lijVj . (1.19)

For the two-dimensional case of Figure 1.3 and equations (1.14), the matrix4

formed by the components lij takes the form

lij =


cos ✓ sin ✓
� sin ✓ cos ✓

�

. (1.20)

We already remarked in §1.1.1 that only those stress components with an
x-su�x act on the surface x = c and hence that if this surface is traction-
free (for example if it is an unloaded boundary of a body), then �xx =�xy =
3 A similar argument can be used to show that if a laminated fibre-reinforced com-

posite is laid up with equal numbers of identical, but not necessarily symmetri-
cal, laminæ in each of 3 or more equispaced orientations, it must be elastically
isotropic within the plane. This proof depends on the properties of the fourth or-
der Cartesian tensor c

ijkl

describing the stress-strain relation of the laminæ (see
equation (1.55) below).

4 Notice that the matrix of direction cosines is not symmetric.
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�xz =0, but no restrictions are placed on the components �yy,�yz,�zz. More
generally, the traction t on a specified plane is a vector with three independent
components ti, in contrast to the stress �ij which is a second order tensor with
six independent components. Mathematically, we can define the orientation
of a specified inclined plane by a unit vector n in the direction of the outward
normal. By considering the equilibrium of an infinitesimal tetrahedron whose
surfaces are perpendicular to the directions x

1

, x
2

, x
3

and n respectively, we
then obtain

ti = �ijnj , (1.21)

for the traction vector on the inclined surface. The components ti defined
by (1.21) are aligned with the Cartesian axes xi, but we can use the vector
transformation rule (1.19) to resolve t into a new coördinate system in which
one axis (x0

1

say) is aligned with n. We then have

nj = l
1j ; ti = �ij l1j and t0k = lkiti = lkil1j�ij

If we perform this operation for each of the three surfaces orthogonal to
x0

1

, x0
2

, x0
3

respectively, we shall recover the complete stress tensor in the ro-
tated coördinate system, which is therefore given by

�0ij = lipljq�pq . (1.22)

Comparison of (1.22) with (1.15–1.17) provides a good illustration of the ef-
ficiency of the index notation in condensing general expressions in Cartesian
coördinates.

1.1.5 Principal stresses and Von Mises stress

One of the principal reasons for performing elasticity calculations is to deter-
mine when and where an engineering component will fail. Theories of material
failure are beyond the scope of this book, but the most widely used criteria
are the Von Mises distortion energy criterion for ductile materials and the
maximum tensile stress criterion for brittle materials5.

Brittle materials typically fracture when the maximum tensile stress
reaches a critical value and hence we need to be able to calculate the maxi-
mum principal stress �

1

. For two dimensional problems, the principal stresses
can be found by using the condition �0xy =0 in equation (1.16) to determine
the inclination ✓ of the principal directions. Substituting into (1.15, 1.17) then
yields the well known results

�
1

,�
2

=
�xx + �yy

2
±
s

✓

�xx � �yy

2

◆

2

+ �2

xy . (1.23)

5 J.R.Barber, Intermediate Mechanics of Materials, McGraw-Hill, New York, 2000,
§2.2.
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In most problems, the maximum stresses occur at the boundaries where
shear tractions are usually zero. Thus, even in three-dimensional problems,
the determination of the maximum tensile stress often involves only a two-
dimensional stress transformation. However, the principal stresses are easily
obtained in the fully three-dimensional case from the results

�
1

=
I
1

3
+

2
3

✓

q

I2

1

� 3I
2

◆

cos� (1.24)

�
2

=
I
1

3
+

2
3

✓

q

I2

1

� 3I
2

◆

cos
✓

�+
2⇡
3

◆

(1.25)

�
3

=
I
1

3
+

2
3

✓

q

I2

1

� 3I
2

◆

cos
✓

�+
4⇡
3

◆

, (1.26)

where
� =

1
3

arccos
✓

2I3

1

� 9I
1

I
2

+ 27I
3

2(I2

1

� 3I
2

)3/2

◆

(1.27)

and

I
1

= �xx + �yy + �zz (1.28)
I
2

= �xx�yy + �yy�zz + �zz�xx � �2

xy � �2

yz � �2

zx (1.29)

I
3

= �xx�yy�zz � �xx�
2

yz � �yy�
2

zx � �zz�
2

xy + 2�xy�yz�zx . (1.30)

The quantities I
1

, I
2

, I
3

are known as stress invariants because for a given
stress state they are the same in all coördinate systems. If the principal value
of ✓= arccos(x) is defined such that 0 ✓< ⇡, the principal stresses defined
by equations (1.24–1.26) will always satisfy the inequality �

1

��
3

��
2

.
Von Mises theory states that a ductile material will yield when the strain

energy of distortion per unit volume reaches a certain critical value. This
enables us to define an equivalent tensile stress or Von Mises stress �E as

�E ⌘
q

I2

1

� 3I
2

=
q

�2

xx + �2

yy + �2

zz � �xx�yy � �yy�zz � �zz�xx + 3�2

xy + 3�2

yz + 3�2

zx .

(1.31)

The Von Mises yield criterion then states that yield will occur when �E reaches
the yield stress in uniaxial tension, SY . The Maple and Mathematica files
‘principalstresses’ use equations (1.24–1.31) to calculate the principal stresses
and the Von Mises stress from a given set of stress components.

1.1.6 Displacement

The displacement of a particle P is a vector

u = iux + juy + kuz (1.32)
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representing the di↵erence between the final and the initial position of P —
i.e. it is the distance that P moves during the deformation. In index notation,
the displacement is represented as ui.

The deformation of a body is completely defined if we know the displace-
ment of its every particle. Notice however that there is a class of displacements
which do not involve deformation — the so-called ‘rigid-body displacements’.
A typical case is where all the particles of the body have the same displace-
ment. The name arises, of course, because rigid-body displacement is the only

class of displacement that can be experienced by a rigid body.

1.2 Strains and their relation to displacements

Components of strain will be denoted by the symbol, e, with appropriate
su�ces (e.g. exx, exy). As in the case of stress, no special symbol is required
for shear strain, though we shall see below that the quantity defined in most
elementary texts (and usually denoted by �) di↵ers from that used in the
mathematical theory of Elasticity by a factor of 2. A major advantage of this
definition is that it makes the strain, e, a second order Cartesian Tensor (see
§1.1.4 above). We shall demonstrate this by establishing transformation rules
for strain similar to equations (1.15–1.17) in §1.2.4 below.

1.2.1 Tensile strain

Students usually first encounter the concept of strain in elementary Mechan-
ics of Materials as the ratio of extension to original length and are sometimes
confused by the apparently totally di↵erent definition used in more mathe-
matical treatments of solid mechanics. We shall discuss here the connection
between the two definitions — partly for completeness, and partly because the
physical insight that can be developed in the simple problems of Mechanics of
Materials is very useful if it can be carried over into more di�cult problems.

Figure 1.6 shows a bar of original length L and density ⇢ hanging from the
ceiling. Suppose we are asked to find how much it increases in length under
the loading of its own weight.

It is easily shown that the tensile stress �xx at the point P , distance x
from the ceiling, is

�xx = ⇢g(L� x) , (1.33)

where g is the acceleration due to gravity, and hence from Hooke’s law,

exx =
⇢g(L� x)

E
. (1.34)
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Figure 1.6: The bar suspended from the ceiling.

However, the strain varies continuously over the length of the bar and
hence we can only apply the Mechanics of Materials definition if we examine
an infinitesimal piece of the bar over which the strain can be regarded as
sensibly constant.

We describe the deformation in terms of the downward displacement ux

which depends upon x and consider that part of the bar between x and x+�x,
denoted by PQ in Figure 1.7.

Figure 1.7: Infinitesimal section of the bar.

After the deformation, PQ must have extended by ux(Q)�ux(P ) and hence
the local value of ‘Mechanics of Materials’ tensile strain is

exx =
ux(Q)� ux(P )

�x
=

ux(x + �x)� ux(x)
�x

. (1.35)

Taking the limit as �x!0, we obtain the definition

exx =
@ux

@x
. (1.36)

Corresponding definitions can be developed in three-dimensional problems
for the other normal strain components. i.e.
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eyy =
@uy

@y
; ezz =

@uz

@z
. (1.37)

Notice how easy the problem of Figure 1.6 becomes when we use these
definitions. We get

@ux

@x
=
⇢g(L� x)

E
, (1.38)

from (1.34, 1.36) and hence

ux =
⇢g(2Lx� x2)

2E
+ A , (1.39)

where A is an arbitrary constant of integration which expresses the fact that
our knowledge of the stresses and hence the strains in the body is not su�cient
to determine its position in space. In fact, A represents an arbitrary rigid-body
displacement. In this case we need to use the fact that the top of the bar is
joined to a supposedly rigid ceiling — i.e. ux(0) = 0 and hence A = 0 from
(1.39).

1.2.2 Rotation and shear strain

Noting that the two x’s in exx correspond to those in its definition @ux/@x,
it is natural to seek a connection between the shear strain exy and one or
both of the derivatives @ux/@y, @uy/@x. As a first step, we shall discuss the
geometrical interpretation of these derivatives.

Figure 1.8: Rotation of a line segment.

Figure 1.8 shows a line segment PQ of length �x, aligned with the x-axis,
the two ends of which are displaced in the y-direction. Clearly if uy(Q) 6=
uy(P ), the line PQ will be rotated by these displacements and if the angle of
rotation is small it can be written

� =
uy(x + �x)� uy(x)

�x
, (1.40)
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(anticlockwise positive).
Proceeding to the limit as �x!0, we have

� =
@uy

@x
. (1.41)

Thus, @uy/@x is the angle through which a line originally in the x-direction
rotates towards the y-direction during the deformation6.

Now, if PQ is a line drawn on the surface of an elastic solid, the occurence
of a rotation � does not necessarily indicate that the solid is deformed — we
could rotate the line simply by rotating the solid as a rigid body. To investigate
this matter further, we imagine drawing a series of lines at di↵erent angles
through the point P as shown in Figure 1.9(a).

Figure 1.9: Rotation of lines at point P; (a) Original state, (b) Rigid-body
rotation; (c) Rotation and deformation.

If the vicinity of the point P su↵ers merely a local rigid-body rotation,
all the lines will rotate through the same angle and retain the same relative
inclinations as shown in 1.9(b). However, if di↵erent lines rotate through dif-

ferent angles, as in 1.9(c), the body must have been deformed. We shall show
in the next section that the rotations of the lines in Figure 1.9(c) are not
independent and a consideration of their interdependency leads naturally to
a definition of shear strain.

1.2.3 Transformation of coördinates

Suppose we knew the displacement components ux, uy throughout the body
and wished to find the rotation, �, of the line PQ in Figure 1.10, which is
inclined at an angle ✓ to the x-axis.

We construct a new axis system Ox0y0 with Ox0 parallel to PQ as shown,
in which case we can argue as above that PQ rotates anticlockwise through
the angle

�(PQ) =
@u0y
@x0

. (1.42)

6 Students of Mechanics of Materials will have already used a similar result when
they express the slope of a beam as du/dx, where x is the distance along the axis
of the beam and u is the transverse displacement.
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Figure 1.10: Rotation of a line inclined at angle ✓.

Furthermore, we have

@

@x0
= r · i0 =

✓

i
@

@x
+ j

@

@y

◆

·i0 = i · i0 @

@x
+ j · i0 @

@y

= cos ✓
@

@x
+ sin ✓

@

@y
, (1.43)

and by similar arguments,

u0x = ux cos ✓ + uy sin ✓ ; u0y = uy cos ✓ � ux sin ✓ . (1.44)

In fact equations (1.43,1.44) are simply restatements of the vector transfor-
mation rules (1.14), since both u and the gradient operator are vectors.

Substituting these results into equation (1.42), we find

�(PQ) =
✓

cos ✓
@

@x
+ sin ✓

@

@y

◆

(uy cos ✓ � ux sin ✓)

=
@uy

@x
cos2 ✓ � @ux

@y
sin2 ✓ +

✓

@uy

@y
� @ux

@x

◆

sin ✓ cos ✓

=
1
2

✓

@uy

@x
� @ux

@y

◆

+
1
2

✓

@uy

@x
+
@ux

@y

◆

cos(2✓)

+
1
2

✓

@uy

@y
� @ux

@x

◆

sin(2✓) . (1.45)

In the final expression (1.45), the first term is independent of the inclina-
tion ✓ of the line PQ and hence represents a rigid-body rotation as in Figure
1.9(b). We denote this rotation by the symbol !, which with the convention
illustrated in Figure 1.8 is anticlockwise positive.

Notice that as this term is independent of ✓ in equation (1.45), it is the
same for any right-handed set of axes — i.e.

! =
1
2

✓

@uy

@x
� @ux

@y

◆

=
1
2

✓

@u0y
@x0

� @u0x
@y0

◆

, (1.46)
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for any x0, y0.
In three dimensions, ! represents a small positive rotation about the z-

axis and is therefore more properly denoted by !z to distinguish it from the
corresponding rotations about the x and y axes — i.e.

!x =
1
2

✓

@uz

@y
� @uy

@z

◆

; !y =
1
2

✓

@ux

@z
� @uz

@x

◆

; !z =
1
2

✓

@uy

@x
� @ux

@y

◆

.

(1.47)
The rotation ! is therefore a vector in three-dimensional problems and is
more compactly defined in vector or index notation as

! =
1
2
curl u ⌘ 1

2
r⇥u or !k =

1
2

✓

✏ijk
@uj

@xi

◆

, (1.48)

where ✏ijk is defined in §1.1.3. In two dimensions ! behaves as a scalar since
two of its components degenerate to zero7.

1.2.4 Definition of shear strain

We are now in a position to define the shear strain exy as the di↵erence
between the rotation of a line drawn in the x-direction and the corresponding
rigid-body rotation, !z, i.e.

exy =
@uy

@x
� !z =

1
2

✓

@uy

@x
+
@ux

@y

◆

(1.49)

and similarly

eyz =
1
2

✓

@uz

@y
+
@uy

@z

◆

; ezx =
1
2

✓

@ux

@z
+
@uz

@x

◆

. (1.50)

Note that exy so defined is one half of the quantity �xy used in Mechanics
of Materials and in many older books on Elasticity.

The strain-displacement relations (1.36, 1.37, 1.49, 1.50) can be written in
the concise form

eij =
1
2

✓

@ui

@xj
+
@uj

@xi

◆

. (1.51)

With the notation of equations (1.36, 1.37, 1.47, 1.49), we can now write
(1.45) in the form

�(PQ) = !z + exy(cos2 ✓ � sin2 ✓) + (eyy � exx) sin ✓ cos ✓ (1.52)

and hence
7 In some books, !

x

,!
y

,!
z

are denoted by !
yz

,!
zx

,!
xy

respectively. This notation
is not used here because it gives the erroneous impression that ! is a second order
tensor rather than a vector.
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e0xy = �(PQ)� !z (by definition)

= exy(cos2 ✓ � sin2 ✓) + (eyy � exx) sin ✓ cos ✓ . (1.53)

This is one of the coördinate transformation relations for strain, the other one

e0xx = exx cos2 ✓ + eyy sin2 ✓ + 2exy sin ✓ cos ✓ (1.54)

being obtainable from equations (1.36, 1.43, 1.44) in the same way. A com-
parison of equations (1.53, 1.54) and (1.15, 1.16) confirms that, with these
definitions, the strain eij is a second order Cartesian tensor. The correspond-
ing three-dimensional strain transformation equations have the same form as
(1.22) and can be obtained using the strain-displacement relation (1.51) and
the vector transformation rule (1.19). This derivation is left as an excercise
for the reader (Problem 1.9).

1.3 Stress-strain relations

The fundamental assumption of linear elasticity is that the material obeys
Hooke’s law, implying that there is a linear relation between stress and strain.
The most general such relation can be written in index notation as

�ij = cijklekl ; eij = sijkl�kl , (1.55)

where cijkl, sijkl are the elasticity tensor and the compliance tensor respec-
tively. Both the elasticity tensor and the compliance tensor must satisfy the
symmetry conditions

cijkl = cjikl = cklij = cijlk , (1.56)

which follow from (i) the symmetry of the stress and strain tensors (e.g. �ij =
�ji) and (ii) the reciprocal theorem, which we shall discuss in Chapter 34.
Substituting the strain-displacement relations (1.51) into the first of (1.55)
and using (1.56) to combine appropriate terms, we obtain

�ij = cijkl
@uk

@xl
. (1.57)

In this book, we shall restrict attention to the case where the material is
isotropic, meaning that the tensors cijkl, sijkl are invariant under coördinate
transformation. In other words, a test specimen of the material would show
identical behaviour regardless of its orientation relative to the original piece
of material from which it was manufactured.

We shall develop the various forms of Hooke’s law for the isotropic medium
starting from the results of the uniaxial tensile test, in which the only non-zero
stress component is �xx. Symmetry considerations then show that the shear
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strains exy, eyz, ezx must be zero and that the transverse strains eyy, ezz must
be equal. Thus, the most general relation can be written in the form

exx =
�xx

E
; eyy = ezz = �⌫�xx

E
,

where Young’s modulus E and Poisson’s ratio ⌫ are experimentally determined
constants. The strain components due to a more general triaxial state of stress
can then be written down by linear superposition as

exx =
�xx

E
� ⌫�yy

E
� ⌫�zz

E
(1.58)

eyy = �⌫�xx

E
+
�yy

E
� ⌫�zz

E
(1.59)

ezz = �⌫�xx

E
� ⌫�yy

E
+
�zz

E
. (1.60)

The relation between exy and �xy can then be obtained by using the
coördinate transformation relations. We know that there are three principal
directions such that if we align them with x, y, z, we have

�xy = �yz = �zx = 0 (1.61)

and hence by symmetry

exy = eyz = ezx = 0 . (1.62)

Using a system aligned with the principal directions, we write

e0xy = (eyy � exx) sin ✓ cos ✓ (1.63)

from equations (1.53, 1.62), and hence

e0xy =
(�yy � �xx)(1 + ⌫) sin ✓ cos ✓

E

=
(1 + ⌫)�0xy

E
, (1.64)

from (1.58, 1.59, 1.16, 1.61).
We define

µ =
E

2(1 + ⌫)
, (1.65)

so that equation (1.64) takes the form

e0xy =
�0xy

2µ
. (1.66)
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1.3.1 Lamé’s constants

It is often desirable to solve equations (1.58–1.60) to express �xx in terms of
exx etc. The solution is routine and leads to the equation

�xx =
E⌫(exx + eyy + ezz)

(1 + ⌫)(1� 2⌫)
+

Eexx

(1 + ⌫)
(1.67)

and similar equations, which are more concisely written in the form

�xx = �e + 2µexx (1.68)

etc., where

� =
E⌫

(1 + ⌫)(1� 2⌫)
=

2µ⌫

(1� 2⌫)
(1.69)

and
e ⌘ exx + eyy + ezz ⌘ eii ⌘ div u (1.70)

is known as the dilatation.
The stress-strain relations (1.66, 1.68) can be written more concisely in

the index notation in the form

�ij = ��ijemm + 2µeij , (1.71)

where �ij is the Kronecker delta, defined as 1 if i=j and 0 if i 6=j. Equivalently,
we can use equation (1.55) with

cijkl = ��ij�kl + µ (�ik�jl + �jk�il) . (1.72)

The constants �, µ are known as Lamé’s constants. Young’s modulus and Pois-
son’s ratio can be written in terms of Lamé’s constants through the equations

E =
µ(3�+ 2µ)

(�+ µ)
; ⌫ =

�

2(�+ µ)
. (1.73)

1.3.2 Dilatation and bulk modulus

The dilatation, e, is easily shown to be invariant as to coördinate transfor-
mation and is therefore a scalar quantity. In physical terms it is the local
volumetric strain, since a unit cube increases under strain to a block of di-
mensions (1+exx), (1+eyy), (1+ezz) and hence the volume change is

�V = (1 + exx)(1 + eyy)(1 + ezz)� 1 = exx + eyy + ezz + O(exxeyy) . (1.74)

It can be shown that the dilatation e and the rotation vector ! are har-
monic — i.e. r2e = r2! = 0. For this reason, many early solutions of elas-
ticity problems were formulated in terms of these variables, so as to make use
of the wealth of mathematical knowledge about harmonic functions. We now
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have other more convenient ways of expressing elasticity problems in terms of
harmonic functions, which will be discussed in Chapter 20 et seq..

The dilatation is proportional to the mean stress � through a constant
known as the bulk modulus Kb. Thus, from equation (1.68),

� ⌘ (�xx + �yy + �zz)
3

⌘ 1
3
�ii = Kbe , (1.75)

where
Kb = �+

2
3
µ =

E

3(1� 2⌫)
. (1.76)

We note that Kb!1 if ⌫! 0.5, in which case the material is described
as incompressible.

PROBLEMS

1. Show that

(i)
@xi

@xj
= �ij and (ii) R =

p
xixi ,

where R = |R| is the distance from the origin. Hence find @R/@xj in index
notation. Confirm your result by finding @R/@x in x, y, z notation.

2. Prove that the partial derivatives @2f/@x2; @2f/@x@y; @2f/@y2 of the scalar
function f(x, y) transform into the rotated coördinate system x0, y0 by rules
similar to equations (1.15–1.17).

3. Show that the direction cosines defined in (1.19) satisfy the identity

lij lik = �jk .

Hence or otherwise, show that the product �ij�ij is invariant under coördinate
transformation.

4. By restricting the indices i, j etc. to the values 1,2 only, show that the
two-dimensional stress transformation relations (1.15–1.17) can be obtained
from (1.22) using the two-dimensional direction cosines (1.20).

5. Use the index notation to develop concise expressions for the three stress
invariants I

1

, I
2

, I
3

and the equivalent tensile stress �E .

6. Choosing a local coördinate system x
1

, x
2

, x
3

aligned with the three princi-
pal axes, determine the tractions on the octahedral plane defined by the unit
vector

n =
⇢

1p
3
,

1p
3
,

1p
3

�T
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which makes equal angles with all three principal axes, if the principal stresses
are �

1

,�
2

,�
3

. Hence show that the magnitude of the resultant shear stress on
this plane is

p
2�E/3, where �E is given by equation (1.31).

7. A rigid body is subjected to a small rotation !z = ⌦ ⌧ 1 about the z-
axis. If the displacement of the origin is zero, find expressions for the three
displacement components ux, uy, uz as functions of x, y, z.

8. Use the index notation to develop a general expression for the derivative

@ui

@xj

in terms of strains and rotations.

9. Use the three-dimensional vector transformation rule (1.19) and the index
notation to prove that the strain components (1.51) transform according to
the equation

e0ij = lipljqepq .

Hence show that the dilatation eii is invariant under coördinate transforma-
tion.

10. Find an index notation expression for the compliance tensor sijkl of equa-
tion (1.55) for the isotropic elastic material in terms of the elastic constants
E, ⌫.

11. Show that equations (1.58–1.60, 1.64) can be written in the concise form

eij =
(1 + ⌫)�ij

E
� ⌫�ij�mm

E
. (1.77)
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EQUILIBRIUM AND COMPATIBILITY

We can think of an elastic solid as a highly redundant framework — each par-
ticle is built-in to its neighbours. For such a framework, we expect to get some
equations from considerations of equilibrium, but not as many as there are un-
knowns. The deficit is made up by compatibility conditions — statements that
the deformed components must fit together. These latter conditions will relate
the dimensions and hence the strains of the deformed components and in or-
der to express them in terms of the same unknowns as the stresses (forces) we
need to make use of the stress-strain relations as applied to each component
separately.

If we were to approximate the continuous elastic body by a system of
interconnected elastic bars, this would be an exact description of the solution
procedure. The only di↵erence in treating the continuous medium is that
the system of algebraic equations is replaced by partial di↵erential equations
describing the same physical or geometrical principles.

2.1 Equilibrium equations

We consider a small rectangular block of material — side �x, �y, �z — as
shown in Figure 2.1. We suppose that there is a body force1, p per unit
volume and that the stresses vary with position so that the stress components
on opposite faces of the block di↵er by the di↵erential quantities ��xx, ��xy

etc. Only those stress components which act in the x-direction are shown in
Figure 2.1 for clarity.
1 A body force is one that acts directly on every particle of the body, rather than

being applied by tractions at its boundaries and transmitted to the various parti-
cles by means of internal stresses. This is an important distinction which will be
discussed further in Chapter 7, below. The commonest example of a body force
is that due to gravity.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 25
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Figure 2.1: Forces in the x-direction on an elemental block.

Resolving forces in the x-direction, we find

(�xx + ��xx � �xx)�y�z + (�xy + ��xy � �xy)�z�x
+(�xz + ��xz � �xz)�x�y + px�x�y�z = 0 . (2.1)

Hence, dividing through by (�x�y�z) and proceeding to the limit as these
infinitesimals tend to zero, we obtain

@�xx

@x
+
@�xy

@y
+
@�xz

@z
+ px = 0 . (2.2)

Similarly, we have

@�yx

@x
+
@�yy

@y
+
@�yz

@z
+ py = 0 (2.3)

@�zx

@x
+
@�zy

@y
+
@�zz

@z
+ pz = 0 , (2.4)

or in index notation
@�ij

@xj
+ pi = 0 . (2.5)

These are the di↵erential equations of equilibrium.

2.2 Compatibility equations

The easiest way to satisfy the equations of compatibility — as in framework
problems — is to express all the strains in terms of the displacements. In
a framework, this ensures that the components fit together by identifying
the displacement of points in two links which are pinned together by the
same symbol. If the framework is redundant, the number of pin displacements
thereby introduced is less than the number of component lengths (and hence
extensions) determined by them — and the number of unknowns is therefore
reduced.
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For the continuum, the process is essentially similar, but much more
straightforward. We define the six components of strain in terms of displace-
ments through equations (1.51). These six equations introduce only three un-
knowns (ux, uy, uz) and hence the latter can be eliminated to give equations
constraining the strain components.

For example, from (1.36, 1.37) we find

@2exx

@y2

=
@3ux

@x@y2

;
@2eyy

@x2

=
@3uy

@y@x2

(2.6)

and hence
@2exx

@y2

+
@2eyy

@x2

=
@2

@x@y

✓

@ux

@y
+
@uy

@x

◆

= 2
@2exy

@x@y
, (2.7)

from (1.49) — i.e.
@2exx

@y2

� 2
@2exy

@x@y
+
@2eyy

@x2

= 0 . (2.8)

Two more equations of the same form may be obtained by permuting
su�ces. It is tempting to pursue an analogy with algebraic equations and
argue that, since the six strain components are defined in terms of three
independent displacement components, we must be able to develop three (i.e.
6�3) independent compatibility equations. However, it is easily verified that,
in addition to the three equations similar to (2.8), the strains must satisfy
three more equations of the form

@2ezz

@x@y
=

@

@z

✓

@eyz

@x
+
@ezx

@y
� @exy

@z

◆

. (2.9)

The resulting six equations are independent in the sense that no one of them
can be derived from the other five, which all goes to show that arguments for
algebraic equations do not always carry over to partial di↵erential equations.

A concise statement of the six compatibility equations can be written in
the index notation in the form

✏ijk✏pqr
@2ejq

@xk@xr
= 0 . (2.10)

The full set of six equations makes the problem very complicated. In prac-
tice, therefore, most three-dimensional problems are treated in terms of dis-
placements instead of strains, which satisfies the requirement of compatibility
identically. However, in two dimensions, all except one of the compatibility
equations degenerate to identities, so that a formulation in terms of stresses
or strains is more practical.

2.2.1 The significance of the compatibility equations

The physical meaning of equilibrium is fairly straightforward, but people of-
ten get mixed up about just what is being guaranteed by the compatibility
equations.
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Single-valued displacements

Mathematically, we might say that the strains are compatible when they are

definable in terms of a single-valued, continuously di↵erentiable displacement.
We could imagine reversing this process — i.e. integrating the strains

(displacement gradients) to find the relative displacement (uB�uA) of two
points A,B in the solid (see Figure 2.2).

Figure 2.2: Path of the integral in equation (2.11).

Formally we can write2

uB � uA =
Z B

A

@u

@S
ds , (2.11)

where s is a coordinate representing distance along a line S between A and B.
If the displacements are to be single-valued, it mustn’t make any di↵erence if
we change the line S provided it remains within the solid. In other words, the
integral should be path-independent.

The compatibility equations are not quite su�cient to guarantee this.

They do guarantee
I

@u

@S
ds = 0 (2.12)

around an infinitesimal closed loop.
Now, we could make infinitesimal changes in our line from A to B by

taking in such small loops until the whole line was sensibly changed, thus
satisfying the requirement that the integral (2.11) is path-independent, but
the fact that the line is changed infinitesimally stops us from taking a qual-
itatively (topologically) di↵erent route through a multiply connected body.
For example, in Figure 2.3, it is impossible to move S

1

to S
2

by infinitesimal
changes without passing outside the body3.
2 Explicit forms of the integral (2.11) in terms of the strain components were

developed by E.Cesaro and are known as Cesaro integrals. See, for example,
A.E.H.Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn., Dover,
1944, §156A.

3 For a more rigorous discussion of this question, see A.E.H.Love, loc.cit. or
B.A.Boley and J.H.Weiner, Theory of Thermal Stresses, John Wiley, New York,
1960, §§3.6–3.8.
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Figure 2.3: Qualitatively di↵erent integration paths in a multiply
connected body.

In practice, if a solid is multiply connected it is usually easier to work in
terms of displacements and by-pass this problem. Otherwise the equivalence
of topologically di↵erent paths in integrals like (2.11, 2.12) must be explicitly
enforced.

Compatibility of deformed shapes

A more ‘physical’ way of thinking of compatibility is to state that the separate

particles of the body must deform under load in such a way that they fit together

after deformation. This interpretation is conveniently explored by way of a
‘jig-saw’ analogy.

We consider a two-dimensional body cut up as a jig-saw puzzle (Figure
2.4), of which the pieces are deformable. Figure 2.4(a) shows the original
puzzle and 2.4(b) the puzzle after deformation by some external loads F

i

.
(The pieces are shown as initially rectangular to aid visualization.)

The deformation of the puzzle must satisfy the following conditions:-

(i) The forces on any given piece (including external forces if any) must be
in equilibrium.

(ii) The deformed pieces must be the right shape to fit together to make the
deformed puzzle (Figure 2.4(b)).

For the continuous solid, the compatibility conditions (2.10) guarantee that
(ii) is satisfied, since shape is defined by displacement derivatives and hence by
strains. However, if the puzzle is multiply connected — e.g. if it has a central
hole — condition (ii) is not su�cient to ensure that the deformed pieces
can be assembled into a coherent body. Suppose we imagine assembling the
‘deformed’ puzzle working from one piece outwards. The partially completed
puzzle is simply connected and the shape condition is su�cient to ensure the
success of our assembly until we reach a piece which would convert the partial
puzzle to a multiply connected body. This piece will be the right shape for
both sides, but may be the wrong size for the separation. If so, it will be
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possible to leave the puzzle in a state with a discontinuity as shown in Figure
2.4(c) at any arbitrarily chosen position4, but there will be no way in which
Figure 2.4(b) can be constructed.

Figure 2.4: A multiply connected, deformable jig-saw puzzle: (a) Before de-
formation; (b) After deformation; (c) Result of attempting to assemble the
deformed puzzle if equation (2.12) is not satisfied for any closed path encir-
cling the hole.

The lines defining the two sides of the discontinuity in Figure 2.4(c) are
the same shape and hence, in the most general case, the discontinuity can
be defined by six arbitrary constants corresponding to the three rigid-body
translations and three rotations needed to move one side to coincide with the
other5. We therefore get six additional algebraic conditions for each hole in a
multiply connected body.
4 since we could move one or more pieces from one side of the discontinuity to the

other.
5 This can be proved by evaluating the relative displacements of corresponding

points on opposite sides of the cut, using an integral of the form (2.11) whose
path does not cross the cut.
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2.3 Equilibrium equations in terms of displacements

Recalling that it is often easier to work in terms of displacements rather
than stresses to avoid complications with the compatibility conditions, it is
convenient to express the equilibrium equations in terms of displacements.
This is most easily done in index notation. Substituting for the stresses from
(1.57) into the equilibrium equation (2.5), we obtain

cijkl
@2uk

@xj@xl
+ pi = 0 . (2.13)

For the special case of isotropy, we can substitute for cijkl from (1.72),
obtaining

h

��ij�kl + µ (�ik�jl + �jk�il)
i @2uk

@xj@xl
+ pi = 0

or
�

@2ul

@xi@xl
+ µ

@2ui

@xl@xl
+ µ

@2uk

@xk@xi
+ pi = 0 .

The first and third terms in this equation have the same form, since k, l are
dummy indices. We can therefore combine them and write

(�+ µ)
@2uk

@xi@xk
+ µ

@2ui

@xk@xk
+ pi = 0 . (2.14)

Also, noting that

�+ µ = µ

✓

1 +
2⌫

1� 2⌫

◆

=
µ

(1� 2⌫)
(2.15)

from (1.69), we have

@2uk

@xi@xk
+ (1� 2⌫)

@2ui

@xk@xk
+

(1� 2⌫)pi

µ
= 0 , (2.16)

or in vector notation

rdiv u + (1� 2⌫)r2u +
(1� 2⌫)p

µ
= 0 . (2.17)
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PROBLEMS

1. Show that, if there are no body forces, the dilatation e must satisfy the
condition

r2e = 0 .

2. Show that, if there are no body forces, the rotation ! must satisfy the
condition

r2! = 0 .

3. One way of satisfying the compatibility equations in the absence of rotation
is to define the components of displacement in terms of a potential function
 through the relations

ux =
@ 

@x
; uy =

@ 

@y
; uz =

@ 

@z
.

Use the stress-strain relations to derive expressions for the stress compo-
nents in terms of  .

Hence show that the stresses will satisfy the equilibrium equations in the
absence of body forces if and only if

r2 = constant .

4. Plastic deformation during a manufacturing process generates a state of
residual stress in the large body z>0. If the residual stresses are functions of
z only and the surface z = 0 is not loaded, show that the stress components
�yz,�zx,�zz must be zero everywhere.

5. By considering the equilibrium of a small element of material similar to that
shown in Figure 1.2, derive the three equations of equilibrium in cylindrical
polar coördinates r, ✓, z.

6. In cylindrical polar coördinates, the strain-displacement relations for the
‘in-plane’ strains are

err =
@ur

@r
; er✓ =

1
2

✓

1
r

@ur

@✓
+
@u✓

@r
� u✓

r

◆

; e✓✓ =
ur

r
+

1
r

@u✓

@✓
.

Use these relations to obtain a compatibility equation that must be satisfied
by the three strains.

7. If no stresses occur in a body, an increase in temperature T causes unre-
strained thermal expansion defined by the strains

exx = eyy = ezz = ↵T ; exy = eyz = ezx = 0 .



Problems 33

Show that this is possible only if T is a linear function of x, y, z and that
otherwise stresses must be induced in the body, regardless of the boundary
conditions.

8. If there are no body forces, show that the equations of equilibrium and
compatibility imply that

(1 + ⌫)
@2�ij

@xk@xk
+

@2�kk

@xi@xj
= 0 .

9. Using the strain-displacement relation (1.51), show that an alternative
statement of the compatibility condition is that the tensor

Cijkl ⌘ @2eij

@xk@xl
+

@2ekl

@xi@xj
� @2eil

@xj@xk
� @2ejk

@xi@xl
= 0 .
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TWO-DIMENSIONAL PROBLEMS
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PLANE STRAIN AND PLANE STRESS

A problem is two-dimensional if the field quantities such as stress and displace-
ment depend on only two coördinates (x, y) and the boundary conditions are
imposed on a line f(x, y)=0 in the xy-plane.

In this sense, there are strictly no two-dimensional problems in elastic-
ity. There are circumstances in which the stresses are independent of the
z-coördinate, but all real bodies must have some bounding surfaces which are
not represented by a line in the xy-plane. The two-dimensionality of the re-
sulting fields depends upon the boundary conditions on such surfaces being
of an appropriate form.

3.1 Plane strain

It might be argued that a closed line in the xy-plane does define a solid body
— namely an infinite cylinder of the appropriate cross-section whose axis is
parallel to the z-direction. However, making a body infinite does not really
dispose of the question of boundary conditions, since there are usually some
implied boundary conditions ‘at infinity’. For example, the infinite cylinder
could be in a state of uniaxial tension, �zz = C, where C is an arbitrary
constant. However, a unique two-dimensional infinite cylinder problem can be
defined by demanding that ux, uy be independent of z and that uz =0 for all
x, y, z, in which case it follows that

ezx = ezy = ezz = 0 . (3.1)

This is the two-dimensional state known as plane strain.
In view of the stress-strain relations, an equivalent statement to equation

(3.1) is
�zx = �zy = 0 ; uz = 0 , (3.2)

and hence a condition of plane strain will exist in a finite cylinder provided
that (i) any tractions or displacements imposed on the sides of the cylinder

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 37
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are independent of z and have no component in the z-direction and (ii) the
cylinder has plane ends (e.g. z=±c) which are in frictionless contact with two
plane rigid walls.

From the condition ezz = 0 (3.1) and the stress-strain relations, we can
deduce

0 =
�zz

E
� ⌫(�xx + �yy)

E
— i.e.

�zz = ⌫(�xx + �yy) (3.3)

and hence

exx =
�xx

E
� ⌫�yy

E
� ⌫2(�xx + �yy)

E

=
(1� ⌫2)�xx

E
� ⌫(1 + ⌫)�yy

E
. (3.4)

Of course, there are comparatively few practical applications in which a
cylinder with plane ends is constrained between frictionless rigid walls, but
fortunately the plane strain solution can be used in an approximate sense for
a cylinder with any end conditions, provided that the length of the cylinder
is large compared with its cross-sectional dimensions.

We shall illustrate this with reference to the long cylinder of Figure 3.1, for
which the ends, z=±c are traction-free and the sides are loaded by tractions
which are independent of z.

Figure 3.1: The long cylinder with traction-free ends.

We first solve the problem under the plane strain assumption, obtaining an
exact solution in which all the stresses are independent of z and in which
there exists a normal stress �zz on all z-planes, which we can calculate from
equation (3.3).

The plane strain solution satisfies all the boundary conditions of the prob-
lem except that �zz also acts on the end faces, z =±c, where it appears as
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an unwanted normal traction. We therefore seek a corrective solution which,
when superposed on the plane strain solution, removes the unwanted normal
tractions on the surfaces z =±c, without changing the boundary conditions
on the sides of the cylinder.

3.1.1 The corrective solution

The corrective solution must have zero tractions on the sides of the cylinder
and a prescribed normal traction (equal and opposite to that obtained in the
plane strain solution) on the end faces, A.

This is a fully three-dimensional problem which generally has no closed-
form solution. However, if the prescribed tractions have the linear form

�zz = B + Cx + Dy , (3.5)

the solution can be obtained in the context of Mechanics of Materials by
treating the long cylinder as a beam subjected to an axial force

F =
Z

A

�zzdxdy (3.6)

and bending moments

Mx =
Z

A

�zzydxdy ; My = �
Z

A

�zzxdxdy (3.7)

about the axes Ox, Oy respectively, where the origin O is chosen to coincide
with the centroid of the cross-section1.

If the original plane strain solution does not give a distribution of �zz

of this convenient linear form, we can still use equations (3.6, 3.7) to define
the force and moments for an approximate Mechanics of Materials corrective
solution. The error involved in using this approximate solution will be that
associated with yet another corrective solution corresponding to the problem
in which the end faces of the cylinder are loaded by tractions equal to the
di↵erence between those in the plane strain solution and the Mechanics of
Materials linear form (3.5) associated with the force resultants (3.6, 3.7).

In this final corrective solution, the ends of the cylinder are loaded by
self-equilibrated tractions, since the Mechanics of Materials approximation is
carefully chosen to have the same force and moment resultants as the required
exact solution and in such cases, we anticipate that significant stresses will
only be generated in the immediate vicinity of the ends — or more precisely,
in regions whose distance from the ends is comparable with the cross-sectional
1 The Mechanics of Materials solution for axial force and pure bending is in fact

exact in the sense of the Theory of Elasticity, since the stresses clearly satisfy the
equilibrium equations (2.5) and the resulting strains are linear functions of x, y
and hence satisfy the compatibility equations (2.10) identically.
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dimensions of the cylinder. If the cylinder is many times longer than its cross-
sectional dimensions, there will be a substantial portion near the centre where
the final corrective solution gives negligible stresses and hence where the sum
of the original plane strain solution and the Mechanics of Materials correction
is a good approximation to the actual three-dimensional stress field.

3.1.2 Saint-Venant’s principle

The thesis that a self-equilibrating system of loads produces only local e↵ects
is known as Saint-Venant’s principle. It seems intuitively reasonable, but has
not been proved rigorously except for certain special cases — some of which
we shall encounter later in this book (see for example Chapter 6). It can be
seen as a consequence of the rule that alternate load paths through a structure
share the load in proportion with their sti↵nesses. If a region of the boundary
is loaded by a self-equilibrating system of tractions, the sti↵est paths are the
shortest — i.e. those which do not penetrate far from the loaded region. Hence,
the longer paths — which are those which contribute to stresses distant from
the loaded region — carry relatively little load.

Note that if the local tractions are not self-equilibrating, some of the load
paths must go to other distant parts of the boundary and hence there will be
significant stresses in intermediate regions. For this reason, it is important to
superpose the Mechanics of Materials approximate corrective solution when
solving plane strain problems for long cylinders with traction free ends. By
contrast, the final stage of solving the ‘Saint-Venant problem’ to calculate
the correct stresses near the ends is seldom of much importance in practical
problems, since the ends, being traction-free, are not generally points of such
high stress as the interior.

As a point of terminology, we shall refer to problems in which the boundary
conditions on the ends have been corrected only in the sense of force and
moment resultants as being solved in the weak sense with respect to these
boundaries. Boundary conditions are satisfied in the strong sense when the
tractions are specified in a pointwise rather than a force resultant sense.

3.2 Plane stress

Plane stress is an approximate solution, in contrast to plane strain, which is
exact. In other words, plane strain is a special solution of the complete three-
dimensional equations of elasticity, whereas plane stress is only approached in
the limit as the thickness of the loaded body tends to zero.

It is argued that if the two bounding z-planes of a thin plate are su�ciently
close in comparison with the other dimensions, and if they are also free of
tractions, the stresses on all parallel z-planes will be su�ciently small to be
neglected in which case we write
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�zx = �zy = �zz = 0 , (3.8)

for all x, y, z.
It then follows that

ezx = ezy = 0 , (3.9)

but ezz 6=0, being given in fact by

ezz = � ⌫

E
(�xx + �yy) . (3.10)

The two-dimensional stress-strain relations are then

exx =
�xx

E
� ⌫�yy

E
(3.11)

eyy =
�yy

E
� ⌫�xx

E
. (3.12)

The fact that plane stress is not an exact solution can best be explained
by considering the compatibility equation

@2eyy

@z2

� 2
@2eyz

@y@z
+
@2ezz

@y2

= 0 . (3.13)

Since ex-hypothesi none of the stresses vary with z, the first two terms in
this equation are identically zero and hence the equation will be satisfied if
and only if

@2ezz

@y2

= 0 . (3.14)

This in turn requires
@2(�xx + �yy)

@y2

= 0 , (3.15)

from equation (3.10).
Applying similar arguments to the other compatibility equations, we con-

clude that the plane stress assumption is exact if and only if (�xx+�yy) is a
linear function of x, y. i.e. if

�xx + �yy = B + Cx + Dy . (3.16)

The attentive reader will notice that this condition is exactly equivalent to
(3.3, 3.5). In other words, the plane stress solution is exact if and only if the
‘weak form’ solution of the corresponding plane strain solution is exact. Of
course this is not a coincidence. In this special case, the process of o↵-loading
the ends of the long cylinder in the plane strain solution has the e↵ect of
making �zz zero throughout the cylinder and hence the resulting solution also
satisfies the plane stress assumption, whilst remaining exact.
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3.2.1 Generalized plane stress

The approximate nature of the plane stress formulation is distasteful to elasti-
cians of a more mathematical temperament, who prefer to preserve the rigour
of an exact theory. This can be done by the contrivance of defining the average

stresses across the thickness of the plate — e.g.

�xx ⌘ 1
2c

Z c

�c

�xxdx . (3.17)

It can then be shown that the average stresses so defined satisfy the plane
stress equations exactly. This is referred to as the generalized plane stress

formulation.
In practice, of course, the gain in rigour is illusory unless we can also

establish that the stress variation across the section is small, so that the local
values are reasonably close to the average. A fully three-dimensional theory
of thin plates under in-plane loading shows that the plane stress assumption
is a good approximation except in regions whose distance from the boundary
is comparable with the plate thickness2.

3.2.2 Relationship between plane stress and plane strain

The solution of a problem under either the plane strain or plane stress assump-
tions involves finding a two-dimensional stress field, defined in terms of the
components �xx,�xy,�yy, which satisfies the equilibrium equations (2.5), and
for which the corresponding strains, exx, exy, eyy, satisfy the only non-trivial
compatibility equation (2.8). The equilibrium and compatibility equations are
the same in both formulations, the only di↵erence being in the relation be-
tween the stress and strain components, which for normal stresses are given
by (3.4) for plane strain and (3.11, 3.12) for plane stress. The relation between
the shear stress �xy and the shear strain exy is the same for both formulations
and is given by equation (1.66). Thus, from a mathematical perspective, the
plane strain solution simply looks like the plane stress solution for a material
with di↵erent elastic constants and vice versa. In fact, it is easily verified that
equation (3.4) can be obtained from (3.11) by making the substitutions

E =
E0

(1� ⌫02)
; ⌫ =

⌫0

(1� ⌫0)
, (3.18)

and then dropping the primes. This substitution also leaves the shear stress-
shear strain relation unchanged as required.

An alternative approach is to write the two-dimensional stress-strain rela-
tions in the form
2 See for example S.P.Timoshenko and J.N.Goodier, Theory of Elasticity, McGraw-

Hill, New York, 3rd. edn., 1970, §98.
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exx =
✓

+ 1
8µ

◆

�xx �
✓

3� 

8µ

◆

�yy ; eyy =
✓

+ 1
8µ

◆

�yy �
✓

3� 

8µ

◆

�xx

exy =
�xy

2µ
, (3.19)

where  is Kolosov’s constant, defined as

 = (3� 4⌫) for plane strain

=
✓

3� ⌫

1 + ⌫

◆

for plane stress. (3.20)

In the following chapters, we shall generally treat two-dimensional prob-
lems with the plane stress assumptions, noting that results for plane strain
can be recovered by the substitution (3.18) when required.

PROBLEMS

1. The plane strain solution for the stresses in the rectangular block 0<x<
a,�b<y<b,�c<z<c with a given loading is

�xx =
3Fxy

2b3

; �xy =
3F (b2 � y2)

4b3

; �yy = 0 ; �zz =
3⌫Fxy

2b3

.

Find the tractions on the surfaces of the block and illustrate the results on a
sketch of the block.

We wish to use this solution to solve the corresponding problem in which
the surfaces z = ±c are traction-free. Determine an approximate corrective
solution for this problem by o✏oading the unwanted force and moment resul-
tants using the elementary bending theory. Find the maximum error in the
stress �zz in the corrected solution and compare it with the maximum tensile
stress in the plane strain solution.

2. For a solid in a state of plane stress, show that if there are body forces px, py

per unit volume in the direction of the axes x, y respectively, the compatibility
equation can be expressed in the form

r2(�xx + �yy) = �(1 + ⌫)
✓

@px

@x
+
@py

@y

◆

.

Hence deduce that the stress distribution for any particular case is inde-
pendent of the material constants and the body forces, provided the latter are
constant.

3.(i) Show that the compatibility equation (2.8) is satisfied by unrestrained
thermal expansion (exx = eyy =↵T, exy = 0), provided that the temperature,
T , is a two-dimensional harmonic function — i.e.
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@2T

@x2

+
@2T

@y2

= 0 .

(ii) Hence deduce that, subject to certain restrictions which you should explic-
itly list, no thermal stresses will be induced in a thin body with a steady-state,
two-dimensional temperature distribution and no boundary tractions.

(iii) Show that an initially straight line on such a body will be distorted by
the heat flow in such a way that its curvature is proportional to the local heat
flux across it.

4. Find the inverse relations to equations (3.18) — i.e. the substitutions that
should be made for the elastic constants E, ⌫ in a plane strain solution if we
want to recover the solution of the corresponding plane stress problem.

5. Show that in a state of plane stress without body forces, the in-plane
displacements must satisfy the equations

r2ux+
✓

1 + ⌫

1� ⌫

◆

@

@x

✓

@ux

@x
+
@uy

@y

◆

= 0 ; r2uy+
✓

1 + ⌫

1� ⌫

◆

@

@y

✓

@ux

@x
+
@uy

@y

◆

= 0 .

6. Show that in a state of plane strain without body forces,

@e

@x
=
✓

1� 2⌫
1� ⌫

◆

@!z

@y
;
@e

@y
= �

✓

1� 2⌫
1� ⌫

◆

@!z

@x
.

7. If a material is incompressible (⌫=0.5), a state of hydrostatic stress �xx =
�yy =�zz produces no strain. One way to write the corresponding stress-strain
relations is

�ij = 2µeij � q�ij ,

where q is an unknown hydrostatic pressure which will generally vary with
position. Also, the condition of incompressibility requires that the dilatation

e ⌘ ekk = 0 .

Show that under plain strain conditions, the stress components and the
hydrostatic pressure q must satisfy the equations

r2q = div p and �xx + �yy = �2q ,

where p is the body force.



4

STRESS FUNCTION FORMULATION

4.1 The concept of a scalar stress function

Newton’s law of gravitation states that two heavy bodies attract each other
with a force proportional to the inverse square of their distance — thus it is
essentially a vector theory, being concerned with forces. However, the idea of a
scalar gravitational potential can be introduced by defining the work done in
moving a unit mass from infinity to a given point in the field. The principle of
conservation of energy requires that this be a unique function of position and
it is easy to show that the gravitational force at any point is then proportional
to the gradient of this scalar potential. Thus, the original vector problem is
reduced to a problem about a scalar potential and its derivatives.

In general, scalars are much easier to deal with than vectors. In particu-
lar, they lend themselves very easily to coördinate transformations, whereas
vectors (and to an even greater extent tensors) require a set of special trans-
formation rules (e.g. Mohr’s circle).

In certain field theories, the scalar potential has an obvious physical sig-
nificance. For example, in the conduction of heat, the temperature is a scalar
potential in terms of which the vector heat flux can be defined. However, it is
not necessary to the method that such a physical interpretation can be given.
The gravitational potential can be given a physical interpretation as discussed
above, but this interpretation may never feature in the solution of a particu-
lar problem, which is simply an excercise in the solution of a certain partial
di↵erential equation with appropriate boundary conditions. In the theory of
elasticity, we make use of scalar potentials called stress functions or displace-

ment functions which have no obvious physical meaning other than their use
in defining stress or displacement components in terms of derivatives.
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4.2 Choice of a suitable form

In the choice of a suitable form for a stress or displacement function, there
is only one absolute rule — that the operators which define the relationship
between the scalar and vector (or tensor) quantities should indeed define a
vector (or tensor).

For example, it is appropriate to define the displacement in terms of the
first derivatives (the gradient) of a scalar or to define the stress components
in terms of the second derivatives of a scalar, since the second derivatives of
a scalar form the components of a Cartesian tensor.

In e↵ect, what we are doing in requiring this similarity of form between
the definitions and the defined quantity is ensuring that the relationship is
preserved in coördinate transformations. It would be quite possible to work
out an elasticity problem in terms of the displacement components ux, uy, uz,
treating these as essentially scalar quantities which vary with position — in-
deed this was a technique which was used in early theories. However, we would
then get into trouble as soon as we tried to make any statements about quan-
tities in other coördinate directions. By contrast, if we define (for example)
ux = @ /@x; uy = @ /@y; uz = @ /@z, (i.e. u = r ), it immediately follows
that u0x =@ /@x0 for any x0.

4.3 The Airy stress function

If there are no body forces and the stress components are independent of z,
they must satisfy the two equilibrium equations

@�xx

@x
+
@�xy

@y
= 0 ;

@�yx

@x
+
@�yy

@y
= 0 . (4.1)

The two terms in each of these equations are therefore equal and opposite.
Suppose we take the first term in the first equation and integrate it once with
respect to x and once with respect to y to define a new function  (x, y). We
can then write

@�xx

@x
= �@�xy

@y
⌘ @2 

@x@y
, (4.2)

and a particular solution is

�xx =
@ 

@y
; �xy = �@ 

@x
. (4.3)

Substituting the second of these results in the second equilibrium equation and
using the same technique to define another new function �(x, y), we obtain

@�yy

@y
= �@�yx

@x
=
@2 

@x2

⌘ @3�

@x2@y
, (4.4)
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so a particular solution is

�yy =
@2�

@x2

;  =
@�

@y
. (4.5)

Using (4.3, 4.5) we can then express all three stress components in terms of
� as

�xx =
@2�

@y2

; �yy =
@2�

@x2

; �xy = � @2�

@x@y
. (4.6)

This representation was introduced by G.B.Airy1 in 1862 and � is therefore
generally referred to as the Airy stress function. It is clear from the derivation
that the stress components (4.6) will satisfy the two-dimensional equilibrium
equations (4.1) for all functions �. Also, the mathematical operations involved
in obtaining (4.6) can be performed for any two-dimensional stress distribu-
tion satisfying (4.1) and hence the representation (4.6) is complete, meaning
that it is capable of representing the most general such stress distribution. It
is worth noting that the derivation makes no reference to Hooke’s law and
hence the Airy stress function also provides a complete representation for
two-dimensional problems involving inelastic constitutive laws — for example
plasticity theory — where its satisfaction of the equilibrium equations remains
an advantage.

The technique introduced in this section can be used in other situations
to define a representation of a field satisfying one or more partial di↵erential
equations. The trick is to rewrite the equation so that terms involving di↵er-
ent unknowns are on opposite sides of the equals sign and then equate each
side of the equation to a derivative that contains the lowest common denomi-
nator of the derivatives on the two sides, as in equations (4.2, 4.4). For other
applications of this method, see Problems 4.3, 4.4 and 21.2.

4.3.1 Transformation of coördinates

It is easily verified that equation (4.6) transforms as a Cartesian tensor as
required. For example, using (1.43) we can write

@2�

@x02
=
✓

cos ✓
@

@x
+ sin ✓

@

@y

◆

2

�

=
@2�

@x2

cos2 ✓ +
@2�

@y2

sin2 ✓ + 2
@2�

@x@y
sin ✓ cos ✓ , (4.7)

from which using (1.17) and (4.6) we deduce that �0yy =@2�/@x02 as required.
If we were simply to seek a representation of a two-dimensional Cartesian

tensor in terms of the derivatives of a scalar function without regard to the
1 For a good historical survey of the development of potential function methods in

Elasticity, see H.M.Westergaard, Theory of Elasticity and Plasticity, Dover, New
York, 1964, Chapter 2.
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equilibrium equations, the Airy stress function is not the most obvious form.
It would seem more natural to write �xx = @2 /@x2; �yy = @2 /@y2; �xy =
@2 /@x@y and indeed this also leads to a representation which is widely used
as part of the general three-dimensional solution (see Chapter 20 below). In
some books, it is stated or implied that the Airy function is used because
it satisfies the equilibrium equation, but this is rather misleading, since the
‘more obvious form’ — although it requires some constraints on  in order to
satisfy equilibrium — can be shown to define displacements which automat-
ically satisfy the compatibility condition which is surely equally useful2. The
real reason for preferring the Airy function is that it is complete, whilst the
alternative is more restrictive, as we shall see in §20.1.

4.3.2 Non-zero body forces

If the body force p is not zero, but is of a restricted form such that it can be
written p =�rV , where V is a two-dimensional scalar potential, equations
(4.6) can be generalized by including an extra term +V in each of the normal
stress components whilst leaving the shear stress definition unchanged. It is
easily verified that, with this modification, the equilibrium equations are again
satisfied.

Problems involving body forces will be discussed in more detail in Chapter
7 below. For the moment, we restrict attention to the the case where p = 0
and hence where the representation (4.6) is appropriate.

4.4 The governing equation

As discussed in Chapter 2, the stress or displacement field has to satisfy the
equations of equilibrium and compatibility if they are to describe permissi-
ble states of an elastic body. In stress function representations, this generally
imposes certain constraints on the choice of stress function, which can be
expressed by requiring it to be a solution of a certain partial di↵erential equa-
tion.

We have already seen that the equilibrium condition is satisfied identi-
cally by the use of the Airy stress function �, so it remains to determine
the governing equation for � by substituting the representation (4.6) into the
compatibility equation in two dimensions.

4.4.1 The compatibility condition

We first express the compatibility condition in terms of stresses using the
stress-strain relations, obtaining
2 See Problem 2.3.



4.4 The governing equation 49

@2�xx

@y2

� ⌫
@2�yy

@y2

� 2(1 + ⌫)
@2�xy

@x@y
+
@2�yy

@x2

� ⌫
@2�xx

@x2

= 0 , (4.8)

where we have cancelled a common factor of 1/E.
We then substitute for the stress components from (4.6) obtaining

@4�

@y4

� ⌫
@4�

@x2@y2

+ 2(1 + ⌫)
@4�

@x2@y2

+
@4�

@x4

� ⌫
@4�

@x2@y2

= 0 , (4.9)

i.e.
@4�

@x4

+ 2
@4�

@x2@y2

+
@4�

@y4

=
✓

@2

@x2

+
@2

@y2

◆

2

� = 0 . (4.10)

This equation is known as the biharmonic equation and is usually written
in the concise form

r4� = 0 . (4.11)

The biharmonic equation is the governing equation for the Airy stress
function in elasticity problems. Thus, by using the Airy stress function repre-
sentation, the problem of determining the stresses in an elastic body is reduced
to that of finding a solution of equation (4.11) (i.e. a biharmonic function)
whose derivatives satisfy certain boundary conditions on the surfaces.

4.4.2 Method of solution

Historically, the boundary-value problem for the Airy stress function has been
approached in a semi-inverse way — i.e. by using the variation of tractions
along the boundaries to give a clue to the kind of function required, but then
exploring the stress fields developed from a wide range of such functions and
selecting a combination which can be made to satisfy the required conditions.
The disadvantage with this method is that it requires a wide experience of
particular solutions and even then is not guaranteed to be successful.

A more modern method which has the advantage of always developing
an appropriate stress function if the boundary conditions are unmixed (i.e.
all specified in terms of stresses or all in terms of displacements) is based on
representing the stress function in terms of analytic functions of the complex
variable. This method will be discussed in Chapter 19. However, although it
is powerful and extremely elegant, it requires a certain familarity with the
properties of functions of the complex variable and generally involves the
evaluation of a contour integral, which may not be as convenient a numerical
technique as a direct series or finite di↵erence attack on the original problem
using real stress functions. There are some exceptions — notably for bodies
which are susceptible of a simple conformal transformation into the unit circle.
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4.4.3 Reduced dependence on elastic constants

It is clear from dimensional considerations that, when the compatibility equa-
tion is expressed in terms of �, Young’s modulus must appear in every term
and can therefore be cancelled as in equation (4.8), but it is an unexpected
bonus that the Poisson’s ratio terms also cancel in (4.9), leaving an equation
that is independent of elastic constants. It follows that the stress field in a
simply connected elastic body3 in a state of plane strain or plane stress is in-
dependent of the material properties if the boundary conditions are expressed
in terms of tractions and, in particular, that the plane stress and plane strain
fields are identical.

Dundurs4 has shown that a similar reduced dependence on elastic con-
stants occurs in plane problems involving interfaces between two dissimilar
elastic materials. In such cases, three independent dimensionless parameters
(e.g. µ

1

/µ
2

, ⌫
1

, ⌫
2

) can be formed from the elastic constants µ
1

, ⌫
1

, µ
2

, ⌫
2

of
the materials 1, 2 respectively, but Dundurs proved that the stress field can
be written in terms of only two parameters which he defined as

↵ =
✓


1

+ 1
µ

1

� 
2

+ 1
µ

2

◆�✓


1

+ 1
µ

1

+


2

+ 1
µ

2

◆

(4.12)

� =
✓


1

� 1
µ

1

� 
2

� 1
µ

2

◆�✓


1

+ 1
µ

1

+


2

+ 1
µ

2

◆

, (4.13)

where  is Kolosov’s constant (see equation (3.20)). It can be shown that
Dundurs’ parameters must lie in the range �1  ↵  1 ; �0.5  �  0.5 if
0⌫

1

, ⌫
2

0.5.

3 The restriction to simply connected bodies is necessary, since in a multiply con-
nected body there is an implied displacement condition, as explained in §2.2
above.

4 J.Dundurs, Discussion on ‘Edge bonded dissimilar orthogonal elastic wedges un-
der normal and shear loading’, ASME Journal of Applied Mechanics, Vol. 36
(1969), pp.650–652.
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PROBLEMS

1. Newton’s law of gravitation states that two heavy particles of mass m
1

,m
2

respectively will experience a mutual attractive force

F =
�m

1

m
2

R2

,

where R is the distance between the particles and � is the gravitational con-
stant. Use an energy argument and superposition to show that the force acting
on a particle of mass m

0

can be written

F = ��m
0

rV ,

where
V (x, y, z) = �

Z Z Z

⌦

⇢(⇠, ⌘, ⇣)d⇠d⌘d⇣
p

(x� ⇠)2 + (y � ⌘)2 + (z � ⇣)2
,

⌦ represents the volume of the universe and ⇢ is the density of material in
the universe, which will generally be a function of position (⇠, ⌘, ⇣).

Could a similar method have been used if Newton’s law had been of the
more general form

F =
�m

1

m
2

R�
.

If so, what would have been the corresponding expression for V ? If not, why
not?

2. An ionized liquid in an electric field experiences a body force p. Show
that the liquid can be in equilibrium only if p is a conservative vector field.
Hint: Remember that a stationary liquid must be everywhere in a state of
hydrostatic stress.

3. An antiplane state of stress is one for which the only non-zero stress com-
ponents are �zx,�zy and these are independent of z. Show that two of the
three equilibrium equations are then satisfied identically if there is no body
force. Use a technique similar to that of §4.3 to develop a representation of
the non-zero stress components in terms of a scalar function, such that the
remaining equilibrium equation is satisfied identically.

4. If a body of fairly general axisymmetric shape is loaded in torsion, the only
non-zero stress components in cylindrical polar coördinates are �✓r,�✓z and
these are required to satisfy the equilibrium equation

@�✓r

@r
+

2�✓r

r
+
@�✓z

@z
= 0 .

Use a technique similar to that of §4.3 to develop a representation of these
stress components in terms of a scalar function, such that the equilibrium
equation is satisfied identically.
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5.(i) Show that the function
� = y! +  

satisfies the biharmonic equation if !, are both harmonic (i.e. r2! =
0,r2 =0).

(ii) Develop expressions for the stress components in terms of !, , based on
the use of � as an Airy stress function.

(iii) Show that a solution suitable for the half-plane y > 0 subject to normal
surface tractions only (i.e. �xy =0 on y=0) can be obtained by writing

! = �@ 
@y

and hence that under these conditions the normal stress �xx near the surface
y=0 is equal to the applied traction �yy.

(iv) Do you think this is a rigorous proof? Can you think of any exceptions? If
so, at what point in your proof of section (iii) can you find a lack of generality?

6. The constitutive law for an orthotropic elastic material in plane stress can
be written

exx = s
11

�xx + s
12

�yy ; eyy = s
12

�xx + s
22

�yy ; exy = s
44

�xy ,

where s
11

, s
12

, s
22

, s
44

are elastic constants.
Using the Airy stress function � to represent the stress components, find

the equation that must be satisfied by �.

7. Show that if the two-dimensional function !(x, y) is harmonic (r2!= 0),
the function

� = (x2 + y2)!

will be biharmonic.

8. The constitutive law for an isotropic incompressible elastic material can be
written

�ij = ��ij + 2µeij ,

where
� =

�kk

3
represents an arbitrary hydrostatic stress field. Some soils can be approx-
imated as an incompressible material whose modulus varies linearly with
depth, so that

µ = Mz

for the half space z>0.
Use the displacement function representation
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u = r�

to develop a potential function solution for the stresses in such a body. Show
that the functions �,� must satisfy the relations

r2� = 0 ; � = �2M
@�

@z

and hence obtain expressions for the stress components in terms of the single
harmonic function �.

If the half-space is loaded by a normal pressure

�zz(x, y, 0) = �p(x, y) ; �zx(x, y, 0) = �zy(x, y, 0) = 0 ,

show that the corresponding normal surface displacement uz(x, y, 0) is linearly
proportional to the local pressure p(x, y) and find the constant of proportion-
ality5.

9. Show that Dundurs’ constant � ! 0 for plane strain in the limit where
⌫
1

= 0.5 and µ
1

/µ
2

! 0 — i.e. material 1 is incompressible and has a much
lower shear modulus6 than material 2. What is the value of ↵ in this limit?

10. Solve Problem 3.7 for the case where there is no body force, using the
Airy stress function � to represent the stress components. Hence show that
the governing equation is r4�=0, as in the case of compressible materials.

5 For an alternative proof of this result see C.R.Calladine and J.A.Greenwood,
Line and point loads on a non-homogeneous incompressible elastic half-space,
Quarterly Journal of Mechanics and Applied Mathematics, Vol. 31 (1978), pp.507–
529.

6 This is a reasonable approximation for the important case of rubber (material 1)
bonded to steel (material 2).



5

PROBLEMS IN RECTANGULAR
COÖRDINATES

The Cartesian coördinate system (x, y) is clearly particularly suited to the
problem of determining the stresses in a rectangular body whose boundaries
are defined by equations of the form x = a, y = b. A wide range of such
problems can be treated using stress functions which are polynomials in x, y. In
particular, polynomial solutions can be obtained for ‘Mechanics of Materials’
type beam problems in which a rectangular bar is bent by an end load or by
a distributed load on one or both faces.

5.1 Biharmonic polynomial functions

In rectangular coördinates, the biharmonic equation takes the form

@4�

@x4

+ 2
@4�

@x2@y2

+
@4�

@y4

= 0 (5.1)

and it follows that any polynomial in x, y of degree less than four will be bi-
harmonic and is therefore appropriate as a stress function. However, for higher
order polynomial terms, equation (5.1) is not identically satisfied. Suppose,
for example, that we consider just those terms in a general polynomial whose
combined degree (the sum of the powers of x and y) is N . We can write these
terms in the form

PN (x, y) = A
0

xN + A
1

xN�1y + A
2

xN�2y2 + . . . + ANyN (5.2)

=
N
X

i=0

Aix
N�iyi , (5.3)

where we note that there are (N+1) independent coe�cients, Ai(i=0, N). If we
now substitute PN (x, y) into equation (5.1), we shall obtain a new polynomial
of degree (N�4), since each term is di↵erentiated four times. We can denote
this new polynomial by QN�4

(x, y) where
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QN�4

(x, y) = r4PN (x, y) (5.4)

=
N�4

X

i=0

Bix
(N�4�i)yi . (5.5)

The (N�3) coe�cients B
0

, . . . , BN�4

are easily obtained by expanding
the right-hand side of equation (5.4) and equating coe�cients. For example,

B
0

= N(N � 1)(N � 2)(N � 3)A
0

+ 4(N � 2)(N � 3)A
2

+ 24A
4

. (5.6)

Now the original function PN (x, y) will be biharmonic if and only if
QN�4

(x, y) is zero for all x, y and this in turn is only possible if every term in
the series (5.5) is identically zero, since the polynomial terms are all linearly
independent of each other. In other words

Bi = 0 ; i = 0 to (N � 4) . (5.7)

These conditions can be converted into a corresponding set of (N �3)
equations for the coe�cients Ai. For example, the equation B

0

=0 gives

N(N � 1)(N � 2)(N � 3)A
0

+ 4(N � 2)(N � 3)A
2

+ 24A
4

= 0 , (5.8)

from (5.6). We shall refer to the (N�3) equations of this form as constraints

on the coe�cients Ai, since the coe�cients are constrained to satisfy them if
the original polynomial is to be biharmonic.

One approach would be to use the constraint equations to eliminate (N�3)
of the unknown coe�cients in the original polynomial — for example, we could
treat the first four coe�cients, A

0

, A
1

, A
2

, A
3

, as unknown constants and use
the constraint equations to define all the remaining coe�cients in terms of
these unknowns. Equation (5.8) would then be treated as an equation for A

4

and the subsequent constraint equations would each define one new constant in
the series. It may help to consider a particular example at this stage. Suppose
we consider the fifth degree polynomial

P
5

(x, y) = A
0

x5 + A
1

x4y + A
2

x3y2 + A
3

x2y3 + A
4

xy4 + A
5

y5 , (5.9)

which has six independent coe�cients. Substituting into equation (5.4), we
obtain the first degree polynomial

Q
1

(x, y) = (120A
0

+ 24A
2

+ 24A
4

)x + (24A
1

+ 24A
3

+ 120A
5

)y . (5.10)

The coe�cients of x and y in Q
1

must both be zero if P
5

is to be biharmonic
and we can write the resulting two constraint equations in the form

A
4

= �5A
0

�A
2

(5.11)
A

5

= �A
1

/5�A
3

/5 . (5.12)
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Finally, we use (5.11, 5.12) to eliminate A
4

, A
5

in the original definition
of P

5

, obtaining the definition of the most general biharmonic fifth degree
polynomial

P
5

(x, y) = A
0

(x5 � 5xy4) + A
1

(x4y � y5/5)
+A

2

(x3y2 � xy4) + A
3

(x2y3 � y5/5) . (5.13)

This function will be biharmonic for any values of the four independent
constants A

0

, A
1

, A
2

, A
3

. We can express this by stating that the biharmonic
polynomial P

5

has four degrees of freedom.
In general, the polynomial Q is of degree 4 less than P because the bi-

harmonic equation is of degree 4. It follows that there are always four fewer
constraint equations than there are coe�cients in the original polynomial P
and hence that they can be satisfied leaving a polynomial with 4 degrees of
freedom. However, the process degenerates if N <3.

In view of the above discussion, it might seem appropriate to write an
expression for the general polynomial of degree N in the form of equation
(5.13) as a preliminary to the solution of polynomial problems in rectangular
coördinates. However, as can be seen from equation (5.13), the resulting ex-
pressions are algebraically messy and this approach becomes unmanageable
for problems of any complexity. Instead, it turns out to be more straightfor-
ward algebraically to define problems in terms of the simpler unconstrained
polynomials like equation (5.2) and to impose the constraint equations at a
later stage in the solution.

5.1.1 Second and third degree polynomials

We recall that the stress components are defined in terms of the stress function
� through the relations

�xx =
@2�

@y2

(5.14)

�yy =
@2�

@x2

(5.15)

�xy = � @2�

@x@y
. (5.16)

It follows that when the stress function is a polynomial of degree N in x, y,
the stress components will be polynomials of degree (N�2). In particular,
constant and linear terms in � correspond to null stress fields (zero stress
everywhere) and can be disregarded.

The second degree polynomial

� = A
0

x2 + A
1

xy + A
2

y2 (5.17)

yields the stress components
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�xx = 2A
2

; �xy = �A
1

; �yy = 2A
0

(5.18)

and hence corresponds to the most general state of biaxial uniform stress.
The third degree polynomial

� = A
0

x3 + A
1

x2y + A
2

xy2 + A
3

y3 (5.19)

yields the stress components

�xx = 2A
2

x + 6A
3

y ; �xy = �2A
1

x� 2A
2

y ; �yy = 6A
0

x + 2A
1

y . (5.20)

If we arbitrarily set A
0

, A
1

, A
2

= 0, the only remaining non-zero stress will
be

�xx = 6A
3

y , (5.21)

which corresponds to a state of pure bending, when applied to the rectangular
beam �a<x<a,�b<y<b, as shown in Figure 5.1.

Figure 5.1: The rectangular beam in pure bending.

The other terms in equation (5.19) correspond to a more general state
of bending. For example, the constant A

0

describes bending of the beam by
tractions �yy applied to the boundaries y = ±b, whilst the terms involving
shear stresses �xy could be obtained by describing a general state of biaxial
bending with reference to a Cartesian coördinate system which is not aligned
with the axes of the beam.

The above solutions are of course very elementary, but we should remember
that, in contrast to the Mechanics of Materials solutions for simple bending,
they are obtained without making any simplifying assumptions about the
stress fields. For example, we have not assumed that plane sections remain
plane, nor have we demanded that the beam be long in comparison with its
depth. Thus, the present section could be taken as verifying the exactness of
the Mechanics of Materials solutions for uniform stress and simple bending,
as applied to a rectangular beam.
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5.2 Rectangular beam problems

5.2.1 Bending of a beam by an end load

Figure 5.2 shows a rectangular beam, 0 < x < a,�b < y < b, subjected to
a transverse force, F at the end x = 0, and built-in at the end x = a, the
horizontal boundaries y=±b being traction free. The boundary conditions for
this problem are most naturally written in the form

�xy = 0 ; y = ±b (5.22)
�yy = 0 ; y = ±b (5.23)
�xx = 0 ; x = 0 (5.24)

Z b

�b

�xydy = F ; x = 0 . (5.25)

Figure 5.2: Cantilever with an end load.

The boundary condition (5.25) is imposed in the weak form, which means
that the value of the traction is not specified at each point on the boundary
— only the force resultant is specified. In general, we shall find that problems
for the rectangular beam have finite polynomial solutions when the boundary
conditions on the ends are stated in the weak form, but that the strong (i.e.
pointwise) boundary condition can only be satisfied on all the boundaries
by an infinite series or transform solution. This issue is further discussed in
Chapter 6.

Mechanics of Materials considerations suggest that the bending moment
in this problem will vary linearly with x and hence that the stress component
�xx will have a leading term proportional to xy. This in turn suggests a
fourth degree polynomial term xy3 in the stress function �. Our procedure is
therefore to start with the trial stress function

� = C
1

xy3 , (5.26)
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examine the corresponding tractions on the boundaries and then seek a cor-

rective solution which, when superposed on equation (5.26), yields the solution
to the problem. Substituting (5.26) into (5.14–5.16), we obtain

�xx = 6C
1

xy (5.27)
�xy = �3C

1

y2 (5.28)
�yy = 0 , (5.29)

from which we note that the boundary conditions (5.23, 5.24) are satisfied
identically, but that (5.22) is not satisfied, since (5.28) implies the existence of
an unwanted uniform shear traction �3C

1

b2 on both of the edges y=±b. This
unwanted traction can be removed by superposing an appropriate uniform
shear stress, through the additional stress function term C

2

xy. Thus, if we
define

� = C
1

xy3 + C
2

xy , (5.30)

equations (5.27, 5.29) remain unchanged, whilst (5.28) is modified to

�xy = �3C
1

y2 � C
2

. (5.31)

The boundary condition (5.22) can now be satisfied if we choose C
2

to
satisfy the equation

C
2

= �3C
1

b2 , (5.32)

so that
�xy = 3C

1

(b2 � y2) . (5.33)

The constant C
1

can then be determined by substituting (5.33) into the
remaining boundary condition (5.25), with the result

C
1

=
F

4b3

. (5.34)

The final stress field is therefore defined through the stress function

� =
F (xy3 � 3b2xy)

4b3

, (5.35)

the corresponding stress components being

�xx =
3Fxy

2b3

(5.36)

�xy =
3F (b2 � y2)

4b3

(5.37)

�yy = 0 . (5.38)

The solution of this problem is given in the Mathematica and Maple files
‘S521’.
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We note that no boundary conditions have been specified on the built-in
end, x=a. In the weak form, these would be

Z b

�b

�xxdy = 0 ; x = a (5.39)

Z b

�b

�xydy = F ; x = a (5.40)

Z b

�b

�xxydy = Fa ; x = a . (5.41)

However, if conditions (5.22–5.25) are satisfied, (5.39–5.41) are merely
equivalent to the condition that the whole beam be in equilibrium. Now the
Airy stress function is so defined that whatever stress function is used, the cor-
responding stress field will satisfy equilibrium in the local sense of equations
(2.5). Furthermore, if every particle of a body is separately in equilibrium,
it follows that the whole body will also be in equilibrium. It is therefore not
necessary to enforce equations (5.39–5.41), since if we were to check them, we
should necessarily find that they are satisfied identically.

5.2.2 Higher order polynomials — a general strategy

In the previous section, we developed the solution by trial and error, starting
from the leading term whose form was dictated by equilibrium considerations.
A more general technique is to identify the highest order polynomial term from
equilibrium considerations and then write down the most general polynomial
of that degree and below. The constant multipliers on the various terms are
then obtained by imposing boundary conditions and biharmonic constraint
equations.

The only objection to this procedure is that it involves a lot of algebra.
For example, in the problem of §5.2.1, we would have to write down the most
general polynomial of degree 4 and below, which involves 12 separate terms
even when we exclude the linear and constant terms as being null. However,
this is not a serious di�culty if we are using Maple or Mathematica, so we
shall first develop the steps needed for this general strategy. Shortcuts which
would reduce the complexity of the algebra in a manual calculation will then
be discussed in §5.2.3.

Order of the polynomial

Suppose we have a normal traction on the surface y = b varying with xn. In
Mechanics of Materials terms, this corresponds to a distributed load propor-
tional to xn and elementary equilibrium considerations show that the bending
moment can then be expected to contain a term proportional to xn+2. This
in turn implies a bending stress �xx proportional to xn+2y and a term in
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the stress function proportional to xn+2y3 — i.e. a term of polynomial or-
der (n+5). A corresponding argument for shear tractions proportional to xm

shows that we require a polynomial order of (m+4).
We shall show in Chapter 28 that these arguments from equilibrium and

elementary bending theory define the highest order of polynomial required
to satisfy any polynomial boundary conditions on the lateral surfaces of a
beam, even in three-dimensional problems. A su�cient polynomial order can
therefore be selected by the following procedure:-

(i) Identify the highest order polynomial term n in the normal tractions �yy

on the surfaces y=±b.
(ii) Identify the highest order polynomial term m in the shear tractions �yx

on the surfaces y=±b.
(iii) Use a polynomial for � including all polynomial terms of order max(m+

4, n + 5) and below, but excluding constant and linear terms.

In the special case where both surfaces y=±b are traction-free, it is su�cient
to use a polynomial of 4th degree and below (as in §5.2.1).

Solution procedure

Once an appropriate polynomial has been identified for �, we proceed as
follows:-

(i) Substitute � into the biharmonic equation (5.1), leading to a set of con-
straint equations, as in §5.1.

(ii) Substitute � into equations (5.14–5.16), to obtain the stress components
as functions of x, y.

(iii) Substitute the equations defining the boundaries (e.g. x=0, y=b, y=�b
in the problem of §5.2.1) into appropriate1 stress components, to obtain
the tractions on each boundary.

(iv) For the longer boundaries (where strong boundary conditions will be
enforced), sort the resulting expressions into powers of x or y and equate
coe�cients with the corresponding expression for the prescribed tractions.

(v) For the shorter boundaries, substitute the tractions into the appropriate
weak boundary conditions, obtaining three further independent algebraic
equations.

The equations so obtained will generally not all be linearly independent, but
they will be su�cient to determine all the coe�cients uniquely. The solvers
in Maple and Mathematica can handle this redundancy.
1 Recall from §1.1.1 that the only stress components that act on (e.g.) y = b are

those which contain y as one of the su�ces.
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Example

We illustrate this procedure with the example of Figure 5.3, in which a rect-
angular beam �a < x < a, �b < y < b is loaded by a uniform compressive
normal traction p on y=b and simply supported at the ends.

Figure 5.3: Simply supported beam with a uniform load.

The boundary conditions on the surfaces y=±b can be written

�yx = 0 ; y = ±b (5.42)
�yy = �p ; y = b (5.43)
�yy = 0 ; y = �b . (5.44)

These boundary conditions are to be satisfied in the strong sense. To com-
plete the problem definition, we shall require three linearly independent weak
boundary conditions on one or both of the ends x=±a. We might use sym-
metry and equilibrium to argue that the load will be equally shared between
the supports, leading to the conditions2

Fx(a) =
Z b

�b

�xx(a, y)dy = 0 (5.45)

Fy(a) =
Z b

�b

�xy(a, y)dy = pa (5.46)

M(a) =
Z b

�b

�xx(a, y)ydy = 0 (5.47)

2 It is not necessary to use symmetry arguments to obtain three linearly indepen-
dent weak conditions. Since the beam is simply supported, we know that

M(a) =

Z

b

�b

�
xx

(a, y)ydy = 0 ; M(�a) =

Z

b

�b

�
xx

(�a, y)ydy = 0

F
x

(a) =

Z

b

�b

�
xx

(a, y)dy = 0 .

It is easy to verify that these conditions lead to the same solution as (5.45–5.47).
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on the end x = a. As explained in §5.2.1, we do not need to enforce the
additional three weak conditions on x=�a.

The normal traction is uniform — i.e. it varies with x0 (n = 0), so the
above criterion demands a polynomial of order (n+5)=5. We therefore write

� = C
1

x2 + C
2

xy + C
3

y2 + C
4

x3 + C
5

x2y + C
6

xy2 + C
7

y3 + C
8

x4

+C
9

x3y + C
10

x2y2 + C
11

xy3 + C
12

y4 + C
13

x5 + C
14

x4y

+C
15

x3y2 + C
16

x2y3 + C
17

xy4 + C
18

y5 . (5.48)

This is a long expression, but remember we only have to type it in once to
the computer file. We can cut and paste the expression in the solution of
subsequent problems (and the reader can indeed cut and paste from the web
file ‘polynomial’). Substituting (5.48) into the biharmonic equation (5.1), we
obtain

(120C
13

+ 24C
15

+ 24C
17

)x + (24C
14

+ 24C
16

+ 120C
18

)y
+(24C

8

+ 8C
10

+ 24C
12

) = 0 (5.49)

and this must be zero for all x, y leading to the three constraint equations

120C
13

+ 24C
15

+ 24C
17

= 0 (5.50)
24C

14

+ 24C
16

+ 120C
18

= 0 (5.51)
24C

8

+ 8C
10

+ 24C
12

= 0 . (5.52)

The stresses are obtained by substituting (5.48) into (5.14–5.16) with the
result

�xx = 2C
3

+ 2C
6

x + 6C
7

y + 2C
10

x2 + 6C
11

xy + 12C
12

y2 + 2C
15

x3

+6C
16

x2y + 12C
17

xy2 + 20C
18

y3 (5.53)
�xy = �C

2

� 2C
5

x� 2C
6

y � 3C
9

x2 � 4C
10

xy � 3C
11

y2 � 4C
14

x3

�6C
15

x2y � 6C
16

xy2 � 4C
17

y3 (5.54)
�yy = 2C

1

+ 6C
4

x + 2C
5

y + 12C
8

x2 + 6C
9

xy + 2C
10

y2 + 20C
13

x3

+12C
14

x2y + 6C
15

xy2 + 2C
16

y3 . (5.55)

The tractions on y=b are therefore

�yx = �4C
14

x3 � (3C
9

+ 6C
15

b)x2 � (2C
5

+ 4C
10

b + 6C
16

b2)x
�(C

2

+ 2C
6

b + 3C
11

b2 + 4C
17

b3) (5.56)
�yy = 20C

13

x3 + (12C
8

+ 12C
14

b)x2 + (6C
4

+ 6C
9

b + 6C
15

b2)x
+(2C

1

+ 2C
5

b + +2C
10

b2 + 2C
16

b3) (5.57)

and these must satisfy equations (5.42, 5.43) for all x, giving
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4C
14

= 0 (5.58)
3C

9

+ 6C
15

b = 0 (5.59)
2C

5

+ 4C
10

b + 6C
16

b2 = 0 (5.60)
C

2

+ 2C
6

b + 3C
11

b2 + 4C
17

b3 = 0 (5.61)
20C

13

= 0 (5.62)
12C

8

+ 12C
14

b = 0 (5.63)
6C

4

+ 6C
9

b + 6C
15

b2 = 0 (5.64)
2C

1

+ 2C
5

b + 2C
10

b2 + 2C
16

b3 = �p . (5.65)

A similar procedure for the edge y=�b yields the additional equations

3C
9

� 6C
15

b = 0 (5.66)
2C

5

� 4C
10

b + 6C
16

b2 = 0 (5.67)
C

2

� 2C
6

b + 3C
11

b2 � 4C
17

b3 = 0 (5.68)
12C

8

� 12C
14

b = 0 (5.69)
6C

4

� 6C
9

b + 6C
15

b2 = 0 (5.70)
2C

1

� 2C
5

b + 2C
10

b2 � 2C
16

b3 = 0 . (5.71)

On x=a, we have

�xx = 2C
3

+ 2C
6

a + 6C
7

y + 2C
10

a2 + 6C
11

ay + 12C
12

y2 + 2C
15

a3

+6C
16

a2y + 12C
17

ay2 + 20C
18

y3 (5.72)
�xy = �C

2

� 2C
5

a� 2C
6

y � 3C
9

a2 � 4C
10

ay � 3C
11

y2 � 4C
14

a3

�6C
15

a2y � 6C
16

ay2 � 4C
17

y3 . (5.73)

Substituting into the weak conditions (5.45–5.47) and evaluating the integrals,
we obtain the three additional equations

4C
3

b + 4C
6

ab + 4C
10

a2b + 8C
12

b3 + 4C
15

a3b + 8C
17

ab3 = 0 (5.74)
�2C

2

b� 4C
5

ab� 6C
9

a2b� 2C
11

b3 � 8C
14

a3b� 4C
16

ab3 = pa (5.75)
4C

7

b3 + 4C
11

ab3 + 4C
16

a2b3 + 8C
18

b5 = 0 . (5.76)

Finally, we solve equations (5.50–5.52, 5.58–5.71, 5.74–5.76) for the unknown
constants C

1

, ..., C
18

and substitute back into (5.48), obtaining

� =
p

40b3

(5x2y3 � y5 � 15b2x2y � 5a2y3 + 2b2y3 � 10b3x2) . (5.77)

The corresponding stress field is

�xx =
p

20b3

(15x2y � 10y3 � 15a2y + 6b2y) (5.78)

�xy =
3px

4b3

(b2 � y2) (5.79)

�yy =
p

4b3

(y3 � 3b2y � 2b3) . (5.80)



66 5 Problems in rectangular coördinates

The reader is encouraged to run the Maple or Mathematica files ‘S522’,
which contain the above solution procedure. Notice that most of the algebraic
operations are generated by quite simple and repetitive commands. These
will be essentially similar for any polynomial problem involving rectangular
coördinates, so it is a simple matter to modify the program to cover other
cases.

5.2.3 Manual solutions — symmetry considerations

If the solution is to be obtained manually, the complexity of the algebra makes
the process time consuming and increases the likelihood of errors. Fortunately,
the complexity can be reduced by utilizing the natural symmetry of the rect-
angular beam. In many problems, the loading has some symmetry which can
be exploited in limiting the number of independent polynomial terms and
even when this is not the case, some saving of complexity can be achieved by
representing the loading as the sum of symmetric and antisymmetric parts.
We shall illustrate this procedure by repeating the solution of the problem of
Figure 5.3.

The problem is symmetrical about the mid-point of the beam and hence,
taking the origin there, we deduce that the resulting stress function will con-
tain only even powers of x. This immediately reduces the number of terms in
the general stress function to 10.

The beam is also symmetrical about the axis y=0, but the loading is not.
We therefore decompose the problem into the two sub-problems illustrated in
Figure 5.4(a,b).

Figure 5.4: Decomposition of the problem into (a) antisymmetric and (b)
symmetric parts.

The problem in Figure 5.4(a) is antisymmetric in y and hence requires
a stress function with only odd powers of y, whereas that of Figure 5.4(b) is
symmetric and requires only even powers. In fact, the problem of Figure 5.4(b)
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clearly has the trivial solution corresponding to uniform uniaxial compression,
�yy =�p/2, the appropriate stress function being �=�px2/4.

For the problem of Figure 5.4(a), the most general fifth degree polynomial
which is even in x and odd in y can be written

� = C
5

x2y + C
7

y3 + C
14

x4y + C
16

x2y3 + C
18

y5 , (5.81)

which has just five degrees of freedom. We have used the same notation for
the remaining constants as in (5.48) to aid in comparing the two solutions.
The appropriate boundary conditions for this sub-problem are

�xy = 0 ; y = ±b (5.82)

�yy = ⌥p

2
; y = ±b (5.83)

Z b

�b

�xxdy = 0 ; x = ±a (5.84)

Z b

�b

�xxydy = 0 ; x = ±a . (5.85)

Notice that, in view of the symmetry, it is only necessary to satisfy these
conditions on one of each pair of edges (e.g. on y = b, x = a). For the same
reason, we do not have to impose a condition on the vertical force at x=±a,
since the symmetry demands that the forces be equal at the two ends and the
total force must be 2pa to preserve global equilibrium, this being guaranteed
by the use of the Airy stress function, as in the problem of §5.2.1.

It is usually better strategy to start a manual solution with the strong
boundary conditions (equations (5.82, 5.83)), and in particular with those
conditions that are homogeneous (in this case equation (5.82)), since these
will often require that one or more of the constants be zero, reducing the
complexity of subsequent steps. Substituting (5.81) into (5.15, 5.16), we find

�xy = �2C
5

x� 4C
14

x3 � 6C
16

xy2 (5.86)
�yy = 2C

5

y + 12C
14

x2y + 2C
16

y3 . (5.87)

Thus, condition (5.82) requires that

4C
14

x3 + (2C
5

+ 6C
16

b2)x = 0 ; for all x (5.88)

and this condition is satisfied if and only if

C
14

= 0 and 2C
5

+ 6C
16

b2 = 0 . (5.89)

A similar procedure with equation (5.87) and boundary condition (5.83)
gives the additional equation

2C
5

b + 2C
16

b3 = �p

2
. (5.90)



68 5 Problems in rectangular coördinates

Equations (5.89, 5.90) have the solution

C
5

= �3p

8b
; C

16

=
p

8b3

. (5.91)

We next determine C
18

from the condition that the function � is bihar-
monic, obtaining

(24C
14

+ 24C
16

+ 120C
18

)y = 0 (5.92)

and hence
C

18

= � p

40b3

, (5.93)

from (5.89, 5.91, 5.92).
It remains to satisfy the two weak boundary conditions (5.84, 5.85) on

the ends x = ±a. The first of these is satisfied identically in view of the
antisymmetry of the stress field and the second gives the equation

4C
7

b3 + 4C
16

a2b3 + 8C
18

b5 = 0 , (5.94)

which, with equations (5.91, 5.93), serves to determine the remaining constant,

C
7

=
p(2b2 � 5a2)

40b3

. (5.95)

The final solution of the complete problem (the sum of that for Figures
5.4(a) and (b)) is therefore obtained from the stress function

� =
p

40b3

(5x2y3 � y5 � 15b2x2y � 5a2y3 + 2b2y3 � 10b3x2) , (5.96)

as in the ‘computer solution’ (5.77), and the stresses are therefore given by
(5.78–5.80) as before.

5.3 Fourier series and transform solutions

Polynomial solutions can, in principle, be extended to more general loading
of the beam edges, as long as the tractions are capable of a power series
expansion. However, the practical use of this method is limited by the algebraic
complexity encountered for higher order polynomials and by the fact that
many important traction distributions do not have convergent power series
representations.

A more useful method in such cases is to build up a general solution by
components of Fourier form. For example, if we write

� = f(y) cos(�x) or � = f(y) sin(�x) , (5.97)

substitution in the biharmonic equation (5.1) shows that f(y) must have the
general form
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f(y) = (A + By)e�y + (C + Dy)e��y , (5.98)

where A,B, C, D are arbitrary constants. Alternatively, by defining new ar-
bitrary constants A0, B0, C 0, D0 through the relations A = (A0+C 0)/2, B =
(B0+D0)/2, C =(A0�C 0)/2, D=(B0�D0)/2, we can group the exponentials
into hyperbolic functions, obtaining the equivalent form

f(y) = (A0 + B0y) cosh(�y) + (C 0 + D0y) sinh(�y) . (5.99)

The hyperbolic form enables us to take advantage of any symmetry about y=
0, since cosh(�y), y sinh(�y) are even functions of y and sinh(�y), y cosh(�y)
are odd functions.

More general biharmonic stress functions can be constructed by superpo-
sition of terms like (5.98, 5.99), leading to Fourier series expansions for the
tractions on the surfaces y=±b. The theory of Fourier series can then be used
to determine the coe�cients in the series, using strong boundary conditions
on y =±b. Quite general traction distributions can be expanded in this way,
so Fourier series solutions provide a methodology applicable to any problem
for the rectangular bar.

5.3.1 Choice of form

The stresses due to the stress function �=f(y) cos(�x) are

�xx = f 00(y) cos(�x) ; �xy = �f 0(y) sin(�x) ; �yy = ��2f(y) cos(�x)
(5.100)

and the tractions on the edge x=a are

�xx(a, y) = f 00(y) cos(�a) ; �xy(a, y) = �f 0(y) sin(�a) . (5.101)

It follows that we can satisfy homogeneous boundary conditions on one (but
not both) of these tractions in the strong sense, by restricting the Fourier
series to specific values of �. In equation (5.101), the choice �=n⇡/a will give
�xy =0 on x=±a, whilst �=(2n� 1)⇡/2a will give �xx =0 on x=±a, where
n is any integer.

Example

We illustrate this technique by considering the rectangular beam �a<x<a,
�b < y < b, simply supported at x = ±a and loaded by compressive normal
tractions p

1

(x) on the upper edge y=b and p
2

(x) on y=�b — i.e.

�xy = 0 ; y = ±b (5.102)
�yy = �p

1

(x) ; y = b (5.103)
= �p

2

(x) ; y = �b (5.104)
�xx = 0 ; x = ±a . (5.105)
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Notice that we have replaced the weak conditions (5.84, 5.85) by the strong
condition (5.105). As in §5.2.2, it is not necessary to enforce the remaining
weak conditions (those involving the vertical forces on x = ±a), since these
will be identically satisfied by virtue of the equilibrium condition.

The algebraic complexity of the problem will be reduced if we use the
geometric symmetry of the beam to decompose the problem into four sub-
problems. For this purpose, we define

f
1

(x) = f
1

(�x) ⌘ 1
4
{p

1

(x) + p
1

(�x) + p
2

(x) + p
2

(�x)} (5.106)

f
2

(x) = �f
2

(�x) ⌘ 1
4
{p

1

(x)� p
1

(�x) + p
2

(x)� p
2

(�x)} (5.107)

f
3

(x) = f
3

(�x) ⌘ 1
4
{p

1

(x) + p
1

(�x)� p
2

(x)� p
2

(�x)} (5.108)

f
4

(x) = �f
4

(�x) ⌘ 1
4
{p

1

(x)� p
1

(�x)� p
2

(x) + p
2

(�x)} (5.109)

and hence

p
1

(x) = f
1

(x)+f
2

(x)+f
3

(x)+f
4

(x) ; p
2

(x) = f
1

(x)+f
2

(x)�f
3

(x)�f
4

(x) .
(5.110)

The boundary conditions now take the form

�xy = 0 ; y = ±b (5.111)
�yy = �f

1

(x)� f
2

(x)� f
3

(x)� f
4

(x) ; y = b (5.112)
= �f

1

(x)� f
2

(x) + f
3

(x) + f
4

(x) ; y = �b (5.113)
�xx = 0 ; x = ±a (5.114)

and each of the functions f
1

, f
2

, f
3

, f
4

defines a separate problem with either
symmetry or antisymmetry about the x- and y-axes. We shall here restrict
attention to the loading defined by the function f

3

(x), which is symmetric in
x and antisymmetric in y. The boundary conditions of this sub-problem are

�xy = 0 ; y = ±b (5.115)
�yy = ⌥f

3

(x) ; y = ±b (5.116)
�xx = 0 ; x = ±a . (5.117)

The problem of equations (5.115–5.117) is even in x and odd in y, so we
use a cosine series in x with only the odd terms from the hyperbolic form
(5.99) — i.e.

� =
1
X

n=1

{Any cosh(�ny) + Bn sinh(�ny)} cos(�nx) , (5.118)

where An, Bn are arbitrary constants. The strong condition (5.117) on x=±a
can then be satisfied in every term by choosing
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�n =
(2n� 1)⇡

2a
. (5.119)

The corresponding stresses are

�xx=
1
X

n=1

�

2An�n sinh(�ny)+An�
2

ny cosh(�ny)+Bn�
2

n sinh(�ny)
 

cos(�nx)

�xy=
1
X

n=1

�

An�n cosh(�ny)+An�
2

ny sinh(�ny)+Bn�
2

n cosh(�ny)
 

sin(�nx)

�yy=�
1
X

n=1

�

An�
2

ny cosh(�ny) + Bn�
2

n sinh(�ny)
 

cos(�nx) (5.120)

and hence the boundary conditions (5.115, 5.116) on y=±b require that
1
X

n=1

{An�n cosh(�nb)+An�
2

nb sinh(�nb)+Bn�
2

n cosh(�nb)} sin(�nx) = 0

(5.121)
1
X

n=1

�

An�
2

nb cosh(�nb)+Bn�
2

n sinh(�nb)
 

cos(�nx) = f
3

(x) . (5.122)

To invert the series, we multiply (5.122) by cos(�mx) and integrate from �a
to a, obtaining

1
X

n=1

Z a

�a

�

An�
2

nb cosh(�nb) + Bn�
2

n sinh(�nb)
 

cos(�nx) cos(�mx)dx

=
Z a

�a

f
3

(x) cos(�mx)dx . (5.123)

The integrals on the left-hand side are all zero except for the case m=n and
hence, evaluating the integrals, we find

�

Am�
2

mb cosh(�mb) + Bm�
2

m sinh(�mb)
 

a =
Z a

�a

f
3

(x) cos(�mx)dx .

(5.124)
The homogeneous equation (5.121) is clearly satisfied if

Am�m cosh(�mb) + Am�
2

mb sinh(�mb) + Bm�
2

m cosh(�mb) = 0 . (5.125)

Solving (5.124, 5.125) for Am, Bm, we have

Am =
cosh(�mb)

�ma{�mb� sinh(�mb) cosh(�mb)}
Z a

�a

f
3

(x) cos(�mx)dx

Bm = � (cosh(�mb) + �mb sinh(�mb))
�2

ma{�mb� sinh(�mb) cosh(�mb)}
Z a

�a

f
3

(x) cos(�mx)dx ,

(5.126)
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where �m is given by (5.119). The stresses are then recovered by substitution
into equations (5.120).

The corresponding solutions for the functions f
1

, f
2

, f
4

are obtained in
a similar way, but using a sine series for the odd functions f

2

, f
4

and the
even terms y sinh(�y), cosh(�y) in � for f

1

, f
2

. The complete solution is then
obtained by superposing the solutions of the four sub-problems.

The Fourier series method is particularly useful in problems where the
traction distribution on the long edges has no power series expansion, typi-
cally because of discontinuities in the loading. For example, suppose the beam
is loaded only by a concentrated compressive force F on the upper edge at
x=0, corresponding to the loading p

1

(x)=F �(x), p
2

(x)=0. For the symmet-
ric/antisymmetric sub-problem considered above, we then have

f
3

(x) =
F �(x)

4
(5.127)

from (5.108) and the integral in equations (5.126) is therefore
Z a

�a

f
3

(x) cos(�mx)dx =
F

4
, (5.128)

for all m.
This solution satisfies the end condition on �xx in the strong sense, but the

condition on �xy only in the weak sense. In other words, the tractions �xy on
the ends add up to the forces required to maintain equilibrium, but we have
no control over the exact distribution of these tractions. This represents an
improvement over the polynomial solution of §5.2.3, where weak conditions
were used for both end tractions, so we might be tempted to use a Fourier
series even for problems with continuous polynomial loading. However, this
improvement is made at the cost of an infinite series solution. If the series
were truncated at a finite value of n, errors would be obtained particularly
near the ends or any discontinuities in the loading.

5.3.2 Fourier transforms

If the beam is infinite or semi-infinite (a!1), the series (5.118) must be
replaced by the integral representation

�(x, y) =
Z 1

0

f(�, y) cos(�x)d� , (5.129)

where
f(�, y) = A(�)y cosh(�y) + B(�) sinh(�y) . (5.130)

Equation (5.129) is introduced here as a generalization of (5.97) by super-
position, but �(x, y) is in fact the Fourier cosine transform of f(�, y), the
corresponding inversion being
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f(�, y) =
2
⇡

Z 1

0

�(x, y) cos(�x)dx . (5.131)

The boundary conditions on y =±b will also lead to Fourier integrals, which
can be inverted in the same way to determine the functions A(�), B(�). For
a definitive treatment of the Fourier transform method, the reader is referred
to the treatise by Sneddon3. Extensive tables of Fourier transforms and their
inversions are given by Erdelyi4. The cosine transform (5.129) will lead to a
symmetric solution. For more general loading, the complex exponential trans-
form can be used.

It is worth remarking on the way in which the series and transform solu-
tions are natural generalizations of the elementary solution (5.97). One of the
most powerful techniques in Elasticity — and indeed in any physical theory
characterized by linear partial di↵erential equations — is to seek a simple form
of solution (often in separated-variable form) containing a parameter which
can take a range of values. A more general solution can then be developed
by superposing arbitrary multiples of the solution with di↵erent values of the
parameter.

For example, if a particular solution can be written symbolically as �=
f(x, y,�), where � is a parameter, we can develop a general series form

�(x, y) =
1
X

i=0

Aif(x, y,�i) (5.132)

or an integral form

�(x, y) =
Z b

a

A(�)f(x, y,�)d� . (5.133)

The series form will naturally arise if there is a discrete set of eigenvalues,
�i for which f(x, y,�i) satisfies some of the boundary conditions of the prob-
lem. Additional examples of this kind will be found in §§6.2, 11.2. In this case,
the series (5.132) is most properly seen as an eigenfunction expansion. Inte-
gral forms arise most commonly (but not exclusively) in problems involving
infinite or semi-infinite domains (see, for example, §§11.3, 30.2.2.).

Any particular solution containing a parameter can be used in this way
and, since transforms are commonly named after their originators, the reader
desirous of instant immortality might like to explore some of those which have
not so far been used. Of course, the usefulness of the resulting solution depends
upon its completeness — i.e. its capacity to represent all stress fields of a given
class — and upon the ease with which the transform can be inverted.
3 I.N.Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.
4 A.Erdelyi, ed., Tables of Integral Transforms, Bateman Manuscript Project, Cal-

ifornia Institute of Technology, Vol.1, McGraw-Hill, New York, 1954.
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PROBLEMS

1. The beam �b<y<b, 0<x<L, is built-in at the end x=0 and loaded by a
uniform shear traction �xy =S on the upper edge, y=b, the remaining edges,
x = L, y = �b being traction-free. Find a suitable stress function and the
corresponding stress components for this problem, using the weak boundary
conditions on x=L.

2. The beam �b<y<b,�L<x<L is simply supported at the ends x=±L and
loaded by a shear traction �xy = Sx/L on the lower edge, y =�b, the upper
edge being traction-free. Find a suitable stress function and the corresponding
stress components for this problem, using the weak boundary conditions on
x=±L.

3. The beam �b < y < b, 0 < x < L, is built-in at the end x = L and loaded
by a linearly-varying compressive normal traction p(x)=Sx/L on the upper
edge, y = b, the remaining edges, x = 0, y = �b being traction-free. Find
a suitable stress function and the corresponding stress components for this
problem, using the weak boundary conditions on x=0.

4. The beam �b < y < b,�L < x < L is simply supported at the ends x =±L
and loaded by a compressive normal traction

p(x) = S cos
⇣⇡x

2L

⌘

on the upper edge, y = b, the lower edge being traction-free. Find a suitable
stress function and the corresponding stress components for this problem.

5. The beam �b<y<b, 0<x<L, is built-in at the end x=L and loaded by
a compressive normal traction

p(x) = S sin
⇣⇡x

2L

⌘

on the upper edge, y=b, the remaining edges, x=0, y=�b being traction-free.
Use a combination of the stress function (5.97) and an appropriate polynomial
to find the stress components for this problem, using the weak boundary
conditions on x=0.

6. A large plate defined by y>0 is subjected to a sinusoidally varying load

�yy = S sin�x ; �xy = 0

at its plane edge y = 0.
Find the complete stress field in the plate and hence estimate the depth y

at which the amplitude of the variation in �yy has fallen to 10% of S.
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Hint: You might find it easier initially to consider the case of the layer
0<y<h, with y=h traction-free, and then let h!1.

7. The beam �a<x<a,�b<y<b is loaded by a uniform compressive traction
p in the central region �a/2<x<a/2 of both of the edges y =±b, as shown
in Figure 5.5. The remaining edges are traction-free. Use a Fourier series with
the appropriate symmetries to obtain a solution for the stress field, using the
weak condition on �xy on the edges x = ±a and the strong form of all the
remaining boundary conditions.

Figure 5.5

8. Use a Fourier series to solve the problem of Figure 5.4(a) in §5.2.3. Choose
the terms in the series so as to satisfy the condition �xx(±a, y) = 0 in the
strong sense.

If you are solving this problem in Maple or Mathematica, compare the
solution with that of §5.2.3 by making a contour plot of the di↵erence between
the truncated Fourier series stress function and the polynomial stress function

� =
p

40b3

(5x2y3 � y5 � 15b2x2y � 5a2y3 + 2b2y3) .

Examine the e↵ect of taking di↵erent numbers of terms in the series.

9. The large plate y>0 is loaded at its remote boundaries so as to produce a
state of uniform tensile stress

�xx = S ; �xy = �yy = 0 ,

the boundary y=0 being traction-free. We now wish to determine the pertur-
bation in this simple state of stress that will be produced if the traction-free
boundary had a slight waviness, defined by the line

y = ✏ cos(�x) ,

where �✏⌧ 1. To solve this problem
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(i) Start with the stress function

� =
Sy2

2
+ f(y) cos(�x)

and determine f(y) if the function is to be biharmonic.
(ii) The perturbation will be localized near y =0, so select only those terms

in f(y) that decay as y!1.
(iii) Find the stress components and use the stress transformation equations

to determine the tractions on the wavy boundary. Notice that the incli-
nation of the wavy surface to the plane y =0 will be everywhere small if
�✏⌧1 and hence the trigonometric functions involving this angle can be
approximated using sin(x)⇡x, cos(x)⇡1, x⌧1.

(iv) Choose the free constants in f(y) to satisfy the traction-free boundary
condition on the wavy surface.

(v) Determine the maximum tensile stress and hence the stress concentration
factor as a function of �✏.



6

END EFFECTS

The solution of §5.2.2 must be deemed approximate insofar as the boundary
conditions on the ends x =±a of the rectangular beam are satisfied only in
the weak sense of force resultants, through equations (5.45–5.47). In general,
if a rectangular beam is loaded by tractions of finite polynomial form, a finite
polynomial solution can be obtained which satisfies the boundary conditions
in the strong (i.e. pointwise) sense on two edges and in the weak sense on the
other two edges.

The error involved in such an approximation corresponds to the solution
of a corrective problem in which the beam is loaded by the di↵erence between
the actual tractions applied and those implied by the approximation. These
tractions will of course be confined to the edges on which the weak boundary
conditions were applied and will be self-equilibrated, since the weak conditions
imply that the tractions in the approximate solution have the same force
resultants as the actual tractions.

For the particular problem of §5.2.2, we note that the stress field of equa-
tions (5.78–5.80) satisfies the boundary conditions on the edges y =±b, but
that there is a self-equilibrated normal traction

�xx =
p

10b3

(3b2y � 5y3) (6.1)

on the ends x = ±a, which must be removed by superposing a corrective
solution if we wish to satisfy the boundary conditions of Figure 5.3 in the
strong sense.

6.1 Decaying solutions

In view of Saint-Venant’s theorem, we anticipate that the stresses in the cor-
rective solution will decay as we move away from the edges where the self-
equilibrated tractions are applied. The decay rate is likely to be related to
the width of the loaded region and hence we anticipate that the stresses in

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172,
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the corrective solution will be significant only in two regions near the ends,
of linear dimensions comparable to the width of the beam. These regions are,
shown shaded in Figure 6.1. It follows that the solution of §5.2.2 will be a
good approximation in the unshaded region in Figure 6.1.

Figure 6.1: Regions of the beam influenced by end e↵ects.

It also follows that the corrective solutions for the two ends are uncoupled,
since the corrective field for the end x=�a has decayed to negligible propor-
tions before we reach the end x=+a and vice versa. This implies that, so far as
the left end is concerned, the corrective solution is essentially identical to that
which would be required in the semi-infinite beam, x>�a. We can therefore
simplify the statement of the problem by considering the corrective solution
for the left end only and shifting the origin to �a, so that the semi-infinite
beam under consideration is defined by x>0, �b<y<b.

It is also now clear why we chose to satisfy the strong boundary condi-
tions on the long edges, y =±b. If instead we had imposed strong conditions
on x = ±a and weak conditions on y = ±b, the shaded regions would have
overlapped and there would be no region in which the finite polynomial so-
lution was a good approximation to the stresses in the beam. It also follows
that the approximation will only be useful when the beam has an aspect ratio
significantly di↵erent from unity — i.e. b/a�1.

6.2 The corrective solution

We recall that the stress function, �, for the corrective solution must (i) satisfy
the biharmonic equation (5.1), (ii) have zero tractions on the boundaries y=
±b — i.e.

�yy = �yx = 0 ; y = ±b (6.2)

and (iii) have prescribed non-zero tractions (such as those defined by equation
(6.1)) on the end(s), which we can write in the form

�xx(0, y) = f
1

(y) ; �xy(0, y) = f
2

(y) , (6.3)

where
Z b

�b

f
1

(y)dy =
Z b

�b

f
1

(y)ydy =
Z b

�b

f
2

(y)dy = 0 , (6.4)
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since the corrective tractions are required to be self-equilibrated.
We cannot generally expect to find a solution to satisfy all these conditions

in closed form and hence we seek a series or transform (integral) solution as
suggested in §5.3. However, the solution will be simpler if we can find a class

of solutions, all of which satisfy some of the conditions. We can then write
down a more general solution as a superposition of such solutions and choose
the coe�cients so as to satisfy the remaining condition(s).

Since the traction boundary condition on the end will vary from problem
to problem, it is convenient to seek solutions which satisfy (i) and (ii) — i.e.
biharmonic functions for which

@2�

@x2

=
@2�

@x@y
= 0 ; y = ±b . (6.5)

6.2.1 Separated-variable solutions

One way to obtain functions satisfying conditions (6.5) is to write them in the
separated-variable form

� = f(x)g(y) , (6.6)

in which case, (6.5) will be satisfied for all x, provided that

g(y) = g0(y) = 0 ; y = ±b . (6.7)

Notice that the final corrective solution cannot be expected to be of separated-
variable form, but we shall see that it can be represented as the sum of a series
such terms.

If the functions (6.6) are to be biharmonic, we must have

g
d4f

dx4

+ 2
d2f

dx2

d2g

dy2

+ f
d4g

dy4

= 0 , (6.8)

and this equation must be satisfied for all values of x, y. Now, if we consider
the subset of points (x, c), where c is a constant, it is clear that f(x) must
satisfy an equation of the form

A
d4f

dx4

+ B
d2f

dx2

+ Cf = 0 , (6.9)

where A,B, C, are constants, and hence f(x) must consist of exponential
terms such as f(x) = exp(�x). Similar considerations apply to the function
g(y). Notice incidentally that � might be complex or imaginary, giving sinu-
soidal functions, and there are also degenerate cases where C and/or B=0 in
which case f(x) could also be a polynomial of degree 3 or below.

Since we are seeking to represent a field which decays with x, we select
terms of the form

� = g(y)e��x , (6.10)
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in which case, (6.8) reduces to

d4g

dy4

+ 2�2

d2g

dy2

+ �4g = 0 , (6.11)

which is a fourth order ordinary di↵erential equation for g(y) with general
solution

g(y) = (A
1

+ A
2

y) cos(�y) + (A
3

+ A
4

y) sin(�y) . (6.12)

6.2.2 The eigenvalue problem

The arbitrary constants A
1

, A
2

, A
3

, A
4

are determined from the boundary
conditions (6.2), which in view of (6.7) lead to the four simultaneous equations

(A
1

+ A
2

b) cos(�b) + (A
3

+ A
4

b) sin(�b) = 0 (6.13)
(A

1

�A
2

b) cos(�b)� (A
3

�A
4

b) sin(�b) = 0 (6.14)
(A

2

+ A
3

�+ A
4

�b) cos(�b)� (A
1

�+ A
2

�b�A
4

) sin(�b) = 0 (6.15)
(A

2

+ A
3

��A
4

�b) cos(�b) + (A
1

��A
2

�b�A
4

)(sin�b) = 0 . (6.16)

This set of equations is homogeneous and will generally have only the
trivial solution A

1

= A
2

= A
3

= A
4

= 0. However, there are some eigenvalues
of the exponential decay rate, �, for which the determinant of coe�cients is
singular and the solution is non-trivial.

A more convenient form of the equations can be obtained by taking
sums and di↵erences in pairs — i.e. by constructing the equations (6.13 +
6.14), (6.13�6.14), (6.15+6.16), (6.15�6.16), which after rearrangement and
cancellation of non-zero factors yields the set

A
1

cos(�b) + A
4

b sin(�b) = 0 (6.17)
A

1

� sin(�b)�A
4

{sin(�b) + �b(cos(�b)} = 0 (6.18)
A

2

b cos(�b) + A
3

sin(�b) = 0 (6.19)
A

2

{cos(�b)� �b sin(�b)}+ A
3

� cos(�b) = 0 . (6.20)

What we have done here is to use the symmetry of the system to partition
the matrix of coe�cients. The terms A

1

cos(�y), A
4

y sin(�y) are symmetric,
whereas A

2

y cos(�y), A
3

sin(�y) are antisymmetric. The boundary conditions
are also symmetric and hence the symmetric and antisymmetric terms must
separately satisfy them.

We conclude that the set of equations (6.17–6.20) has two sets of eigenval-
ues, for one of which the resulting eigenfunction is symmetric and the other
antisymmetric. The symmetric eigenvalues �(S) are obtained by eliminating
A

1

, A
4

from (6.17, 6.18) with the result

sin(2�(S)b) + 2�(S)b = 0 , (6.21)
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whilst the antisymmetric eigenvalues �(A) are obtained in the same way from
(6.19, 6.20) with the result

sin(2�(A)b)� 2�(A)b = 0 . (6.22)

Figure 6.2 demonstrates graphically that the only real solution of equations
(6.21, 6.22) is the trivial case � = 0 (which in fact corresponds to the non-
decaying solutions in which an axial force or moment resultant is applied at
the end and transmitted along the beam).

Figure 6.2: Graphical solution of equations (6.21, 6.22).

However, there is a denumerably infinite set of non-trivial complex solu-
tions, corresponding to stress fields which oscillate whilst decaying along the
beam. These solutions are fairly easy to find by writing �b=c+ ıd, separating
real and imaginary parts in the complex equation, and solving the result-
ing two simultaneous equations for the real numbers, c, d, using a suitable
numerical algorithm.

Once the eigenvalues have been determined, the corresponding eigenfunc-
tions g(S), g(A) are readily recovered using (6.12, 6.21, 6.22). We obtain

g(S) = C
h

y sin(�(S)y) cos(�(S)b)� b sin(�(S)b) cos(�(S)y)
i

(6.23)

g(A) = D
h

y sin(�(S)b) cos(�(S)y)� b sin(�(S)y) cos(�(S)b)
i

, (6.24)

where C,D are new arbitrary constants related to A
1

, A
4

and A
2

, A
3

respec-
tively. We can then establish a more general solution of the form

� =
1
X

i=1

Cig
(S)

i (y)e��
(S)
i x +

1
X

i=1

Dig
(A)

i (y)e��
(A)
i x , (6.25)

where �(S)

i ,�(A)

i represent the eigenvalues of equations (6.21, 6.22) respec-
tively.

The final step is to choose the constants Ci, Di so as to satisfy the pre-
scribed boundary conditions (6.3) on the end x = 0. An improved but still
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approximate solution of this problem can be obtained by truncating the infi-
nite series at some finite value i=N , defining a scalar measure of the error E
in the boundary conditions and then imposing the 2N conditions

@E
@Ci

= 0 ;
@E
@Di

= 0 for i = 1, N (6.26)

to determine the unknown constants. An appropriate non-negative quadratic
error measure is

E =
Z b

�b

h

�

f
1

(y)� �xx(0, y)
 

2 +
�

f
2

(y)� �xy(0, y)
 

2

i

dy , (6.27)

where �xx,�xy are the stress components defined by the truncated series.
Since biharmonic boundary-value problems arise in many areas of mechanics,
techniques of this kind have received a lot of attention. Convergence of the
truncated series is greatly improved if the boundary conditions are continuous
in the corners1. It can be shown that the use of the weak boundary conditions
automatically defines continuous values of � and its first derivatives in the
corners (0,�b), (0, b) in the corrective solution. However, convergence prob-
lems are still likely to occur if the shear tractions on the two orthogonal edges
in the corner are di↵erent, for example if

lim
x!0

�yx(x, b) 6= lim
y!b

�xy(0, y) . (6.28)

Since the tractions on the boundaries are independent, this is a perfectly
legitimate physical possiblity, but it involves an infinite stress gradient in
the corner and leads to a modified Gibbs phenomenon in the series solution,
where increase of N leads to greater accuracy over most of the boundary,
but to an oscillation of finite amplitude and decreasing wavelength in the
immediate vicinity of the corner. The problem can be avoided at the cost
of a more complex fundamental problem by extracting a closed-form solution
respresenting the discontinuous tractions. We shall discuss this special solution
in §11.1.2 below.

Completeness

It is clear that the accuracy of the solution (however defined) can always be
improved by taking more terms in the series (6.25) and in particular cases
this is easily established numerically. However, it is more challenging to prove
that the eigenfunction expansion is complete in the sense that any prescribed
self-equilibrated traction on x = 0 can be described to within an arbitrarily
1 M.I.G.Bloor and M.J.Wilson, An approximate solution method for the bihar-

monic problem, Proceedings of the Royal Society of London, Vol. A462, pp.1107–
1121.
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small accuracy by taking a su�cient number of terms in the series, though
experience with other eigenfunction expansions (e.g. with expansion of elas-
todynamic states of a structure in terms of normal modes) suggests that this
will always be true. In fact, although the analysis described in this section
has been known since the investigations by Papkovich and Fadle in the early
1940s, the formal proof of completeness was only completed by Gregory2 in
1980.

It is worth noting that, as in many related problems, the eigenfunctions
oscillate in y with increasing frequency as �i increases and in fact every time we
increase i by 1, an extra zero appears in the function gi(y) in the range 0<y<
b. Thus, there is a certain similarity to the process of approximating functions
by Fourier series and in particular, the residual error in case of truncation will
always cross zero once more than the last eigenfunction included.

This is also helpful in that it enables us to estimate the decay rate of the
first excluded term. We see from equation (6.12) that the distance between
zeros in y in any of the separate terms would be (⇡/�R), where �R is the real
part of �. It follows that over a corresponding distance in the x-direction, the
field would decay by the factor exp(�⇡)=0.0432. This suggests that we might
estimate the decay rate of the end field by noting the distance between zeros
in the corresponding tractions3. For example, the traction of equation (6.1)
has zeros at y=0, 3b/5, corresponding to �R =(5⇡/3b)=5.23/b.

An alternative way of estimating the decay rate is to note that the decay
rate for the various terms in (6.25) increases with i and hence as x increases,
the leading term will tend to predominate. The tractions of (6.1) are antisym-
metric and hence the leading term corresponds to the real part of the first
eigenvalue of equation (6.22), which is found numerically to be �Rb=3.7.

Either way, we can conclude that the error associated with the end trac-
tions in the approximate solution of §5.2.2 has decayed to around e�4, i.e. to
about 2% of the values at the end, within a distance b of the end. Thus the
region a↵ected by the end condition — the shaded region in Figure 6.1 — is
quite small.

For problems which are symmetric in y, the leading self-equilibrated term
is likely to have the form of Figure 6.3(a), which has a longer wavelength than
the corresponding antisymmetric form, 6.3(b). The end e↵ects in symmetric
2 R.D.Gregory, Green’s functions, bi-linear forms and completeness of the eigen-

functions for the elastostatic strip and wedge, J.Elasticity, Vol. 9 (1979), pp.283–
309; R.D.Gregory, The semi-infinite strip x � 0,�1  y  1; completeness
of the Papkovich-Fadle eigenfunctions when �

xx

(0, y),�
yy

(0, y) are prescribed,
J.Elasticity, Vol. 10 (1980), pp.57–80; R.D.Gregory, The traction boundary value
problem for the elastostatic semi-infinite strip; existence of solution and complete-
ness of the Papkovich-Fadle eigenfunctions, J.Elasticity, Vol. 10 (1980), pp.295-
327. These papers also include extensive references to earlier investigations of the
problem.

3 This assumes that the wavelength of the tractions is the same as that of �, which
of course is an approximation, since neither function is purely sinusoidal.
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problems therefore decay more slowly and this is confirmed by the fact that
the real part of the first eigenvalue of the symmetric equation (6.21) is only
�Rb=2.1.

Figure 6.3: Leading term in self-equilibrated tractions for (a) symmetric
loading and (b) antisymmetric loading.

6.3 Other Saint-Venant problems

The general strategy used in §6.2 can be applied to other curvilinear coördinate
systems to correct the errors incurred by imposing the weak boundary condi-
tions on appropriate edges. The essential steps are:-

(i) Define a coördinate system (⇠, ⌘) such that the boundaries on which the
strong conditions are applied are of the form, ⌘=constant.

(ii) Find a class of separated-variable biharmonic functions containing a pa-
rameter (� in the above case).

(iii) Set up a system of four homogeneous equations for the coe�cients of
each function, based on the four traction-free boundary conditions for the
corrective solution on the edges ⌘=constant.

(iv) Find the eigenvalues of the parameter for which the system has a non-
trivial solution and the corresponding eigenfunctions, which are then used
as the terms in an eigenfunction expansion to define a general form for
the corrective field.

(v) Determine the coe�cients in the eigenfunction expansion from the pre-
scribed inhomogeneous boundary conditions on the end ⇠=constant.

6.4 Mathieu’s solution

The method described in §6.2 is particularly suitable for rectangular bodies
of relatively large aspect ratio, since the weak solution is then quite accurate
over a substantial part of the domain and the corrections at the two ends are
essentially independent of each other. In other cases, and particularly for the
square b = a, we lose these advantages and the inconvenience of solving the
eigenvalue equations (6.21, 6.22) tilts the balance in favour of an alternative
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method due originally to Mathieu, who represented the solution of the en-
tire problem as the sum of two orthogonal Fourier series of the form (5.118).
The general problem can be decomposed into four sub-problems which are
respectively either symmetric or antisymmetric with respect to the x- and
y-axes. Following Meleshko and Gomilko4, we restrict attention to the sym-
metric/symmetric case, defined by the boundary conditions

�xx(a, y) = �xx(�a, y) = f(y) ; �xy(a, y) = ��xy(�a, y) = g(y) (6.29)

�yx(x, b) = ��yx(x,�b) = h(x) ; �yy(x, b) = �yy(x,�b) = `(x) , (6.30)

where f, ` are even and g, h odd functions of their respective variables. We
shall also assume that there is no discontinuity in shear traction of the form
(6.28) at the corners and hence that g(b)=h(a).

We define a biharmonic stress function with the appropriate symmetries
as

� = A
0

y2 +
1
X

m=1

(Amy sinh(↵my) + Cm cosh(↵my)) cos(↵mx)

+B
0

x2 +
1
X

n=1

(Bnx sinh(�nx) + Dn cosh(�nx)) cos(�ny) . (6.31)

As in §5.3.1, the ↵m,�n can be chosen so as to ensure that each term gives
either zero shear tractions or zero normal tractions on two opposite edges, but
not both. For example, with

↵m =
m⇡

a
; �n =

n⇡

b
, (6.32)

the second series makes no contribution to the shear traction on y=b, whilst
the first series (that involving the coe�cients Am, Cm) makes no contribution
to the shear traction on x=a. The shear traction on x=a is then given by

�xy(a, y) =
1
X

n=1

�2

n

✓

Bn



a coth(�na) +
1
�n

�

+ Dn

◆

sinh(�na) sin(�ny) ,

using (4.6), and substituting into (6.29)
2

and applying the Fourier inversion
theorem5, we have

Bn



a coth(�na) +
1
�n

�

+ Dn =
1

�2

nb sinh(�na)

Z b

�b

g(y) sin(�ny)dy ,

4 V.V.Meleshko and A.M.Gomilko, Infinite systems for a biharmonic problem in a
rectangle, Proceeedings of the Royal Society of London, Vol. A453 (1997), pp.2139–
2160. The reader should be warned that there are several typographical errors
in this paper, some of which are corrected in V.V.Meleshko and A.M.Gomilko,
Infinite systems for a biharmonic problem in a rectangle: further discussion, Pro-
ceeedings of the Royal Society of London, Vol. A460 (2004), pp.807–819.

5 See for example equation (5.123).
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which defines a linear relation between each individual pair of constants
Bn, Dn. A similar relation between Am, Cm can be obtained from (6.30)

1

and these conditions can then be used to eliminate Cm, Dn in (6.31), giving

� = A
0

y2 �
1
X

m=1

AmB(y,↵m, b) sinh(↵mb) cos(↵mx)

+B
0

x2 �
1
X

n=1

BnB(x,�n, a) sinh(�na) cos(�ny)

+
1
X

n=1

gn cosh(�nx) cos(�ny)
�2

nb sinh(�na)
+

1
X

m=1

hm cosh(↵my) cos(↵mx)
↵2

ma sinh(↵mb)
,

(6.33)

where

gn =
Z b

�b

g(y) sin(�ny)dy ; hm =
Z a

�a

h(x) sin(↵mx)dx ,

and
B(z,�, h) =



h coth(�h) +
1
�

�

cosh(�z)
sinh(�h)

� z
sinh(�z)
sinh(�h)

.

The normal stress components are then obtained as

�xx = 2A
0

�
1
X

m=1

Am↵
2

mA(y,↵m, b) sinh(↵mb) cos(↵mx)

+
1
X

n=1

Bn�
2

nB(x,�n, a) sinh(�na) cos(�ny)

�
1
X

n=1

gn cosh(�nx) cos(�ny)
b sinh(�na)

+
1
X

m=1

hm cosh(↵my) cos(↵mx)
a sinh(↵mb)

.

�yy = 2B
0

+
1
X

m=1

Am↵
2

mB(y,↵m, b) sinh(↵mb) cos(↵mx)

�
1
X

n=1

Bn�
2

nA(x,�n, a) sinh(�na) cos(�ny)

+
1
X

n=1

gn cosh(�nx) cos(�ny)
b sinh(�na)

�
1
X

m=1

hm cosh(↵my) cos(↵mx)
a sinh(↵mb)

,

where
A(z,�, h) =



h coth(�h)� 1
�

�

cosh(�z)
sinh(�h)

� z
sinh(�z)
sinh(�h)

.

Imposing the remaining two boundary conditions (6.29)
1

, (6.30)
2

and applying
the Fourier inversion theorem to the resulting equations, we then obtain the
infinite set of simultaneous equations
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XmbB(b,↵m, b) =
1
X

n=1

4Yn↵2

m

(↵2

m + �2

n)2
+ Hm ,

YnaB(a,�n, a) =
1
X

m=1

4Xm�2

n

(↵2

m + �2

n)2
+ Kn , (6.34)

for m,n�1, where

Xm =
(�1)m+1Am↵2

m sinh(↵mb)
b

; Yn =
(�1)nBn�2

n sinh(�na)
a

Hm =
(�1)m+1 [`m + coth(↵mb)hm]

a
+

1
X

n=1

2(�1)n�ngn

(↵2

m + �2

n)ab

Kn =
(�1)n [fn + coth(�na)gn]

b
�

1
X

m=1

2(�1)m↵mhm

(↵2

m + �2

n)ba

and

fn =
Z b

�b

f(y) cos(�ny)dy ; `m =
Z a

�a

`(x) cos(↵mx)dx .

Also, the zeroth-order Fourier inversion yields the constants A
0

, B
0

as

A
0

=
f
0

4b
�

1
X

m=1

(�1)mhm

2↵mba
; B

0

=
`
0

4a
�

1
X

n=1

(�1)ngn

2�nab
.

With this solution, the coe�cients Xm, Yn generally tend to a common con-
stant value G at large m,n and the series solution exhibits a non-vanishing
error near the corners of the rectangle6. A more convergent solution can be
obtained by defining new constants through the relations

Xm = X̃m + G ; Yn = Ỹn + G .

so that X̃m , Ỹn decay with increasing m,n. The terms involving G can then
be summed explicitly yielding the additional polynomial term

�
0

=
G

24
⇥

(y2 � b2)2 � (x2 � a2)2
⇤

(6.35)

in the stress function �. Unfortunately, the required value of G cannot be
obtained in closed form except in certain special cases. However, an approxi-
mation can be obtained using the Rayleigh-Ritz method7, leading to the result

G =
45

4(a4 + b4)

"

1
b

Z b

�b

f(y)
✓

y2 � b2

3

◆

dy � 1
a

Z a

�a

`(x)
✓

x2 � a2

3

◆

dx

#

.

(6.36)
This agrees with the exact value cited by Meleshko and Gomilko for the special
case of the square b=a with `(x) a quadratic function of x.
6 Meleshko and Gomilko loc. cit.
7 See §33.5 and Problem 33.5 below.
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Alternative series solutions

In the technique described above, the parameters ↵m,�n were chosen so as to
simplify the satisfaction of the shear traction boundary conditions, after which
the normal traction conditions led to an infinite set of algebraic equations. An
alternative approach is to reverse this procedure by choosing

↵m =
(2m� 1)⇡

2a
; �n =

(2n� 1)⇡
2b

(6.37)

and omitting the terms with A
0

, B
0

. Equation (6.31) then defines a stress
field in which the first series makes no contribution to the normal tractions
on x=a and the second series makes no contribution to the normal tractions
on y = b. These boundary conditions imply a one-to-one relation between
Am, Cm, after which the shear traction boundary conditions lead to an infinite
set of algebraic equations. One advantage of this version is that it leads to a
convergent solution even in the case where g(b) 6= h(a) and hence the shear
tractions are discontinuous in the corners8, though convergence is slow in
such cases. An alternative method of treating this discontinuity is to extract
it explicitly, as discussed in §11.1.2 below, and then use ‘even’ series defined
by equations (6.32) for the corrective problem.

PROBLEMS

1. Show that if ⇣=x+ıy and sin(⇣)�⇣=0, where x, y are real variables, then

f(x) ⌘ cos x
p

x2 � sin2 x + sinx ln(sin x)� sinx ln
⇣

x +
p

x2 � sin2 x
⌘

= 0 .

Using Maple or Mathematica to plot the function f(x), find the first six
roots of this equation and hence determine the first six values of �Rb for the
antisymmetric mode.

2. Devise a method similar to that outlined in Problem 6.1 to determine the
first six values of �Rb for the symmetric mode.

3. A displacement function representation for plane strain problems can be
developed9 in terms of two harmonic functions �,! in the form

2µux =
@�

@x
+ y

@!

@x
; 2µuy =

@�

@y
+ y

@!

@y
� (3� 4⌫)!

8 Meleshko and Gomilko loc. cit.
9 This solution is a two-dimensional version of a three-dimensional solution devel-

oped in Chapter 19 and tabulated in Table 19.1 as solutions A and B.
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�xx =
@2�

@x2

+ y
@2!

@x2

� 2⌫
@!

@y
; �xy =

@2�

@x@y
+ y

@2!

@x@y
� (1� 2⌫)

@!

@x

�yy =
@2�

@y2

+ y
@2!

@y2

� 2(1� ⌫)
@!

@y
.

Use this representation to formulate the eigenvalue problem of the long strip
x>0,�b<y<b whose edges y=±b are both bonded to a rigid body. Find the
eigenvalue equation for symmetric and antisymmetric modes and comment on
the expected decay rates for loading of the strip on the end x=0.

4. Use the displacement function representation of Problem 6.3 to formulate
the eigenvalue problem for the long strip x>0,�b<y<b whose edges y=±b
are in frictionless contact with a rigid body (so that the normal displacement
is zero, but the frictional (tangential) traction is zero). Find the eigenvalue
equation for symmetric and antisymmetric modes and comment on the ex-
pected decay rates for loading of the strip on the end x=0.

5. Use the displacement function representation of Problem 6.3 to formulate
the eigenvalue problem for the long strip x>0,�b<y<b which is bonded to
a rigid surface at y=�b, the other long edge y=b being traction-free. Notice
that this problem is not symmetrical, so the problem will not partition into
symmetric and antisymmetric modes.

6. Use Mathieu’s method to approximate the stresses in the square �a<x<
a, �a<y<a subjected to the tractions

�xx(a, y) = �xx(�a, y) =
Sy2

a2

,

all the remaining tractions being zero. Start by using (6.35, 6.36) to define a
polynomial first approximation to the solution. Then use the series (6.31) to
define a corrective solution — i.e. the stress function which when added to �

0

defines the complete solution. The constants Xm, Yn in the corrective solution
will then decay with increasing m,n and a good approximation can be found
by truncating the series at m=n=2.
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BODY FORCES

A body force is defined as one which acts directly on the interior particles
of the body, rather than on the boundary. Since the interior of the body is
not accessible, it follows necessarily that body forces can only be produced
by some kind of physical process which acts ‘at a distance’. The commonest
examples are forces due to gravity and magnetic or electrostatic attraction.
In addition, we can formulate quasi-static elasticity problems for accelerating
bodies in terms of body forces, using D’Alembert’s principle (see §7.2.2 below).

7.1 Stress function formulation

We noted in §4.3.2 that the Airy stress function formulation satisfies the
equilibrium equations if and only if the body forces are identically zero, but
the method can be extended to the case of non-zero body forces provided the
latter can be expressed as the gradient of a scalar potential, V .

We adopt the new definitions

�xx =
@2�

@y2

+ V (7.1)

�yy =
@2�

@x2

+ V (7.2)

�xy = = � @2�

@x@y
, (7.3)

and only if

px = �@V

@x
; py = �@V

@y
, (7.4)

i.e.
p = �rV . (7.5)

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 91

in which case the two-dimensional equilibrium equations will be satisfied if
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Notice that the body force potential V appears in the definitions of the two
normal stress components �xx,�yy (7.1, 7.2), but not in the shear stress �xy

(7.3). Thus, the modification in these equations is equivalent to the addition
of a biaxial hydrostatic tension of magnitude V , which is of course invariant
under coördinate transformation (see §1.1.4).

7.1.1 Conservative vector fields

If a force field is capable of being represented as the gradient of a scalar po-
tential, as in equation (7.5), it is referred to as conservative. This terminology
arises from gravitational theory, since if we move a particle around in a gravi-
tational field and if the force on the particle varies with position, the principle
of conservation of energy demands that the work done in moving the particle
from point A to point B should be path-independent — or equivalently, the
work done in moving it around a closed path should be zero. If this were not
the case, we could choose a direction for the particle to move around the path
which would release energy and hence have an inexhaustible source of energy.

If all such integrals are path-independent, we can use the work done in
bringing a particle from infinity to a given point as the definition of a unique
local potential. Then, by equating the work done in an infinitesimal motion to
the corresponding change in potential energy, we can show that the local force
is proportional to the gradient of the potential, thus demonstrating that a con-
servative force field must be capable of a representation like (7.5). Conversely,
if a given force field can be represented in this form, we can show by integra-
tion that the work done in moving a particle from A to B is proportional to
V (A)�V (B) and is therefore path-independent.

Not all body force fields are conservative and hence the formulation of §7.1
is not su�ciently general for all problems. However, we shall show below that
most of the important problems involving body forces can be so treated.

We can develop a condition for a vector field to be conservative in the
same way as we developed the compatibility conditions for strains. We argue
that the two independent body force components px, py are defined in terms
of a single scalar potential V and hence we can obtain a constraint equation
on px, py by eliminating V between equations (7.4) with the result

@py

@x
� @px

@y
= 0 . (7.6)

In three dimensions there are three equations like (7.6), from which we
conclude that a vector field p is conservative if and only if curl p=0. Another
name for such fields is irrotational, since we note that if we replace p by u,
the conditions like (7.6) are equivalent to the statement that the rotation !
is identically zero (cf equation (1.47)).

If the body force field satisfies equation (7.6), the corresponding potential
can be recovered by partial integration. We shall illustrate this procedure in
§7.2 below.
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7.1.2 The compatibility condition

We demonstrated in §4.4.1 that, in the absence of body forces, the compati-
bility condition reduces to the requirement that the Airy stress function � be
biharmonic. This condition is modified when body forces are present.

We follow the same procedure as in §4.4.1, but use equations (7.1–7.3) in
place of (4.6). Substituting into the compatibility equation in terms of stresses
(4.8), we obtain

@4�

@y4

+
@2V

@y2

� ⌫
@4�

@x2@y2

� ⌫
@2V

@y2

+ 2(1 + ⌫)
@4�

@x2@y2

+
@4�

@x4

+
@2V

@x2

� ⌫
@4�

@x2@y2

� ⌫
@2V

@x2

= 0 , (7.7)

i.e.
r4� = �(1� ⌫)r2V . (7.8)

Methods of obtaining suitable functions which satisfy this equation will be
discussed in §7.3 below.

7.2 Particular cases

It is worth noting that the vast majority of mechanical engineering compo-
nents are loaded principally by boundary tractions rather than body forces.
Of course, most components are subject to gravity loading, but the boundary
loads are generally so much larger that gravity can be neglected. This is less
true for civil engineering structures such as buildings, where the self-weight
of the structure may be much larger than the weight of the contents or wind
loads, but even in this case it is important to distinguish between the gravity
loading on the individual component and that transmitted to the component
by way of boundary tractions.

It might be instructive at this point for the reader to draw free-body
diagrams for a few common engineering components and identify the sources
and relative magnitudes of the forces acting upon them. There are really
comparatively few ways of applying a load to a body. By far the commonest
is to push against it with another body — in other words to apply the load
by contact. This is why contact problems occupy a central place in elasticity
theory1. Significant loads may also be applied by fluid pressure as in the case
of turbine blades or aircraft wings. Notice that it is fairly easy to apply a
compressive normal traction to a boundary, but much harder to apply tension
or shear.

This preamble might be taken as a justification for not studying the sub-
ject of body forces at all, but there are a few applications in which they are
1 See Chapters 12, 29.
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of critical importance, most notably those dynamic problems in which large
accelerations occur. We shall develop expressions for the body force potential
for some important cases in the following sections.

7.2.1 Gravitational loading

The simplest type of body force loading is that due to a gravitational field. If
the problem is to remain two-dimensional, the direction of the gravitational
force must lie in the xy-plane and we can choose it to be in the negative y-
direction without loss of generality. The magnitude of the force will be ⇢g per
unit volume, where ⇢ is the density of the material, so in the notation of §2.1
we have

px = 0 ; py = �⇢g . (7.9)

This force field clearly satisfies condition (7.6) and is therefore conservative
and by inspection we note that it can be derived from the body force potential

V = ⇢gy . (7.10)

It also follows that r2V =0 and hence the stress function, � for problems
involving gravitational loading is biharmonic, from (7.6).

7.2.2 Inertia forces

It might be argued that D’Alembert achieved immortality simply by moving
a term from one side of an equation to the other, since D’Alembert’s principle

consists merely of writing Newton’s second law of motion in the form F�ma=
0 and treating the term �ma as a fictitious force in order to reduce the
dynamic problem to one in statics.

This simple process enables us to formulate elasticity problems for accel-
erating bodies as elastostatic body force problems, the corresponding body
forces being

px = �⇢ax ; py = �⇢ay , (7.11)

where ax, ay are the local components of acceleration, which may of course
vary with position through the body.

7.2.3 Quasi-static problems

If the body were rigid, the accelerations of equation (7.11) would be restricted
to those associated with rigid-body translation and rotation, but in a de-
formable body, the distance between two points can change, giving rise to
additional, stress-dependent terms in the accelerations.

These two e↵ects give qualitatively distinct behaviour, both mathemat-
ically and physically. In the former case, the accelerations will generally be
defined a priori from the kinematics of the problem, which therefore reduces
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to an elasticity problem with body forces. We shall refer to such problems as
quasi-static.

By contrast, when the accelerations associated with deformations are im-
portant, they are not known a priori, since the stresses producing the de-
formations are themselves part of the solution. In this case the kinematic
and elastic problems are coupled and must be solved together. The resulting
equations are those governing the propagation of elastic waves through a solid
body and their study is known as Elastodynamics.

In this chapter, we shall restrict attention to quasi-static problems. As a
practical point, we note that the characteristic time scale of elastodynamic
problems is very short. For example it generally takes only a very short time
for an elastic wave to traverse a solid. If the applied loads are applied gradually
in comparison with this time scale, the quasi-static assumption generally gives
good results. A measure of the success of this approximation is that it works
quite well even for the case of elastic impact between bodies, which may have
a duration of the order of a few milliseconds2.

7.2.4 Rigid-body kinematics

The most general acceleration for a rigid body in the plane involves arbitrary
translation and rotation. We choose a coördinate system fixed in the body and
suppose that, at some instant, the origin has velocity v0 and acceleration a0

and the body is rotating in the clockwise sense with absolute angular velocity
⌦ and angular acceleration ⌦̇. The instantaneous acceleration of the point
(r, ✓) relative to the origin can then be written

ar = �⌦2r ; a✓ = �⌦̇r . (7.12)

Transforming these results into the x, y-coördinate system and adding the
acceleration of the origin, we obtain the components of acceleration of the
point (x, y) as

ax = a
0x �⌦2x + ⌦̇y (7.13)

ay = a
0y �⌦2y � ⌦̇x (7.14)

and hence the corresponding body force field is

px = �⇢(a
0x �⌦2x + ⌦̇y) (7.15)

py = �⇢(a
0y �⌦2y � ⌦̇x) . (7.16)

2 For more information about elastodynamic problems, the reader is referred to
the classical texts of J.D.Achenbach, Wave Propagation in Elastic Solids, North
Holland, Amsterdam, 1973 and A.C.Eringen and E.S.Şuhubi, Elastodynamics,
Academic Press, New York, 1975. For a more detailed discussion of the impact of
elastic bodies, see K.L.Johnson, Contact Mechanics, Cambridge University Press,
Cambridge, 1985, §11.4, W.Goldsmith, Impact, Arnold, London, 1960.
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The astute reader will notice that the case of gravitational loading can be
recovered as a special case of these results by writing a

0y = g and setting all
the other terms to zero. In fact, a reasonable interpretation of the gravita-
tional force is as a D’Alembert force consequent on resisting the gravitational
acceleration. Notice that if a body is in free fall — i.e. if it is accelerating
freely in a gravitational field and not rotating — there is no body force and
hence no internal stress unless the boundaries are loaded.

Substitution of (7.15, 7.16) into (7.6) shows that the inertia forces due
to rigid-body accelerations are conservative if and only if ⌦̇ = 0 — i.e. if
the angular velocity is constant. We shall determine the body force potential
for this special case. Methods of treating the problem with non-zero angular
acceleration are discussed in §7.4 below.

From equations (7.4, 7.15, 7.16) with ⌦̇=0 we have

@V

@x
= ⇢(a

0x �⌦2x) (7.17)

@V

@y
= ⇢(a

0y �⌦2y) , (7.18)

and hence, on partial integration of (7.17)

V = ⇢

✓

a
0xx� 1

2
⌦2x2

◆

+ h(y) , (7.19)

where h(y) is an arbitrary function of y only. Substituting this result into
(7.18) we obtain the ordinary di↵erential equation

dh

dy
= ⇢(a

0y �⌦2y) (7.20)

for h(y), which has the general solution

h(y) = ⇢

✓

a
0yy � ⌦2y2

2

◆

+ C , (7.21)

where C is an arbitrary constant which can be taken to be zero without loss
of generality, since we are only seeking a particular potential function V .

The final expression for V is therefore

V = ⇢

✓

a
0xx + a

0yy � 1
2
⌦2(x2 + y2)

◆

. (7.22)

The reader might like to try this procedure on a set of body forces which do

not satisfy the condition (7.6). It will be found that the right-hand side of the
ordinary di↵erential equation like (7.20) then contains terms which depend
on x and hence this equation cannot be solved for h(y).
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7.3 Solution for the stress function

Once the body force potential V has been determined, the next step is to find
a suitable function �, which satisfies the compatibility condition (7.8) and
which defines stresses through equations (7.1–7.3) satisfying the boundary
conditions of the problem. There are broadly speaking two ways of doing this.
One is to choose some suitable form (such as a polynomial) without regard to
equation (7.8) and then satisfy the constraint conditions resulting from (7.8)
in the same step as those arising from the boundary conditions. The other
is to seek a general solution of the inhomogeneous equation (7.8) and then
determine the resulting arbitrary constants from the boundary conditions.

7.3.1 The rotating rectangular beam

As an illustration of the first method, we consider the problem of the rect-
angular beam �a < x < a, �b < y < b, rotating about the origin at constant
angular velocity ⌦, all the boundaries being traction-free (see Figure 7.1).

Figure 7.1: The rotating rectangular bar.

The body force potential for this problem is obtained from equation (7.22)
as

V = �1
2
⇢⌦2(x2 + y2) , (7.23)

and hence the stress function must satisfy the equation

r4� = 2⇢(1� ⌫)⌦2 , (7.24)

from (7.8, 7.23).
The geometry suggests a formulation in Cartesian coördinates and equa-

tion (7.24) leads us to expect a polynomial of degree 4 in x, y. We also note
that V is even in both x and y and that the boundary conditions are homo-
geneous, so we propose the candidate stress function

� = A
1

x4 + A
2

x2y2 + A
3

y4 + A
4

x2 + A
5

y2 , (7.25)

which contains all the terms of degree 4 and below with the required symmetry.
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The constants A
1

, . . . , A
5

will be determined from equation (7.24) and
from the boundary conditions

�yx = 0 ; y = ±b (7.26)
�yy = 0 ; y = ±b (7.27)

Z b

�b

�xxdy = 0 ; x = ±a , (7.28)

where we have applied the weak boundary conditions only on x =±a. Note
also that the other two weak boundary conditions — that there should be no
moment and no shear force on the ends — are satisfied identically in view of
the symmetry of the problem about y=0.

As in the problem of §5.2.3, it is algebraically simpler to start by satisfying
the strong boundary conditions (7.26, 7.27). Substituting (7.25) into (7.1–7.3),
we obtain

�xx = 2A
2

x2 + 12A
3

y2 + 2A
5

� 1
2
⇢⌦2(x2 + y2) (7.29)

�yy = 12A
1

x2 + 2A
2

y2 + 2A
4

� 1
2
⇢⌦2(x2 + y2) (7.30)

�yx = �4A
2

xy . (7.31)

It follows that conditions (7.26, 7.27) will be satisfied for all x if and only
if

A
1

= ⇢⌦2/24 ; A
2

= 0 ; A
4

= ⇢⌦2b2/4 . (7.32)

The constant A
3

can now be determined by substituting (7.25) into (7.24),
with the result

24(A
1

+ A
3

) = 2⇢⌦2(1� ⌫) , (7.33)

which is the inhomogeneous equivalent of the constraint equations (see §5.1),
and hence

A
3

= ⇢⌦2(1� 2⌫)/24 , (7.34)

using (7.32).
Finally, we determine the remaining constant A

5

by substituting (7.29)
into the weak boundary condition (7.28) and evaluating the integral, with the
result

A
5

= ⇢⌦2

✓

⌫b2

6
+

a2

4

◆

. (7.35)

The final stress field is therefore

�xx = ⇢⌦2

✓

(a2 � x2)
2

+
⌫(b2 � 3y2)

3

◆

(7.36)

�yy =
⇢⌦2

2
(b2 � y2) (7.37)

�yx = 0 , (7.38)
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from equations (7.29–7.31).
Notice that the boundary conditions on the ends x=±a agree with those

of the physical problem except for the second term in �xx, which represents a
symmetric self-equilibrated traction. From §6.2.2, we anticipate that the error
due to this disagreement will be confined to regions near the ends of length
comparable with the half-length, b.

7.3.2 Solution of the governing equation

Equation (7.24) is an inhomogeneous partial di↵erential equation — i.e. it
has a known function of x, y on the right-hand side — and it can be solved
in the same way as an inhomogeneous ordinary di↵erential equation, by first
finding a particular solution of the equation and then superposing the general
solution of the corresponding homogeneous equation.

In this context, a particular solution is any function � that satisfies (7.24).
It contains no arbitrary constants. The generality in the general solution comes
from arbitrary constants in the homogeneous solution. Furthermore, the ho-
mogeneous solution is the solution of equation (7.24) modified to make the
right-hand side zero — i.e.

r4� = 0 (7.39)

Thus, the homogeneous solution is a general biharmonic function and we
can summarize the solution method as containing the three steps:-

(i) finding any function � which satisfies (7.24);
(ii) superposing a su�ciently general biharmonic function (which therefore

contains several arbitrary constants);
(iii) choosing the arbitrary constants to satisfy the boundary conditions.

In the problem of the preceding section, the particular solution would be
any fourth degree polynomial satisfying (7.24) and the homogeneous solution,
the most general fourth degree biharmonic function with the appropriate sym-
metry.

Notice that the particular solution (i) is itself a solution of a di↵erent
physical problem — one in which the body forces are correctly represented,
but the correct boundary conditions are not (usually) satisfied. Thus, the
function of the homogeneous solution is to introduce additional degrees of
freedom to enable us to satisfy the boundary conditions.

Physical superposition

It is often helpful to think of this superposition process in a physical rather
than a mathematical sense. In other words, we devise a related problem in
which the body forces are the same as in the real problem, but where the
boundary conditions are simpler. For example, if a beam is subjected to grav-
itational loading, a simple physical ‘particular’ solution would correspond to
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the problem in which the beam is resting on a rigid foundation and hence
the stress field is one-dimensional. To complete the real problem, we would
then have to superpose the solution of a corrective problem with tractions
equal to the di↵erence between the required tractions and those implied by
the particular solution, but with no body force, since this has already been
taken into account in the particular solution.

One advantage of this way of thinking is that it is not restricted to problems
in which the body force can be represented by a potential. We can therefore
use it to solve the problem of the rotationally accelerating beam in the next
section.

7.4 Rotational acceleration

We saw in §7.2.4 that the body force potential cannot be used in problems
where the angular acceleration is non-zero. In this section, we shall generate
a particular solution for this problem and then generalize it, using the results
without body force from Chapter 5.

7.4.1 The circular disk

Consider the rotationally symmetric problem of Figure 7.2. A solid circular
disk, radius a, is initially at rest (⌦ = 0) and at time t = 0 it is caused to
accelerate in a clockwise direction with angular acceleration ⌦̇ by tractions
uniformly distributed around the edge r = a. Note that we could determine
the magnitude of these tractions by writing the equation of motion for the
disk, but it will not be necessary to do this — the result will emerge from the
analysis of the stress field.

Figure 7.2: The disk with rotational acceleration.

At any given time, the body forces and hence the resulting stress field will
be the sum of two parts, one due to the instantaneous angular velocity and
the other to the angular acceleration. The former can be obtained using the
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body force potential and we therefore concentrate here on the contribution
due to the angular acceleration. This is the only body force at the beginning
of the process, so the following solution can also be regarded as the solution
for the instant, t=0.

The problem is clearly axisymmetric, so the stresses and displacements
must depend on the radius r only, but it is also antisymmetric, since if the
sign of the tractions were changed, the problem would become a mirror im-
age of that illustrated. Now suppose some point in the disk had a non-zero
outward radial displacement, ur. Changing the sign of the tractions would
change the sign of this displacement — i.e. make it be directed inwards —
but this is impossible if the new problem is to be a mirror image of the old.
We can therefore conclude from symmetry that ur = 0 throughout the disk.
In the same way, we can conclude that the stress components �rr,�✓✓ are
zero everywhere. Incidentally, we also note that if the problem is conceived as
being one of plane strain, symmetry demands that �zz be everywhere zero.
It follows that this is one of those lucky problems in which plane stress and
plane strain are the same and hence the plane stress assumption involves no
approximation.

We conclude that there is only one non-zero displacement component,
u✓, and one non-zero strain component, er✓. Thus, the number of strain and
displacement components is equal and no non-trivial compatibility conditions
can be obtained by eliminating the displacement components. (An alternative
statement is that all the compatibility equations are satisfied identically, as
can be verified by substitution — the compatibility equations in cylindrical
polar coördinates are given by Saada3).

It follows that the only non-zero stress component, �r✓ can be determined
from equilibrium considerations alone. Considering the equilibrium of a small
element due to forces in the ✓-direction and dropping terms which are zero
due to the symmetry of the system, we obtain

d�r✓

dr
+

2�r✓

r
= �⇢r⌦̇ , (7.40)

which has the general solution

�r✓ = �⇢⌦̇r2

4
+

A

r2

, (7.41)

where A is an arbitrary constant which must be set to zero to retain continuity
at the origin. Thus, the stress field in the disk of Figure 7.2 is

�r✓ = �⇢⌦̇r2

4
. (7.42)

In particular, the traction at the surface r = a is
3 A.S.Saada, Elasticity, Pergamon Press, New York, 1973, §6.9.
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��r✓(a) =
⇢⌦̇a2

4
(7.43)

and the applied moment about the axis of rotation is therefore

M = �2⇡a2�r✓(a) =
⇡⇢⌦̇a4

2
, (7.44)

since the traction acts over a length 2⇡a and the moment arm is a. We know
from elementary dynamics that M = I⌦̇, where I is the moment of inertia
and we can therefore deduce from (7.44) that

I =
⇡⇢a4

2
, (7.45)

which is of course the correct expression for the moment of inertia of a solid
disk of density ⇢, radius a and unit thickness. Notice however that we were
able to deduce the relation between M and ⌦̇ without using the equations of
rigid-body dynamics. Equation (7.40) ensures that every particle of the body
obeys Newton’s law and this is su�cient to ensure that the complete body
satisfies the equations of rigid-body dynamics.

7.4.2 The rectangular bar

We can use the stress field (7.42) as a particular solution for determining the
stresses in a body of any shape due to angular acceleration. One way to think
of this is to imagine cutting out the real body from an imaginary disk of
su�ciently large radius. The stresses in the cut-out body will be the same as
those in the disk, provided we arrange to apply tractions to the boundaries of
the body that are equal to the stress components on those surfaces before the
cut was made. These will not generally be the correct boundary tractions for
the real problem, but we can correct the boundary tractions by superposing
a homogeneous solution — i.e. a corrective solution for the actual body with
prescribed boundary tractions (equal to the di↵erence between those applied
and those obtained in the disk solution) but no body forces (since these have
already been taken care of in the disk solution).

As an illustration, we consider the rectangular bar, �a<x<a, �b<y<b,
accelerated by two equal shear forces, F , applied at the ends x=±a as shown
in Figure 7.3, the other boundaries, y=±b being traction free.

Figure 7.3: The rectangular bar with rotational acceleration.
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We first transform the disk solution into rectangular coördinates, using
the transformation relations (1.15–1.17), obtaining

�xx = �2�r✓ sin ✓ cos ✓ =
⇢⌦̇r2 sin ✓ cos ✓

2
=
⇢⌦̇xy

2
(7.46)

�yy = 2�r✓ sin ✓ cos ✓ = �⇢⌦̇r2 sin ✓ cos ✓
2

= �⇢⌦̇xy

2
(7.47)

�xy = �r✓(cos2 ✓ � sin2 ✓) = �⇢⌦̇r2(cos2 ✓ � sin2 ✓)
2

= �⇢⌦̇(x2 � y2)
4

.

(7.48)

This stress field is clearly odd in both x and y and involves normal tractions
on y=±b which vary linearly with x. The bending moment will therefore vary
with x3 suggesting a stress function � with a leading term x5y — i.e. a sixth
degree polynomial.

The most general polynomial with the appropriate symmetry is

� = A
1

x5y + A
2

x3y3 + A
3

xy5 + A
4

x3y + A
5

xy3 + A
6

xy . (7.49)

The stress components are the sum of those obtained from the homo-
geneous stress function (7.49) using the definitions (4.6) — remember the
homogeneous solution here is one without body force — and those from the
disk problem given by equations (7.46–7.48). We find

�xx =
1
2
⇢⌦̇xy + 6A

2

x3y + 20A
3

xy3 + 6A
5

xy (7.50)

�yy = �1
2
⇢⌦̇xy + 20A

1

x3y + 6A
2

xy3 + 6A
4

xy (7.51)

�xy = �1
4
⇢⌦̇(x2 � y2)� 5A

1

x4 � 9A
2

x2y2

�5A
3

y4 � 3A
4

x2 � 3A
5

y2 �A
6

. (7.52)

The boundary conditions are

�yx = 0 ; y = ±b (7.53)
�yy = 0 ; y = ±b (7.54)

Z b

�b

y�xxdy = 0 ; x = ±a , (7.55)

where we note that weak boundary conditions are imposed on the ends x=±a.
Since the solution is odd in y, only the moment and shear force conditions
are non-trivial and the latter need not be explicitly imposed, since they will
be satisfied by global equilibrium (as in the example in §5.2.2).

Conditions (7.53, 7.54) have to be satisfied for all x and hence the corre-
sponding coe�cients of all powers of x must be zero. It follows immediately
that A

1

=0 and the remaining conditions can be written
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�1
2
⇢⌦̇ + 6A

2

b2 + 6A
4

= 0 (7.56)

�1
4
⇢⌦̇ � 9A

2

b2 � 3A
4

= 0 (7.57)

1
4
⇢⌦̇b2 � 5A

3

b4 � 3A
5

b2 �A
6

= 0 . (7.58)

We get one additional condition from the requirement that � (equation
(7.49)) be biharmonic

72A
2

+ 120A
3

= 0 (7.59)

and another from the boundary condition (7.55), which with (7.50) yields

1
6
⇢⌦̇ + 2A

2

a2 + 4A
3

b2 + 2A
5

= 0 . (7.60)

The solution of these equations is routine, giving the stress function

� = � ⇢⌦̇

60b2

(5x3y3�3xy5�10b2x3y+11b2xy3�5a2xy3 +15a2b2xy�33b4xy) .

(7.61)
The complete stress field, including the particular solution terms, is

�xx = ⇢⌦̇xy

✓

y2

b2

� 3
5

+
(a2 � x2)

2b2

◆

(7.62)

�yy =
⇢⌦̇xy

2

✓

1� y2

b2

◆

(7.63)

�xy = ⇢⌦̇(b2 � y2)
✓

y2 + a2 � 3x2

4b2

� 11
20

◆

, (7.64)

from (7.50–7.52).
Finally, we can determine the forces F on the ends by integrating the shear

traction, �xy over either end as

F = �
Z b

�b

�xy(a)dy =
2
3
⇢⌦̇b(a2 + b2) . (7.65)

Maple and Mathematica solutions of this problem are given in the files ‘S742’.
As in §7.4.1, the relation between the applied loading and the angular accel-
eration has been obtained without recourse to the equations of rigid-body
dynamics. However, we note that the moment of inertia of the rectangular
bar for rotation about the origin is I = 4⇢ab(a2+b2)/3 and the applied mo-
ment is M = 2Fa, so application of the equation M = I⌦̇ leads to the same
expression for F as that found in (7.65).
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7.4.3 Weak boundary conditions and the equation of motion

We saw in §5.2.1 that weak boundary conditions need only be applied at one
end of a stationary rectangular bar, since the stress field defined in terms of
the Airy stress function must involve tractions that maintain the body in equi-
librium. Similarly, in dynamic problems involving prescribed accelerations, an
appropriate set of weak boundary conditions can be omitted. For example,
we did not have to specify the value of F in the problem of Figure 7.3. In-
stead, it’s value was calculated after the stress field had been determined and
necessarily proved to be consistent with the equations of rigid-body dynamics.

If a body is prevented from moving by a statically determinate support,
it is natural to treat the support reactions as the ‘neglected’ weak boundary
conditions. Thus, if the body is attached to a rigid support at one boundary,
we apply no weak conditions at that boundary, as in §5.2.1. If the body is
simply supported at a boundary, we impose the weak boundary condition
that there be zero moment applied at the support, leading for example to the
conditions stated in footnote 2 on Page 63.

Similar considerations apply in a dynamic problem if the body is attached
to a support which moves in such a way as to prescribe the acceleration of the
body. However, we may also wish to solve problems in which specified non-
equilibrated loads are applied to an unsupported body. For example, we may
be asked to determine the stresses in the body of Figure 7.3 due to prescribed
end loads F . One way to do this would be first to solve a rigid-body dynamics
problem to determine the accelerations and then proceed as in §7.4.2. How-
ever, in view of the present discussion, a more natural approach would be to
include the angular acceleration ⌦̇ as an unknown and use equation (7.65) to
determine it in terms of F at the end of the solution procedure.

More generally, if we have a two-dimensional body subjected to prescribed
tractions on all edges, we could assume the most general accelerations (7.13,
7.14) and solve the body force problem, treating a

0x, a
0y, ⌦̇ as if they were

known. If strong boundary conditions are imposed on two opposite edges and
weak boundary conditions on both the remaining edges, it will then be found
that there are three extra conditions which serve to determine the unknown
accelerations.

PROBLEMS

1. Every particle of an elastic body of density ⇢ experiences a force

F =
C�m

r2

directed towards the origin, where C is a constant, r is the distance from the
origin and �m is the mass of the particle. Find a body force potential V that
satisfies these conditions.
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2. Verify that the body force distribution

px = Cy ; py = �Cx

is non-conservative, by substituting into equation (7.6). Use the technique of
§7.2.4 to attempt to construct a body force potential V for this case. Identify
the step at which the procedure breaks down.

3. To construct a particular solution for the stress components in plane strain
due to a non-conservative body force distribution, it is proposed to start by
representing the displacement components in the form

ux =
1
2µ

@ 

@y
; uy = � 1

2µ

@ 

@x
; uz = 0 .

Use the strain-displacement equations (1.51) and Hooke’s law (1.71) to find
expressions for the stress components in terms of  . Substitute these results
into the equilibrium equations (2.2, 2.3) to find the governing equations for
the stress function  .

What is the condition that must be satisfied by the body force distribution
p if these equations are to have a solution? Show that this condition is satisfied
if the body force distribution can be written in terms of a potential function
W as

px =
@W

@y
; py = �@W

@x
.

For the special case

px = Cy ; py = �Cx ,

find a particular solution for  in the axisymmetric polynomial form

 = A(x2 + y2)n ,

where A is a constant and n is an appropriate integer power. Show that this
solution can be used to obtain the stress components (7.46–7.48). Suggest
ways in which this method might be adapted to give a particular solution for
more general non-conservative body force distributions.

4. If the elastic displacement u varies in time, there will generally be acceler-
ations a = ü and hence body forces p =�⇢ü, from equation (7.11). Use this
result and equation (2.17) to develop the general equation of linear Elastody-
namics.

Show that this equation is satisfied by a displacement field of the form

ux = f(x� c
1

t) ; uy = g(x� c
2

t) ; uz = 0 ,

where f, g are any functions and c
1

, c
2

are two constants that depend on the
material properties. Find the values of c

1

, c
2

and comment on the physical
significance of this solution.
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5. The beam �b<y <b, 0<x<L is built-in at the edge x=L and is loaded
merely by its own weight, ⇢g per unit volume.

Find a solution for the stress field, using weak conditions on the end x=0.

6. One wall of a multistory building of height H is approximated as a thin
plate �b < x < b, 0 < y < H. During an earthquake, ground motion causes
the building to experience a uniform acceleration a in the x-direction. Find
the resulting stresses in the wall if the material has density ⇢ and the edges
x=±b, y=H can be regarded as traction-free.

7. A tall thin rectangular plate �a<x<a, �b<y<b (b�a) is supported on
the vertical edges x=±a and loaded only by its own weight (density ⇢). Find
the stresses in the plate using weak boundary conditions on the horizontal
edges y=±b and assuming that the support tractions consist only of uniform
shear.

8. Figure 7.4(a) shows a triangular cantilever, defined by the boundaries y =
0, y = x tan↵ and built-in at x = a. It is loaded by its own weight, ⇢g
per unit volume. Find a solution for the complete stress field and compare
the maximum tensile bending stress with that predicted by the Mechanics of
Materials theory.

Would the maximum tensile stress be lower if the alternative configuration
of Figure 7.4(b) were used?

Figure 7.4

9. The thin rectangular plate �a<x<a,�b<y <b with a� b rotates about
the y-axis at constant angular velocity ⌦. All surfaces of the plate are traction-
free. Find a solution for the stress field, using strong boundary conditions on
the long edges y=±b and weak boundary conditions on the ends x=±a.

10. Solve Problem 7.9 for the case where a⌧ b. In this case you should use
strong boundary conditions on x = ±a and weak boundary conditions on
y=±b.



108 7 Body forces

11. A thin triangular plate bounded by the lines y = ±x tan↵, x=a rotates
about the axis x=a at constant angular velocity ⌦. The inclined edges of the
plate y = ±x tan↵ are traction-free. Find a solution for the stress field, using
strong boundary conditions on the inclined edges (weak boundary conditions
will then be implied on x=a).

12. A thin triangular plate bounded by the lines y = ±x tan↵, x = a is
initially at rest, but is subjected to tractions at the edge x = a causing an
angular acceleration ⌦̇ about the perpendicular axis through the point (a, 0).
The inclined surfaces y = ±x tan↵ are traction-free. Find a solution for the
instantaneous stress field, using the technique of §7.4.2.

13. The thin square plate �a<x<a, �a<y <a rotates about the z-axis at
constant angular velocity ⌦. Use Mathieu’s method (§6.4 and Problem 6.6)
to develop a series solution that satisfies all the boundary conditions in the
strong sense. Make a contour plot of the maximum principal stress based on
truncating the series at m=n=2, and identify the location and magnitude of
the maximum tensile stress. By what percentage does this value di↵er from
the approximation obtained from §7.3.1?
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PROBLEMS IN POLAR COÖRDINATES

Polar coördinates (r, ✓) are particularly suited to problems in which the bound-
aries can be expressed in terms of equations like r = a, ✓ = ↵. This includes
the stresses in a circular disk or around a circular hole, the curved beam with
circular boundaries and the wedge, all of which will be discussed in this and
subsequent chapters.

8.1 Expressions for stress components

We first have to transform the biharmonic equation (4.11) and the expressions
for stress components (4.6) into polar coördinates, using the relations

x = r cos ✓ ; y = r sin ✓ (8.1)

r =
p

x2 + y2 ; ✓ = arctan
⇣y

x

⌘

. (8.2)

@

@x
=
@r

@x

@

@r
+
@✓

@x

@

@✓
= cos ✓

@

@r
� sin ✓

r

@

@✓
(8.3)

@

@y
=
@r

@y

@

@r
+
@✓

@y

@

@✓
= sin ✓

@

@r
+

cos ✓
r

@

@✓
. (8.4)

It follows that

@2

@x2
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✓

cos ✓
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@r
� sin ✓
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@✓

◆✓
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@r
� sin ✓
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◆

= cos2 ✓
@2
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+ sin2 ✓

✓

1
r

@

@r
+

1
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@2

@✓2

◆

+2 sin ✓ cos ✓
✓

1
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@
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� 1

r
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@r@✓

◆

(8.5)

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172,
DOI 10.1007/978-90-481-3809-8_8, © Springer Science+Business Media B.V. 2010 

The derivation is tedious, but routine. We first note by di↵erentiation that
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and by a similar process, we find that

@2

@y2

= sin2 ✓
@2

@r2

+ cos2 ✓
✓

1
r
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+

1
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@2

@✓2

◆

�2 sin ✓ cos ✓
✓

1
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� 1
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@r@✓
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(8.6)

@2

@x@y
= sin ✓ cos ✓

✓
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@r2

� 1
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� 1
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◆

� �cos2 ✓ � sin2 ✓
�

✓

1
r2

@

@✓
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◆

. (8.7)

Finally, we can determine the expressions for stress components, noting
for example that

�rr = �xx cos2 ✓ + �yy sin2 ✓ + 2�xy sin ✓ cos ✓ (8.8)

= cos2 ✓
@2�

@y2

+ sin2 ✓
@2�

@x2

� 2 sin ✓ cos ✓
@2�

@x@y

=
1
r

@�

@r
+

1
r2

@2�

@✓2

, (8.9)

after substituting for the partial derivatives from (8.5–8.7) and simplifying.
The remaining stress components, �✓✓,�r✓ can be obtained by a similar

procedure. We find

�rr =
1
r

@�

@r
+

1
r2

@2�

@✓2

; �✓✓ =
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(8.10)

�r✓ =
1
r2

@�

@✓
� 1

r

@2�

@r@✓
= � @

@r

✓

1
r

@�

@✓

◆

. (8.11)

If there is a conservative body force p described by a potential V , the
stress components are modified to

�rr =
1
r

@�

@r
+

1
r2

@2�

@✓2

+ V ; �✓✓ =
@2�

@r2

+ V (8.12)
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, (8.13)

where
pr = �@V

@r
; p✓ = �1

r

@V

@✓
. (8.14)

We also note that the Laplacian operator

r2 ⌘ @2

@x2

+
@2

@y2

=
@2

@r2

+
1
r

@

@r
+

1
r2

@2

@✓2

, (8.15)

from equations (8.5, 8.6) and hence
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r4� ⌘
✓
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1
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Notice that in applying the second Laplacian operator in (8.16) it is neces-
sary to di↵erentiate by parts. The two di↵erential operators cannot simply be
multiplied together. In Mathematica and Maple, the easiest technique is to
define a new function

f ⌘ r2� =
@2�

@r2

+
1
r

@�

@r
+

1
r2

@2�

@✓2

(8.17)

and then obtain r4� from

r4� = r2f =
@2f

@r2

+
1
r

@f

@r
+

1
r2

@2f

@✓2

. (8.18)

8.2 Strain components

A similar technique can be used to obtain the strain-displacement relations
in polar coördinates. Writing

ux = ur cos ✓ � u✓ sin ✓ (8.19)
uy = ur sin ✓ + u✓ cos ✓ (8.20)

and substituting in (8.3), we find

exx =
@ux

@x
=
@ur

@r
cos2 ✓ +

✓

u✓

r
� @u✓

@r
� 1

r
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@✓
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+
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r
+

1
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@u✓

@✓

◆

sin2 ✓ . (8.21)

Using the same method to obtain expressions for exy, eyy and substituting
the results in the strain transformation relations analogous to (8.8) etc., we
obtain the polar coördinate strain-displacement relations

err =
@ur

@r
; er✓ =

1
2

✓

1
r

@ur

@✓
+
@u✓

@r
� u✓

r

◆

; e✓✓ =
1
r

@u✓

@✓
+

ur

r
. (8.22)

8.3 Fourier series expansion

The simplest problems in polar coördinates are those in which there are no ✓-
boundaries, the most general case being the disk with a central hole illustrated
in Figure 8.1 and defined by a<r<b.
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Figure 8.1: The disk with a central hole.

The stresses and displacements must be single-valued and continuous and
hence they must be periodic functions of ✓, since (r, ✓+2m⇡) defines the same
point as (r, ✓), when m is any integer. It is therefore natural to seek a general
solution of the problem of Figure 8.1 in the form

� =
1
X

n=0

fn(r) cos(n✓) +
1
X

n=1

gn(r) sin(n✓) . (8.23)

Substituting this expression into the biharmonic equation, using (8.16), we
find that the functions fn, gn must satisfy the ordinary di↵erential equation

✓
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dr2

+
1
r

d

dr
� n2

r2

◆✓

d2fn

dr2

+
1
r

dfn

dr
� n2fn

r2

◆

= 0 , (8.24)

which, for n 6=0, 1 has the general solution

fn(r) = An1

rn+2 + An2

r�n+2 + An3

rn + An4

r�n , (8.25)

where An1

, . . . An4

are four arbitrary constants.
When n = 0, 1, the solution (8.25) develops repeated roots and equation

(8.24) has a di↵erent form of solution given by

f
0

(r) = A
01

r2 + A
02

r2 ln(r) + A
03

ln(r) + A
04

(8.26)
f
1

(r) = A
11

r3 + A
12

r ln(r) + A
13

r + A
14

r�1 . (8.27)

In all the above equations, we note that the stress functions associated
with the constants An3

, An4

are harmonic and hence biharmonic a fortiori,
whereas those associated with An1

, An2

are biharmonic but not harmonic.

8.3.1 Satisfaction of boundary conditions

The boundary conditions on the surfaces r=a, b will generally take the form
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�rr = F
1

(✓) ; r = a (8.28)
= F

2

(✓) ; r = b (8.29)
�r✓ = F

3

(✓) ; r = a (8.30)
= F

4

(✓) ; r = b , (8.31)

each of which has to be satisfied for all values of ✓. This can conveniently be
done by expanding the functions F

1

, . . . F
4

as Fourier series in ✓. i.e.

Fj(✓) =
1
X

n=0

Cnj cos(n✓) +
1
X

n=1

Dnj sin(n✓) ; j = 1, . . . , 4 . (8.32)

In combination with the stress function of equation (8.23), (8.28–8.31) will
then give four independent equations for each trigonometric term, cos(n✓),
sin(n✓) in the series and hence serve to determine the four constants An1

, An2

,
An3

, An4

. The problem of Figure 8.1 is therefore susceptible of a general so-
lution.

8.3.2 Circular hole in a shear field

The general solution has some anomolous features for the special values n=
0, 1, but before discussing these we shall illustrate the method by solving a
simple example. Figure 8.2 shows a large plate in a state of pure shear �xy =S,
perturbed by a hole of radius a.

Figure 8.2: Circular hole in a shear field.

A formal statement of the boundary conditions for this problem is

�rr = 0 ; r = a (8.33)
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�r✓ = 0 ; r = a (8.34)
�xx,�yy ! 0 ; r !1 (8.35)

�xy ! S ; r !1 . (8.36)

Notice that we describe a body as ‘large’ when we mean to interpret the
boundary condition at the outer boundary as being applied at r!1. No-
tice also that we have stated these ‘infinite’ boundary conditions in (x, y)
coördinates, since this is the most natural way to describe a state of uniform
stress. We shall see that the stress function approach makes it possible to
use both rectangular and polar coördinates in the same problem without any
special di�culty.

This is a typical perturbation problem in which a simple state of stress is
perturbed by a local geometric feature (in this case a hole). It is reasonable
in such cases to anticipate that the stresses distant from the hole will be
unperturbed and that the e↵ect of the hole will only be felt at moderate
values of r/a. Perturbation problems are most naturally approached by first
solving the simpler problem in which the perturbation is absent (in this case
the plate without a hole) and then seeking a corrective solution which will
describe the influence of the hole on the stress field. With such a formulation,
we anticipate that the corrective solution will decay with increasing r.

The unperturbed field is clearly a state of uniform shear, �xy =S, and this
in turn is conveniently described by the stress function

� = �Sxy = �Sr2 sin ✓ cos ✓ = �Sr2 sin(2✓)
2

, (8.37)

from equation (4.6). Notice that although the stress function is originally
determined in rectangular coördinates, it is easily transformed into polar
coördinates using (8.1) and then into the Fourier form of equation (8.23).

The unperturbed solution satisfies the ‘infinite’ boundary conditions (8.35,
8.36), but will violate the conditions at the hole surface (8.33, 8.34). However,
we can correct the stress field by superposing those terms from the series (8.23)
which (i) have the same Fourier dependence as (8.37) and (ii) lead to stresses
which decay as r increases. There will always be two such terms for any given
Fourier component, permitting the two traction boundary conditions to be
satisfied. In the present instance, the required terms are those derived from
the constants A

22

, A
24

in equation (8.25), giving the stress function1

� = �Sr2 sin(2✓)
2

+ A sin(2✓) +
B sin(2✓)

r2

. (8.38)

The corresponding stress components are obtained by substituting in (8.10,
8.11) with the result
1 It might be thought that the term involving A22 is inappropriate because it does

not decay with r. However, it leads to stresses which decay with r, which is of
course what we require.
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cos(2✓) (8.40)
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◆

sin(2✓) . (8.41)

The two boundary conditions at the hole surface (8.33, 8.34) then yield
the two equations

4A

a2

+
6B

a4

= S (8.42)

2A

a2

+
6B

a4

= �S (8.43)

for the constants A,B, with solution

A = Sa2 ; B = �Sa4

2
(8.44)

and the final stress field is

�rr = S
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1� 4
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◆

sin(2✓) (8.45)

�r✓ = S
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◆

cos(2✓) (8.46)

�✓✓ = S

✓

�1� 3
a4

r4

◆

sin(2✓) . (8.47)

Notice incidentally that the maximum stress is the hoop stress, �✓✓ = 4S
at the point (a, 3⇡/4). At this point there is a state of uniaxial tension, so the
maximum shear stress is 2S. Since the unperturbed shear stress has a mag-
nitude S, we say that the hole produces a stress concentration of 2. However,
for a brittle material, we might be inclined to define the stress concentration
factor as the ratio of the maximum tensile stresses in the perturbed and un-
perturbed solutions, which in the present problem is 4. In general, a stress
concentration factor implies a measure of the severity of the stress field —
usually a failure theory — which serves as a standard of comparison and the
magnitude of the stress concentration factor will depend upon the measure
used.

The determination of the stress concentration due to holes, notches and
changes of section under various loading conditions is clearly a question of
considerable practical importance. An extensive discussion of problems of this
kind is given by Savin2 and stress concentration factors for a wide range of
geometries are tabulated by Peterson3 in a form suitable for use in engineering
design.
2 G.N.Savin, Stress Concentration around Holes, Pergamon Press, Oxford, 1961.
3 R.E.Peterson, Stress Concentration Design Factors, John Wiley, New York, 1974.



116 8 Problems in polar coördinates

8.3.3 Degenerate cases

We have already remarked in §8.3 above that the solution (8.25) degenerates
for n=0, 1 and must be supplemented by some additional terms. In fact, even
the modified stress function of (8.26, 8.27) is degenerate because the stress
function

� = A + Bx + Cy = A + Br cos ✓ + Cr sin ✓ (8.48)

defines a trivial null state of stress (see §5.1.1) and hence the constants
A

04

, A
13

in equations (8.26, 8.27) correspond to null stress fields.
This question of degeneracy arises elsewhere in Elasticity and indeed in

mathematics generally, so we shall take this opportunity to develop a general
technique for resolving it. As we saw in §8.3, the degeneracy often arises from
the occurrence of repeated roots to an equation. Thus, in equation (8.25), the
terms An2

r�n+2, An3

rn degenerate to the same form when n=1.
Suppose for the moment that we relax the restriction that n be an integer.

Clearly the degeneracy in equation (8.25) only arises exactly at the values
n = 0, 1. There is no degeneracy for n = 1+ ✏ for any non-zero ✏, however
small. We shall show therefore that we can recover the extra solution at the
degenerate point by allowing the solution to tend smoothly to the limit n!1,
rather than setting n=1 ab initio.

For n=1+✏, the two o↵ending terms in (8.25) can be written

f(r) = Ar1�✏ + Br1+✏ , (8.49)

where A,B, are two arbitrary constants.
Clearly the two terms tend to the same form as ✏! 0. However, suppose

we construct a new function from the sum and di↵erence of these functions
in the form

f(r) = C(r1+✏ + r1�✏) + D(r1+✏ � r1�✏) . (8.50)

In this form, the first function tends to 2Cr as ✏! 0, whilst the second
tends to zero. However, we can prevent the second term degenerating to zero,
since the constant D is arbitrary. We can therefore choose D=E✏�1 in which
case the second term will tend to the limit

lim
✏!0

E
r1+✏ � r1�✏

✏
= 2Er ln(r) , (8.51)

where we have used L’Hôpital’s rule to evaluate the limit. Notice that this
result agrees with the special term included in equation (8.27) above to resolve
the degeneracy in � for n=1.

This procedure can be generalized as follows: Whenever a degeneracy oc-
curs at a denumerable set of values of a parameter (such as n in equation
(8.25)), we can always make up the defecit using additional terms obtained
by di↵erentiating the original form with respect to the parameter before al-
lowing it to take the special value.
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The pairs rn+2, r�n+2 and rn, r�n both degenerate to the same form for
n=0, so the new functions are of the form

lim
n!0

d(rn+2)
dn

= r2 ln(r) (8.52)

lim
n!0

d(rn)
dn

= ln(r) , (8.53)

again agreeing with the special terms introduced in (8.26).
Sometimes the degeneracy is of a higher order, corresponding to more

than two identical roots, in which case L’Hôpital’s rule has to be applied
more than once — i.e. we have to di↵erentiate more than once with respect
to the parameter. It is always a straightforward matter to check the resulting
solutions to make sure they are of the required form.

We now turn our attention to the degeneracy implied by the triviality of
the stress function of equation (8.48). Here, the stress function itself is not
degenerate — i.e. it is a legitimate function of the required Fourier form and
it is linearly independent of the other functions of the same form. The trouble
is that it gives a null stress field. We must therefore look for stress functions
that are not of the standard Fourier form, but which give Fourier type stress
components.

Once again, the method is to approach the solution as a limit using
L’Hôpital’s rule, but this time we have to operate on the complete stress
function — not just on the part that varies with r. Suppose we consider the
axisymmetric degenerate term, �= A, which can be regarded as the limit of
a stress function of the form

� = Ar✏ cos(✏✓) + Br✏ sin(✏✓) , (8.54)

as ✏!0.
Di↵erentiating this function with respect to ✏ and then letting ✏ tend to

zero,we obtain the new function

� = A ln(r) + B✓ . (8.55)

The first term is the same one that we found by operating on the function
fn(r) and is of the correct Fourier form, but the second term is not appro-
priate to a Fourier series. However, when we substitute the second term into
equations (8.10, 8.11), we obtain the stress components

�rr = �✓✓ = 0 ; �r✓ =
B

r2

, (8.56)

which are of the required Fourier form (for n=0), since the stress components
do not vary with ✓.

In the same way, we can develop special terms to make up the deficit due
to the two null terms with n = 1 (equation (8.48), obtaining the new stress
functions
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� = Br✓ sin ✓ + Cr✓ cos ✓ , (8.57)

which generate the Fourier-type stress components

�r✓ = �✓✓ = 0 ; �rr =
2B cos ✓

r
� 2C sin ✓

r
. (8.58)

8.4 The Michell solution

The preceding results now permit us to write down a general solution of the
elasticity problem in polar coördinates, such that the stress components form
a Fourier series in ✓. We have

� = A
01

r2 + A
02

r2 ln(r) + A
03

ln(r) + A
04

✓

+(A
11

r3 + A
12

r ln(r) + A
14

r�1) cos ✓ + A
13

r✓ sin ✓
+(B

11

r3 + B
12

r ln(r) + B
14

r�1) sin ✓ + B
13

r✓ cos ✓

+
1
X

n=2

(An1

rn+2 + An2

r�n+2 + An3

rn + An4

r�n) cos(n✓)

+
1
X

n=2

(Bn1

rn+2 + Bn2

r�n+2 + Bn3

rn + Bn4

r�n) sin(n✓) (8.59)

This solution is due to Michell4. The corresponding stress components are
easily obtained by substituting into equations (8.10, 8.11). For convenience, we
give them in tabular form in Table 8.1, since we shall often wish to select a few
components from the general solution in the solution of specific problems. The
terms in the Michell solution are also given in the Maple and Mathematica files
‘Michell’, from which appropriate terms can be cut and pasted as required.

Notice that there are four independent stress functions for each term in
the Fourier series, as required by the argument of §8.3.1. If the disk is solid,
there is no inner boundary and we must exclude those components in Table
8.1 that give stresses which go to infinity as r!0.

In addition to the special stress functions necessitated by the degeneracy
discussed in §8.3.3, the cases n = 0, 1 exhibit other anomolies. In particular,
some of the stress functions for n = 0, 1 correspond to multiple-valued dis-
placement fields and cannot be used for the complete annulus of Figure 8.1.
Also, equilibrium requirements place restrictions on the permissible boundary
conditions for the terms n=0, 1 in the Fourier series (8.32).

Detailed discussion of these di�culties will be postponed to §9.3.1, after
we have introduced methods of determining the displacements associated with
a given stress field. In the present chapter, we shall restrict attention to cases
where these di�culties do not arise.
4 J.H.Michell, On the direct determination of stress in an elastic solid, with appli-

cation to the theory of plates, Proceedings of the London Mathematical Society,
Vol. 31 (1899), pp.100–124.
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Table 8.1. The Michell solution — stress components

� �
rr

�
r✓

�
✓✓

r2 2 0 2

r2 ln(r) 2 ln(r) + 1 0 2 ln(r) + 3

ln(r) 1/r2 0 �1/r2

✓ 0 1/r2 0

r3 cos ✓ 2r cos ✓ 2r sin ✓ 6r cos ✓

r✓ sin ✓ 2 cos ✓/r 0 0

r ln(r) cos ✓ cos ✓/r sin ✓/r cos ✓/r

cos ✓/r �2 cos ✓/r3
�2 sin ✓/r3 2 cos ✓/r3

r3 sin ✓ 2r sin ✓ �2r cos ✓ 6r sin ✓

r✓ cos ✓ �2 sin ✓/r 0 0

r ln(r) sin ✓ sin ✓/r � cos ✓/r sin ✓/r

sin ✓/r �2 sin ✓/r3 2 cos ✓/r3 2 sin ✓/r3

rn+2cos n✓ �(n+1)(n�2)rncos n✓ n(n+1)rnsin n✓ (n+1)(n+2)rncos n✓

r�n+2cos n✓�(n+2)(n�1)r�ncos n✓�n(n�1)r�nsin n✓ (n�1)(n�2)r�ncos n✓

rncos n✓ �n(n�1)rn�2cos n✓ n(n�1)rn�2sin n✓ n(n�1)rn�2cos n✓

r�ncos n✓ �n(n+1)r�n�2cos n✓ �n(n+1)r�n�2sin n✓ n(n+1)r�n�2cos n✓

rn+2sin n✓ �(n+1)(n�2)rnsin n✓ �n(n+1)rncos n✓ (n+1)(n+2)rnsin n✓

r�n+2sin n✓ �(n+2)(n�1)r�nsin n✓ n(n�1)r�ncos n✓ (n�1)(n�2)r�nsin n✓

rnsin n✓ �n(n�1)rn�2sin n✓ �n(n�1)rn�2cos n✓ n(n�1)rn�2sin n✓

r�nsin n✓ �n(n+1)r�n�2sin n✓ n(n+1)r�n�2cos n✓ n(n+1)r�n�2sin n✓

8.4.1 Hole in a tensile field

To illustrate the use of Table 8.1, we consider the case where the the body of
Figure 8.2 is subjected to uniform tension at infinity instead of shear, so that
the boundary conditions become

�rr = 0 ; r = a (8.60)
�r✓ = 0 ; r = a (8.61)

�xy,�yy ! 0 ; r !1 (8.62)
�xx ! S ; r !1 . (8.63)

The unperturbed problem in this case can clearly be described by the
stress function

� =
Sy2

2
=

Sr2 sin2 ✓

2
=

Sr2

4
� Sr2 cos(2✓)

4
. (8.64)
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This function contains both an axisymmetric term and a cos(2✓) term, so
to complete the solution, we supplement it with those terms from Table 8.1
which have the same form and for which the stresses decay as r!1.

The resulting stress function is

� =
Sr2

4
� Sr2 cos(2✓)

4
+ A ln(r) + B✓ + C cos(2✓) +

D cos(2✓)
r2

(8.65)

and the corresponding stress components are

�rr =
S

2
+

S cos(2✓)
2

+
A

r2

� 4C cos(2✓)
r2

� 6D cos(2✓)
r4

(8.66)

�r✓ = �S sin(2✓)
2

+
B

r2

� 2C sin(2✓)
r2

� 6D sin(2✓)
r4

(8.67)

�✓✓ =
S

2
� S cos(2✓)

2
� A

r2

+
6D cos(2✓)

r4

. (8.68)

The boundary conditions (8.60, 8.61) will be satisfied if and only if the
coe�cients of both Fourier terms are zero on r = a and hence we obtain the
equations

S

2
+

A

a2

= 0 (8.69)

B

a2

= 0 (8.70)

S

2
� 4C

a2

� 6D

a4

= 0 (8.71)

�S

2
� 2C

a2

� 6D

a4

= 0 , (8.72)

which have the solution

A = �Sa2

2
; B = 0 ; C =

Sa2

2
; D = �Sa4

4
. (8.73)

The final stress field is then obtained as

�rr =
S

2

✓

1� a2

r2

◆

+
S cos(2✓)

2

✓

3a4

r4

� 4a2

r2

+ 1
◆

(8.74)

�r✓ =
S sin(2✓)

2

✓

3a4

r4

� 2a2

r2

� 1
◆

(8.75)

�✓✓ =
S

2

✓

1 +
a2

r2

◆

� S cos(2✓)
2

✓

3a4

r4

+ 1
◆

. (8.76)

The maximum tensile stress is �✓✓ = 3S at (a,⇡/2) and hence the stress
concentration factor for tensile loading is 3. The maximum stress point and the
unperturbed region at infinity are both in uniaxial tension and hence the stress
concentration factor will be the same whatever criterion is used to measure
the severity of the stress state. This contrasts with the problem of §8.3.2,
where the maximum stress state is uniaxial tension, but the unperturbed field
is pure shear.
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PROBLEMS

1. A large plate with a small central hole of radius a is subjected to in-plane
hydrostatic compression �xx = �yy =�S, �xy = 0 at the remote boundaries.
Find the stress field in the plate if the surface of the hole is traction-free.

2. A large rectangular plate is loaded in such a way as to generate the unper-
turbed stress field

�xx = Cy2 ; �yy = �Cx2 ; �xy = 0 .

The plate contains a small traction-free circular hole of radius a centred on
the origin. Find the perturbation in the stress field due to the hole.

3. Figure 8.3 shows a thin uniform circular disk, which rotates at constant
speed ⌦ about the diametral axis y = 0, all the surfaces being traction-free.
Determine the complete stress field in the disk.

Figure 8.3: Thin disk rotating about a diametral axis.

4. A series of experiments is conducted in which a thin plate is subjected
to biaxial tension/compression, �

1

,�
2

, the plane surface of the plate being
traction-free (i.e. �

3

=0).
Unbeknown to the experimenter, the material contains microscopic de-

fects which can be idealized as a sparse distribution of small holes through
the thickness of the plate. Show graphically the relation which will hold at
yield between the tractions �

1

,�
2

applied to the defective plate, if the Tresca
(maximum shear stress) criterion applies for the undamaged material.

5. The circular disk 0  r < a is subjected to uniform compressive tractions
�rr =�S in the two arcs �⇡/4<✓<⇡/4 and 3⇡/4<✓<5⇡/4, the remainder
of the surface r = a being traction-free. Expand these tractions as a Fourier
series in ✓ and hence develop a series solution for the stress field. Use Maple
or Mathematica to produce a contour plot of the Von Mises stress �E , using
a series truncated at 10 terms.
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6. A hole of radius a in a large elastic plate is loaded only by a self-equilibrated
distribution of normal pressure p(✓) that varies around the circumference of
the hole. By expanding p(✓) as a Fourier series in ✓ and using Table 8.1, show
that the hoop stress �✓✓ at the edge of the hole is given by

�✓✓(a, ✓) = 2p� p(✓) ,

where

p =
1
2⇡

Z

2⇡

0

p(✓)d✓

is the mean value of p(✓).
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CALCULATION OF DISPLACEMENTS

So far, we have restricted attention to the calculation of stresses and to prob-
lems in which the boundary conditions are stated in terms of tractions or force
resultants, but there are many problems in which displacements are also of
interest. For example, we may wish to find the deflection of the rectangular
beams considered in Chapter 5, or calculate the stress concentration factor
due to a rigid circular inclusion in an elastic matrix, for which a displacement
boundary condition is implied at the bonded interface.

If the stress components are known, the strains can be written down from
the stress-strain relations (1.77) and these in turn can be expressed in terms
of displacement gradients through (1.51). The problem is therefore reduced
to the integration of these gradients to recover the displacement components.

The method is most easily demonstrated by examples, of which we shall
give two — one in rectangular and one in polar coördinates.

9.1 The cantilever with an end load

We first consider the cantilever beam loaded by a transverse force, F , at
the free end (Figure 5.2), for which the stress components were calculated in
§5.2.1, being

�xx =
3Fxy

2b3

; �xy =
3F (b2 � y2)

4b3

; �yy = 0 , (9.1)

from (5.36–5.38).
The corresponding strain components are therefore

exx =
�xx

E
� ⌫�yy

E
=

3Fxy

2Eb3

(9.2)

exy =
�xy(1 + ⌫)

E
=

3F (1 + ⌫)(b2 � y2)
4Eb3

(9.3)

eyy =
�yy

E
� ⌫�xx

E
= �3F⌫xy

2Eb3

, (9.4)
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for plane stress.
We next make use of the strain-displacement relation to write

exx =
@ux

@x
=

3Fxy

2Eb3

, (9.5)

which can be integrated with respect to x to give

ux =
3Fx2y

4Eb3

+ f(y) , (9.6)

where we have introduced an arbitrary function f(y) of y, since any such
function would make no contribution to the partial derivative in (9.5). A
similar operation on (9.4) yields the result

uy = �3F⌫xy2

4Eb3

+ g(x) , (9.7)

where g(x) is an arbitrary function of x.
To determine the two functions f(y), g(x), we use the definition of shear

strain (1.49) and (9.3) to write

exy =
1
2

✓

@uy

@x
+
@ux

@y

◆

=
3F (1 + ⌫)(b2 � y2)

4Eb3

. (9.8)

Substituting for ux, uy, from (9.6, 9.7) and rearranging the terms, we ob-
tain

3Fx2

8Eb3

+
1
2

dg

dx
=

3F⌫y2

8Eb3

� 1
2

df

dy
+

3F (1 + ⌫)(b2 � y2)
4Eb3

. (9.9)

Now, the left-hand side of this equation is independent of y and the right-
hand side is independent of x. Thus, the equation can only be satisfied for all
x, y, if both sides are independent of both x and y — i.e. if they are equal to
a constant, which we shall denote by 1

2

C.
Equation (9.9) can then be partitioned into the two ordinary di↵erential

equations

dg

dx
= �3Fx2

4Eb3

+ C (9.10)

df

dy
=

3F⌫y2

4Eb3

+
3F (1 + ⌫)(b2 � y2)

2Eb3

� C , (9.11)

which have the solution

g(x) = � Fx3

4Eb3

+ Cx + B (9.12)

f(y) =
F⌫y3

4Eb3

+
F (1 + ⌫)(3b2y � y3)

2Eb3

� Cy + A , (9.13)

where A,B are two new arbitrary constants.
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The final expressions for the displacements are therefore

ux =
3Fx2y

4Eb3

+
3F (1 + ⌫)y

2Eb
� F (2 + ⌫)y3

4Eb3

+ A� Cy (9.14)

uy = �3F⌫xy2

4Eb3

� Fx3

4Eb3

+ B + Cx . (9.15)

This partial integration process can be performed for any biharmonic func-
tion � in Cartesian coördinates, using the Maple and Mathematica files ‘uxy’.

9.1.1 Rigid-body displacements and end conditions

The three constants A,B, C define the three degrees of freedom of the can-
tilever as a rigid body, A,B corresponding to translations in the x-, y-
directions respectively and C to a small anticlockwise rotation about the
origin.

These rigid-body terms always arise in the integration of strains to deter-
mine displacements and they reflect the fact that a complete knowledge of the
stresses and hence the strains throughout the body is su�cient to determine
its deformed shape, but not its location in space.

As in Mechanics of Materials, the rigid-body displacements can be deter-
mined from appropriate information about the way in which the structure is
supported. Since the cantilever is built-in at x = a, we would ideally like to
specify

ux = uy = 0 ; x = a , �b < y < b , (9.16)

but the three constants in (9.14, 9.15) do not give us su�cient freedom to
satisfy such a strong boundary condition. We should anticipate this defi-
ciency, since the complete solution procedure only permitted us to satisfy
weak boundary conditions on the ends of the beam and (9.16), in addition to
locating the beam in space, implies a pointwise traction distribution su�cient
to keep the end plane and unstretched.

Many authors adapt the Mechanics of Materials support conditions for
a cantilever by demanding that the mid-point (a, 0) of the end have zero
displacement and the axis of the beam (y =0) have zero slope at that point.
This leads to the three conditions

ux = uy = 0 ;
@uy

@x
= 0 ; x = a , y = 0 (9.17)

and yields the values

A = 0 ; B = � Fa3

2Eb3

; C =
3Fa2

4Eb3

, (9.18)

when (9.14, 9.15) are substituted in (9.17).
However, the displacement ux at x=a corresponds to the deformed shape

of Figure 9.1(a). This might be an appropriate end condition if the cantilever
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is supported in a horizontal groove, but other built-in support conditions
might approximate more closely to the configuration of Figure 9.1(b), where
the third of conditions (9.17) is replaced by

@ux

@y
= 0 ; x = a , y = 0 . (9.19)

Figure 9.1: End conditions for the cantilever.

This modified boundary condition leads to the values

A = 0 ; B = � Fa3

2Eb3

✓

1 + 3(1 + ⌫)
b2

a2

◆

; C =
3Fa2

4Eb3

✓

1 + 2(1 + ⌫)
b2

a2

◆

(9.20)
for the rigid-body displacement coe�cients.

The configurations 9.1(a, b) are clearly extreme cases and we might antic-
ipate that the best approximation to (9.16) would be obtained by an inter-
mediate case such as Figure 9.1(c). In fact, the displacement equivalent of the
weak boundary conditions of Chapter 5 would be to prescribe

Z b

�b

uxdy = 0 ;
Z b

�b

uydy = 0 ;
Z b

�b

yuxdy = 0 ; x = a . (9.21)

The substitution of (9.14, 9.15) into (9.21) gives a new set of rigid-body
displacement coe�cients, which are

A = 0 ; B = � Fa3

2Eb3

✓

1+
(12 + 11⌫)

5
b2

a2

◆

; C =
3Fa2

4Eb3

✓

1+
(8 + 9⌫)

5
b2

a2

◆

.

(9.22)

9.1.2 Deflection of the free end

The di↵erent end conditions corresponding to (a, b, c) of Figure 9.1 will clearly
lead to di↵erent estimates for the deflection of the cantilever. We can inves-
tigate this e↵ect by considering the displacement of the mid-point of the free
end, x=0, y=0, for which

uy(0, 0) = B , (9.23)
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from equation (9.15).
Thus, the end deflection predicted with the boundary conditions of (a, b, c)

respectively of Figure 9.1 are

uy(0, 0) = � Fa3

2Eb3

(a)

= � Fa3

2Eb3

✓

1 + 3(1 + ⌫)
b2

a2

◆

(b) (9.24)

= � Fa3

2Eb3

✓

1 +
(12 + 11⌫)

5
b2

a2

◆

(c) .

The first of these results (a) is also that predicted by the elementary
Mechanics of Materials solution and the second (b) is that obtained when a
correction is made for the ’shear deflection’, based on the shear stress at the
beam axis. Case (c), which is intermediate between (a) and (b), but closer
to (b), is probably the closest approximation to the true built-in boundary
condition (9.16).

All three expressions have the same leading term and the corrective term
in (b, c) will be small as long as b⌧ a — i.e. as long as the cantilever can
reasonably be considered as a slender beam.

9.2 The circular hole

The procedure of §9.1 has some small but critical di↵erences in polar coördin-
ates, which we shall illustrate using the problem of §8.3.2, in which a traction-
free circular hole perturbs a uniform shear field. The stresses are given by
equations (8.45–8.47) and, in plane stress, the strains are therefore

err =
�rr

E
� ⌫�✓✓

E
=

S

E

✓

1 + ⌫ � 4a2

r2

+
3(1 + ⌫)a4

r4

◆

sin(2✓) (9.25)

er✓ =
(1+ ⌫)�r✓

E
=

S

E

✓

1+ ⌫+
2(1+ ⌫)a2

r2

� 3(1+ ⌫)a4

r4

◆

cos(2✓) (9.26)

e✓✓ =
�✓✓

E
� ⌫�rr

E
=

S

E

✓

�1� ⌫ +
4⌫a2

r2

� 3(1 + ⌫)a4

r4

◆

sin(2✓) . (9.27)

Two of the three strain-displacement relations (8.22) contain both dis-
placement components, so we start with the simpler relation

err =
@ur

@r
, (9.28)

substitute for err from (9.25) and integrate, obtaining

ur =
S

E

✓

(1 + ⌫)r +
4a2

r
� (1 + ⌫)a4

r3

◆

sin(2✓) + f(✓) , (9.29)
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where f(✓) is an arbitrary function of ✓.
Writing the expression (8.22) for e✓✓ in the form

@u✓

@✓
= re✓✓ � ur , (9.30)

we can substitute for e✓✓, ur from (9.27, 9.29) respectively and integrate with
respect to ✓, obtaining

u✓ =
S

E

✓

(1 + ⌫)r +
2(1� ⌫)a2

r
+

(1 + ⌫)a4

r3

◆

cos(2✓)�F (✓) + g(r) , (9.31)

where g(r) is an arbitrary function of r and we have written F (✓) for
R

f(✓)d✓.
Finally, we substitute for ur, u✓, er✓ from (9.29, 9.31, 9.26) into the second

of equations (8.22) to obtain an equation for the arbitrary functions F (✓), g(r),
which reduces to

F (✓) + F 00(✓) = g(r)� rg0(r) . (9.32)

As in §9.1, this equation can only be satisfied for all r, ✓ if both sides are
equal to a constant1. Solving the two resulting ordinary di↵erential equations
for F (✓), g(r) and substituting into equations (9.29, 9.31), remembering that
f(✓)=F 0(✓) we obtain

ur =
S

E

✓

(1+ ⌫)r +
4a2

r
� (1+ ⌫)a4

r3

◆

sin(2✓) +A cos ✓ +B sin ✓ (9.33)

u✓ =
S

E

✓

(1 + ⌫)r +
2(1� ⌫)a2

r
+

(1 + ⌫)a4

r3

◆

cos(2✓)

�A sin ✓ + B cos ✓ + Cr , (9.34)

for the displacement components.
This partial integration process can be performed for any biharmonic func-

tion � in polar coördinates, using the Maple and Mathematica files ‘urt’. As
before, the three arbitrary constants A,B, C correspond to rigid-body dis-
placements, A,B being translations in the x-, y-directions respectively, whilst
C describes a small anticlockwise rotation about the origin.

In the present problem, we might reasonably set A,B, C to zero to preserve
symmetry. At the hole surface, the radial displacement is then

ur =
4Sa sin(2✓)

E
, (9.35)

which implies that the hole distorts into the ellipse shown in Figure 9.2.
1 It turns out in polar coördinate problems that the value of this constant does not

a↵ect the final expressions for the displacement components.
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Figure 9.2: Distortion of a circular hole in a shear field.

The reader should note that, in both of the preceding examples, the third
strain-displacement relation gives an equation for two arbitrary functions of
one variable which can be partitioned into two ordinary di↵erential equations.
The success of the calculation depends upon this partition, which in turn is
possible if and only if the strains satisfy the compatibility conditions. In the
present examples, this is of course ensured through the derivation of the stress
field from a biharmonic stress function.

9.3 Displacements for the Michell solution

Displacements for all the stress functions of Table 8.1 can be obtained2 by the
procedure of §9.2 and the results3 are tabulated in Table 9.1. In this Table,
results for plane strain can be recovered by setting = (3�4⌫), whereas for
plane stress, = (3�⌫)/(1+⌫) (see equation (3.20)). Note that it is always
possible to superpose a rigid-body displacement defined by ur = A cos ✓+
B sin ✓, u✓ =�A sin ✓+B cos ✓ + Cr, where A,B, C are arbitrary constants.

9.3.1 Equilibrium considerations

In the geometry of Figure 8.1, the boundary conditions (8.28–8.31) on the
surfaces r = a, b are not completely independent, since they must satisfy the
2 The reader might like to confirm this in a few cases by using the Maple and

Mathematica files ‘urt’. Notice however that the results for the ‘n=0, 1’ functions
may di↵er by a rigid-body displacement from those given in the table.

3 These results were first compiled by Professor J.Dundurs of Northwestern Uni-
versity and his research students, and are here reprinted with his permission.
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Table 9.1. The Michell solution — displacement components

� 2µu
r

2µu
✓

r2 (� 1)r 0

r2 ln(r) (� 1)r ln(r)� r (+ 1)r✓

ln(r) �1/r 0

✓ 0 �1/r

r3 cos ✓ (� 2)r2 cos ✓ (+ 2)r2 sin ✓

r✓ sin ✓ 1
2{(� 1)✓ sin ✓ � cos ✓ 1

2{(� 1)✓ cos ✓ � sin ✓

+(+ 1) ln(r) cos ✓} �(+ 1) ln(r) sin ✓}

r ln(r) cos ✓ 1
2{(+ 1)✓ sin ✓ � cos ✓ 1

2{(+ 1)✓ cos ✓ � sin ✓

+(� 1) ln(r) cos ✓} �(� 1) ln(r) sin ✓}

cos ✓/r cos ✓/r2 sin ✓/r2

r3 sin ✓ (� 2)r2 sin ✓ �(+ 2)r2 cos ✓

r✓ cos ✓ 1
2{(� 1)✓ cos ✓ + sin ✓ 1

2{�(� 1)✓ sin ✓ � cos ✓

�(+ 1) ln(r) sin ✓} �(+ 1) ln(r) cos ✓}

r ln(r) sin ✓ 1
2{�(+ 1)✓ cos ✓ � sin ✓ 1

2{(+ 1)✓ sin ✓ + cos ✓

+(� 1) ln(r) sin ✓} +(� 1) ln(r) cos ✓}

sin ✓/r sin ✓/r2
� cos ✓/r2

rn+2 cos n✓ (� n� 1)rn+1 cos n✓ (+ n + 1)rn+1 sin n✓

r�n+2 cos n✓ (+ n� 1)r�n+1 cos n✓ �(� n + 1)r�n+1 sin n✓

rn cos n✓ �nrn�1 cos n✓ nrn�1 sin n✓

r�n cos n✓ nr�n�1 cos n✓ nr�n�1 sin n✓

rn+2 sin n✓ (� n� 1)rn+1 sin n✓ �(+ n + 1)rn+1 cos n✓

r�n+2 sin n✓ (+ n� 1)r�n+1 sin n✓ (� n + 1)r�n+1 cos n✓

rn sin n✓ �nrn�1 sin n✓ �nrn�1 cos n✓

r�n sin n✓ nr�n�1 sin n✓ �nr�n�1 cos n✓

condition that the body be in equilibrium. This requires that
Z

2⇡

0

(F
1

(✓) cos ✓ � F
3

(✓) sin ✓) ad✓

�
Z

2⇡

0

(F
2

(✓) cos ✓ � F
4

(✓) sin ✓)bd✓ = 0 (9.36)
Z

2⇡

0

(F
1

(✓) sin ✓ + F
3

(✓) cos ✓)ad✓

�
Z

2⇡

0

(F
2

(✓) sin ✓ + F
4

(✓) cos ✓)bd✓ = 0 (9.37)
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Z

2⇡

0

F
3

(✓)a2d✓ �
Z

2⇡

0

F
4

(✓)b2d✓ = 0 . (9.38)

The orthogonality of the terms of the Fourier series ensures that these
relations only concern the Fourier terms for n=0, 1, but for these cases, there
are then only three independent algebraic equations to determine each of the
corresponding sets of four constants, A

01

, . . . A
04

, A
11

, . . . A
14

, B
11

, . . . B
14

.
The key to this paradox is to be seen in the displacements of Table 9.1.

In the terms for n = 0, 1, some of the displacements include a ✓-multiplier.
For example, we find 2µu✓ =(+1)r✓ for the stress function �=r2 ln(r). Now
the function ✓ is multi-valued. We can make it single-valued by defining a
principal value — e.g., by restricting ✓ to the range 0<✓<2⇡, but we would
then have a discontinuity at the line ✓= 0, 2⇡ which is unacceptable for the
continuous body of Figure 8.1. We must therefore restrict our choice of stress
functions to a set which defines a single-valued continuous displacement and
it turns out that this imposes precisely one additional condition on each of
the sets of four constants for n=0, 1.

Notice incidentally that if the annulus were incomplete, or if it were cut
along the line ✓=0, the principal value of ✓ would be continuous and single-
valued throughout the body and the above restrictions would be removed.
However, we would then also lose the equilibrium restrictions (9.36–9.38),
since the body would have two new edges (e.g. ✓=0, 2⇡, for the annulus with
a cut on ✓=0) on which there may be non-zero tractions.

We see then that the complete annulus has some complications which the
incomplete annulus lacks. This arises of course because the complete annulus
is multiply connected. The results of this section are a direct consequence of
the discussion of compatibility in multiply connected bodies in §2.2.1. These
questions and problems in which they are important will be discussed further
in Chapter 13.

9.3.2 The cylindrical pressure vessel

Consider the plane strain problem of a long cylindrical pressure vessel of inner
radius a and outer radius b, subjected to an internal pressure p

0

. The boundary
conditions for this problem are

�rr = �p
0

; �r✓ = 0 ; r = a (9.39)

�rr = �r✓ = 0 ; r = b . (9.40)

The loading is clearly independent of ✓, so we seek a suitable stress function in
the n=0 row of Tables 8.1, 9.1. However, we must exclude the term r2 ln(r),
since it gives a multivalued expression for u✓. We therefore start with

� = Ar2 + B ln(r) + C✓ , (9.41)

for which the stress components are
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�rr = 2A +
B

r2

; �r✓ =
C

r2

; �✓✓ = 2A� B

r2

. (9.42)

The boundary conditions (9.39, 9.40) then give the equations

2A +
B

a2

= �p
0

(9.43)

C

a2

= 0 (9.44)

2A +
B

b2

= 0 (9.45)

C

b2

= 0 , (9.46)

with solution

A =
p
0

a2

2(b2 � a2)
; B = � p

0

a2b2

2(b2 � a2)
; C = 0 . (9.47)

The final stress field is therefore

�rr =
p
0

a2

(b2 � a2)

✓

1� b2

r2

◆

(9.48)

�r✓ = 0 (9.49)

�✓✓ =
p
0

a2

(b2 � a2)

✓

1 +
b2

r2

◆

, (9.50)

from (9.42, 9.47). Notice that the equations (9.43–9.46) are not linearly inde-
pendent. This occurs because the loading must satisfy the global equilibrium
condition (9.38), which here reduces to

a2�r✓(a) = b2�r✓(b) . (9.51)

If this condition had not been satisfied — for example if there had been a
uniform shear traction on only one of the two surfaces r = a, b, the above
boundary-value problem would have no solution. Of course, with this loading,
the cylinder would experience rotational acceleration about the axis and this
would need to be taken into account in formulating the problem, as in the
problem of §7.4.1.

PROBLEMS

1. Find the displacement field corresponding to the stress field of equations
(5.78–5.80). The beam is simply-supported at x=±a. You will need to impose
this in the form of appropriate weak conditions on the displacements.

Find the vertical displacement at the points (0, 0), (0,�b), (0, b) and com-
pare them with the predictions of the elementary bending theory.
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2. The rectangular plate �a<x<a, �b<y<b is bonded to rigid supports at
x=±a, the edges y =±b being traction-free. The plate is loaded only by its
own weight in the negative y-direction.

(i) Find a solution for the stress field assuming uniform shear tractions on
x=±a. Use strong boundary conditions on x = ±a and weak conditions
on y=±b.

(ii) Find the displacements corresponding to this stress field. Do the result-
ing expressions permit the built-in boundary condition at x =±a to be
satisfied in the strong sense?

(iii) What are the restrictions on the ratio a/b for this solution to be a rea-
sonable approximation to the physical problem?

3. A state of pure shear, �xy =S in a large plate is perturbed by the presence
of a rigid circular inclusion in the region r < a. The inclusion is perfectly
bonded to the plate and is prevented from moving, so that ur = u✓ = 0 at
r=a.

Find the complete stress field in the plate and hence determine the stress
concentration factor due to the inclusion based on (i) the maximum shear
stress criterion or (ii) the maximum tensile stress criterion.

Is it necessary to apply a force or a moment to the inclusion to prevent it
from moving?

4. A thin annular disk, inner radius b and outer radius a rotates at constant
speed ⌦ about the axis of symmetry, all the surfaces being traction-free. De-
termine the stress field in the disk.

5. A large rectangular plate is subjected to simple bending, such that the
stress field is given by

�xx = Cy ; �xy = �yy = 0 .

The plate contains a small traction-free circular hole of radius a centred on
the origin. Find the perturbation in the stress field due to the hole.

6. A heavy disk of density ⇢ and radius a is bonded to a rigid support at r=a.
The gravitational force acts in the direction ✓=�⇡/2. Find the stresses and
displacements in the disk.

Hint: The easiest method is to find the stresses and displacements for a
simple particular solution for the body force and then superpose ‘homoge-
neous’ terms using Tables 8.1 and 9.1.

7. A heavy disk of density ⇢, elastic properties µ, ⌫ and radius a+ ✏ is pressed
into a frictionless hole of radius a in a rigid body.

What is the minimum value of ✏ if the disk is to remain in contact with the
hole at all points when the gravitational force acts in the direction ✓=�⇡/2.



134 9 Calculation of displacements

8. A rigid circular inclusion of radius a in a large elastic plate is subjected to
a force F in the x-direction.

Find the stress field in the plate if the inclusion is perfectly bonded to the
plate at r=a and the stresses tend to zero as r!1.

9. A rubber bushing comprises a hollow cylinder of rubber a<r <b, bonded
to concentric thin-walled steel cylinders at r=a and r=b, as shown in Figure
9.3. The steel cylinders may be considered as rigid compared with the rubber.

Figure 9.3

The outer cylinder is held fixed, whilst a force F per unit axial length
is applied to the inner cylinder in the x-direction. Find the sti↵ness of the
bushing under this loading — i.e. the relationship between F and the resulting
displacement � of the inner cylinder in the x-direction.

In particular, find the sti↵ness for a long cylinder (plane strain conditions)
and a short cylinder (plane stress), assuming that rubber has a shear modulus
µ and is incompressible (⌫=0.5).

Plot a graph of the dimensionless sti↵ness F/µ� as a function of the ratio
a/b in the range F/µ�< 100. Can you provide a simple physical explanation
of the di↵erence between the plane stress and plane strain results?

Hint: The hollow cylinder is a multiply connected body.
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CURVED BEAM PROBLEMS

If we cut the circular annulus of Figure 8.1 along two radial lines, ✓=↵,�, we
generate a curved beam. The analysis of such beams follows that of Chapter
8, except for a few important di↵erences — notably that (i) the ends of the
beam constitute two new boundaries on which boundary conditions (usually
weak boundary conditions) are to be applied and (ii) it is no longer necessary
to enforce continuity of displacements (see §9.3.1), since a suitable principal
value of ✓ can be defined which is both continuous and single-valued.

10.1 Loading at the ends

We first consider the case in which the curved surfaces of the beam are
traction-free and only the ends are loaded. As in §5.2.1, we only need to
impose boundary conditions on one end — the Airy stress function formu-
lation will ensure that the tractions on the other end have the correct force
resultants to guarantee global equilibrium.

10.1.1 Pure bending

The simplest case is that illustrated in Figure 10.1, in which the beam a<r<
b,

0

considerations demand that the bending moment M
0

and zero axial force and
shear force will be transmitted across all for ✓-surfaces and hence that the
stress field will be independent of ✓. We therefore seek the solution in the
axisymmetric terms in Table 8.1, using the stress function

� = Ar2 + Br2 ln(r) + C ln(r) + D✓ , (10.1)

the corresponding stress components being
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�rr = 2A + B(2 ln(r) + 1) +
C

r2

(10.2)

�r✓ =
D

r2

(10.3)

�✓✓ = 2A + B(2 ln(r) + 3)� C

r2

. (10.4)

Figure 10.1: Curved beam in pure bending.

The boundary conditions for the problem of Figure 10.1 are

�rr = 0 ; r = a, b (10.5)
�r✓ = 0 ; r = a, b (10.6)

Z b

a

�✓✓dr = 0 ; ✓ = 0 (10.7)
Z b

a

�✓rdr = 0 ; ✓ = 0 (10.8)
Z b

a

�✓✓rdr = M
0

; ✓ = 0 . (10.9)

Notice that in practice it is not necessary to impose the zero force con-
ditions (10.7, 10.8), since if there were a non-zero force on the end ✓= 0, it
would have to be transmitted around the beam and this would result in a non-
axisymmetric stress field. Thus, our assumption of axisymmetry automatically
rules out there being any force resultant.

We first impose the strong boundary conditions (10.5, 10.6), which with
(10.2, 10.3) yield the four algebraic equations

2A + B(2 ln a + 1) +
C

a2

= 0 (10.10)

2A + B(2 ln b + 1) +
C

b2

= 0 (10.11)
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D

a2

= 0 (10.12)

D

b2

= 0 , (10.13)

and an additional equation is obtained by substituting (10.4) into (10.9),
giving

(A + B)(b2 � a2) + B(b2 ln b� a2 ln a)� C ln(b/a) = M
0

. (10.14)

These equations have the solution

A = �M
0

N
0

(b2 � a2 + 2b2 ln b� 2a2 ln a)

B =
2M

0

N
0

(b2 � a2) ; C =
4M

0

N
0

a2b2 ln
b

a
; D = 0 , (10.15)

where
N

0

⌘ (b2 � a2)2 � 4a2b2 ln2(b/a) (10.16)

The corresponding stress field is readily obtained by substituting these
values back into equations (10.2–10.4).

The principal practical interest in this solution lies in the extent to which
the classical Mechanics of Materials bending theory underestimates the bend-
ing stress �✓✓ at the inner edge, r = a when a/b is small. Timoshenko and
Goodier give some numerical values and show that the elementary theory
starts to deviate significantly from the correct result for a/b<0.5. The theory
of curved beams — based on the application of the principle that plane sec-
tions remain plane, but allowing for the fact that the beam elements increase
in length as r increases due to the curvature — gives a much better agreement.
However, the exact result is quite easy to compute.

Figure 10.2: Bend in a rectangular beam with a small fillet radius.
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An important special case is that of a ‘rectangular’ bend in a beam, with
a small inner fillet radius (see Figure 10.2). This is reasonably modelled as the
curved beam shown dotted, since there will be very little stress in the outer
corner of the bend.

10.1.2 Force transmission

A similar type of solution can be generated for the problem in which a force is
applied at the end of the beam. We consider the case illustrated in Figure 10.3,
where a shear force is applied at ✓=0, resulting in the boundary conditions

Z b

a

�✓✓dr = 0 ; ✓ = 0 (10.17)
Z b

a

�✓rdr = F ; ✓ = 0 (10.18)
Z b

a

�✓✓rdr = 0 ; ✓ = 0 , (10.19)

which replace (10.7–10.9) in the problem of §10.1.1.

Figure 10.3: Curved beam with an end load.

Equilibrium considerations show that the shear force on any section ✓=↵
will vary as F cos↵ and hence we seek the solution in those terms in Table
8.1 in which the shear stress �r✓ depends on cos ✓ — i.e.

� = (Ar3 + Br�1 + Cr ln(r)) sin ✓ + Dr✓ cos ✓ , (10.20)

for which the stress components are

�rr = (2Ar � 2Br�3 + Cr�1 � 2Dr�1) sin ✓ (10.21)
�r✓ = (�2Ar + 2Br�3 � Cr�1) cos ✓ (10.22)
�✓✓ = (6Ar + 2Br�3 + Cr�1) sin ✓ . (10.23)
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The hoop stress �✓✓ is identically zero on ✓=0 and hence the end conditions
(10.17, 10.19) are satisfied identically in the strong sense, whilst the strong
boundary conditions (10.5, 10.6) lead to the set of equations

2Aa� 2B

a3

+
C

a
� 2D

a
= 0 (10.24)

2Ab� 2B

b3

+
C

b
� 2D

b
= 0 (10.25)

2Aa� 2B

a3

+
C

a
= 0 (10.26)

2Ab� 2B

b3

+
C

b
= 0 . (10.27)

The final solution that also satisfies the inhomogeneous condition (10.18)
is obtained as

A =
F

2N
1

; B = �Fa2b2

2N
1

; C = �F (a2 + b2)
N

1

; D = 0 , (10.28)

where
N

1

= (a2 � b2) + (a2 + b2) ln(b/a) . (10.29)

As before, the final stress field is easily obtained by back substitution into
equations (10.21–10.23).

The corresponding solution for an axial force at the end ✓ = 0 is obtained in
the same way except that we interchange sine and cosine in the stress function
(10.20). Alternatively, we can use the present solution and measure the angle
from the end ✓=⇡/2 instead of from ✓=0. Notice however that the axial force
at ✓ = ⇡/2 must have the same line of action as the shear force at ✓ = 0 in
Figure 10.3. In other words, it must act through the origin of coördinates. If
we wish to solve a problem in which an axial force is applied with some other,
parallel, line of action — e.g. if the force acts through the mid-point of the
beam, r =(a + b)/2 — we can do so by superposing an appropriate multiple
of the bending solution of §10.1.1.

10.2 Eigenvalues and eigenfunctions

A remarkable feature of the preceding solutions is that in each case we had a
set of four simultaneous homogeneous algebraic equations for four unknown
constants — equations (10.10–10.13) in §10.1.1 and (10.24–10.27) in §10.1.2
— but in each we were able to obtain a non-trivial solution, because the
equations were not linearly independent1.

Suppose we were to define an inhomogeneous problem for the curved beam
in which the curved edges r=a, b were loaded by arbitrary tractions �rr,�r✓.
1 In particular, (10.12, 10.13) can both be satisfied by setting D = 0 and (10.24–

10.27) reduce to only two independent equations if D=0.
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We could then decompose these tractions into appropriate Fourier series — as
indicated in §8.3.1 — and use the general solution of equation (8.59) and Table
8.1. There would then be four linearly independent stress function terms for
each Fourier component and hence the four boundary conditions would lead to
a well-conditioned set of four algebraic equations for four arbitrary constants
for each separate Fourier component.

In the special case where there are no tractions of the appropriate Fourier
form on the curved surfaces, we should get four homogeneous algebraic equa-
tions and we anticipate only the trivial solution in which the corresponding
four constants — and hence the stress components — are zero.

This is exactly what happens for all values of n other than 0, 1, but, as
we have seen above, for these two special cases, there is a non-trivial solution
to the homogeneous problem. In a sense, 0, 1 are eigenvalues of the general
Fourier problem and the corresponding stress fields are eigenfunctions.

10.3 The inhomogeneous problem

Of course, eigenvalues can be viewed from two di↵erent perspectives. They are
the values of a parameter at which the homogeneous problem has a non-trivial
solution — e.g. the frequency at which a dynamic system will vibrate without
excitation — but they are also the values at which the inhomogeneous problem
has an unbounded solution — excitation at the natural frequency predicts an
unbounded amplitude.

In the present instance, we must therefore anticipate di�culties in the
inhomogeneous problem if the boundary tractions contain Fourier terms with
n=0 or 1.

10.3.1 Beam with sinusoidal loading

As an example, we consider the problem of Figure 10.4, in which the curved
beam is subjected to a radial normal traction

�rr = S sin ✓ ; r = b , (10.30)

the other boundary tractions being zero.
A ‘näıve’ approach to this problem would be to use a stress function com-

posed of those terms in Table 8.1 for which the stress component �rr varies
with sin ✓. This of course would lead to the formulation of equations (10.20–
10.23) and the strong boundary conditions on the curved edges would give
the four equations

2Aa� 2B

a3

+
C

a
� 2D

a
= 0 (10.31)

2Ab� 2B

b3

+
C

b
� 2D

b
= S (10.32)
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2Aa� 2B

a3

+
C

a
= 0 (10.33)

2Ab� 2B

b3

+
C

b
= 0 . (10.34)

Figure 10.4: Curved beam with sinusoidal loading.

This looks like a well-behaved set of four equations for four unknown con-
stants, but we know that the coe�cient matrix has a zero determinant, since
we successfully obtained a non-trivial solution to the corresponding homoge-
neous problem in §10.1.2 above.

In such cases, we must seek an additional special solution in which the
dependence of the stress field on ✓ di↵ers from that in the boundary conditions.
Such solutions are known for a variety of geometries, but are usually presented
as a fait accompli by the author, so it is di�cult to see why they work, or how
we might have been expected to determine them without guidance. In this
section, we shall present the appropriate function and explain why it works,
but we shall then develop a more rational approach to determining the class
of solution required.

The special solution can be generated by expressing the original function
(10.20) in complex variable form and then multiplying it by ln ⇣, where ⇣ =
x+ ıy is the complex variable and the conjugate x� ıy is denoted by ⇣̄. Thus,
(10.20) consists of a linear combination of the terms =(⇣̄⇣2; ⇣�1; ⇣ ln ⇣; ⇣̄ ln ⇣),
so we can generate a new biharmonic function from the terms =(⇣̄⇣2 ln ⇣;
⇣�1 ln ⇣; ⇣ ln2 ⇣; ⇣̄ ln2 ⇣), which can be written in the form

� = A0r3(ln(r) sin ✓ + ✓ cos ✓) + B0r�1(✓ cos ✓ � ln r sin ✓)
+C 0r ln(r)✓ cos ✓ + D0r(ln2 r sin ✓ � ✓2 sin ✓) . (10.35)

The corresponding stress components are
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�rr = (2A0r � 2B0r�3 + C 0r�1 � 4D0r�1)✓ cos ✓
+(2A0r ln(r)�A0r + 2B0r�3 ln(r)� 3B0r�3

�2C 0r�1 ln(r) + 2D0r�1 ln(r)� 2D0r�1) sin ✓ (10.36)
�r✓ = (2A0r � 2B0r�3 + C 0r�1)✓ sin ✓

+(�2A0r ln(r)� 3A0r � 2B0r�3 ln(r) + 3B0r�3

�C 0r�1 � 2D0r�1 ln(r)) cos ✓ (10.37)
�✓✓ = (6A0r + 2B0r�3 + C 0r�1)✓ cos ✓

+(6A0r ln(r) + 5A0r � 2B0r�3 ln(r) + 3B0r�3

+2D0r�1 ln(r) + 2D0r�1) sin ✓ . (10.38)

Notice in particular that these expressions contain some terms of the re-
quired form for the problem of Figure 10.4, but they also contain terms with
multipliers of the form ✓ sin ✓, ✓ cos ✓, which are inappropriate. We therefore
get four homogeneous algebraic equations for the coe�cients A0, B0, C 0, D0

from the requirement that these inappropriate terms should vanish in the
components �rr,�r✓ on the boundaries r=a, b, i.e.

2A0a� 2B0

a3

+
C 0

a
� 4D0

a
= 0 (10.39)

2A0b� 2B0

b3

+
C 0

b
� 4D0

b
= 0 (10.40)

2A0a� 2B0

a3

+
C 0

a
= 0 (10.41)

2A0b� 2B0

b3

+
C 0

b
= 0 . (10.42)

Clearly these equations are identical2 with (10.24–10.27) and are not lin-
early independent. There is therefore a non-trivial solution to (10.39–10.42),
which leaves us with a stress function that can supplement that of equation
(10.20) to make the problem well-posed.

From here on, the solution is algebraically tedious, but routine. Adding
the two stress functions (10.20, 10.35), we obtain a function with 8 unknown
constants which is required to satisfy 9 boundary conditions comprising (i)
equations (10.39–10.42), (ii) equations (10.31–10.34) modified to include the
sin ✓, cos ✓ terms from equations (10.36, 10.37) respectively and (iii) the weak
traction-free condition

Z b

a

�✓r = 0 ; ✓ = 0 (10.43)

on the end of the beam. Since two of equations (10.39–10.42) are not indepen-
dent, the system reduces to a set of 8 equations for 8 constants whose solution
is
2 except that 4D0 replaces 2D.
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A0 =
Sb

4N
1

; B0 = �Sa2b3

4N
1

; C 0 = �Sb(a2 + b2)
2N

1

; D0 = 0

A =
Sb

8N2

1

{2(b2 � a2)� (3a2 + b2) ln b + (3b2 + a2) ln a

�2(a2 ln a + b2 ln b) ln(b/a)} ;

B =
Sa2b3

8N2

1

{�2(b2 � a2) + (3b2 + a2) ln b� (3a2 + b2) ln a

�2(a2 ln b + b2 ln a) ln(b/a)}
C =

Sb

4N2

1

{2(b4 + a4) ln(b/a)� (b4 � a4)} (10.44)

D =
Sb

4N
1

{(b2 � a2) + 2(b2 + a2) ln a} ,

where N
1

is given by equation (10.29).
Of course, it is not fortuitous that the stress function (10.35) leads to a

set of equations (10.39–10.42) identical with (10.24–10.27). When we di↵er-
entiate the function f(⇣, ⇣̄) ln(⇣) by parts to determine the stresses, the extra
multiplier ln(⇣) is only preserved in those terms where it is not di↵erentiated
and hence in which all the di↵erential operations are performed on f(⇣, ⇣̄).
But these operations on f(⇣, ⇣̄) are precisely those leading to the stresses in
the original solution and hence to equations (10.24–10.27). The reader will
notice a parallel here with the procedure for determining the general solution
of a di↵erential equation with repeated di↵erential multipliers and with that
for dealing with degeneracy of solutions discussed in §8.3.3.

10.3.2 The near-singular problem

Suppose we next consider a more general version of the problem of Figure
10.4 in which the inhomogeneous boundary condition (10.30) is replaced by

�rr = S sin(�✓) ; r = b , (10.45)

where � is a constant. In the special case where �= 1, this problem reduces
to that of §10.3.1. For all other values (excluding �=0), we can use the stress
function

� = (Ar�+2 + Br� + Cr�� + Dr��+2) sin(�✓) , (10.46)

with stress components

�rr = �{A(�� 2)(�+ 1)r� + B�(�� 1)r��2

+C�(�+ 1)r���2 + D(�+ 2)(�� 1)r��} sin(�✓)
�r✓ = {�A�(�+ 1)r� �B�(�� 1)r��2

+C�(�+ 1)r���2 + D�(�� 1)r��} cos(�✓) (10.47)
�✓✓ = {A(�+ 1)(�+ 2)r� + B�(�� 1)r��2

+C�(�+ 1)r���2 + D(�� 1)(�� 2)r��} sin(�✓) .
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The boundary conditions on the curved edges lead to the four equations

A(��2)(�+1)a�+B�(��1)a��2+C�(�+1)a���2+D(�+2)(��1)a�� = 0
A(��2)(�+1)b�+B�(��1)b��2+C�(�+1)b���2+D(�+2)(��1)b�� = �S

�A�(�+1)a��B�(��1)a��2+C�(�+1)a���2+D�(��1)a�� = 0
�A�(�+1)b��B�(��1)b��2+C�(�+1)b���2+D�(��1)b�� = 0 ,

(10.48)

which have the solution

A =
Sb�

2(�+ 1)N(�)
[(�+ 1)f(�)� �b2f(�� 1)}

B =
�Sb�

2(�� 1)N(�)
{�f(�+ 1)� (�� 1)b2f(�)}

C =
�Sa2�b�+2

2(�+ 1)N(�)
{�b2��2f(1) + f(�)} (10.49)

D =
Sa2��2b�

2(�� 1)N(�)
{�b2�f(1) + a2f(�)} ,

where

N(�) = �2f(�� 1)f(�+ 1)� (�2 � 1)f(�)2 (10.50)
f(p) = b2p � a2p . (10.51)

On casual inspection, it seems that this problem behaves rather remarkably
as � passes through unity. The stress field is sinusoidal for all � 6= 1 and
increases without limit as � approaches unity from either side, since N(�)=0
when �=1. (Notice that an additional singularity is introduced through the
factor (��1) in the denominator of the coe�cients B,D.) However, when �
is exactly equal to unity, the problem has the bounded solution derived in
§10.3.1, in which the stress field is not sinusoidal.

However, we shall demonstrate that the solution is not as discontinuous
as it looks. The stress field obtained by substituting (10.49) into (10.46) is
not a complete solution to the problem since the end condition (10.43) is not
satisfied. The solution from (10.46) will generally involve a non-zero force on
the end, given by

F (�) =
Z b

a

�r✓dr

= ��
⇢

Af

✓

�+1
2

◆

+ Bf

✓

�� 1
2

◆

+ Cf

✓��� 1
2

◆

+ Df

✓��+1
2

◆�

.

(10.52)

To restore the traction-free condition on the end (in the weak sense of zero
force resultant) we must subtract the solution of the homogeneous problem
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of §10.1.2, with F given by (10.52). The final solution therefore involves the
superposition of the stress functions (10.20) and (10.46). As � approaches
unity, both components of the solution increase without limit, since (10.52)
contains the singular terms (10.49), but they also tend to assume the same
form since, for example, r2+� sin(�✓) approaches r3 sin ✓. In the limit, the
corresponding term takes the form

lim
�!1

A
1

(�)r2+� sin(�✓)�A
2

(�)r3 sin ✓
N(�)

, (10.53)

where

A
1

(�) =
Sb�

2(�+ 1)
{(�+ 1)f(�)� �b2f(�� 1)} (10.54)

A
2

(�) =
F (�)N(�)

2N
1

. (10.55)

Setting �=1 in equations (10.54, 10.55), we find

A
1

(1) = A
2

(1) =
Sb(b2 � a2)

2
. (10.56)

The zero in N(�) is therefore cancelled and (10.53) has a bounded limit which
can be recovered by using L’Hôpital’s rule. We obtain

{A0
1

(1)�A0
2

(1)}r3 sin ✓
N 0(1)

+
A

1

(1)g(r, ✓, 1)
N 0(1)

, (10.57)

where

g(r, ✓,�) =
@

@�
r2+� sin(�✓) = r2+�{ln(r) sin(�✓) + ✓ cos(�✓)} , (10.58)

which in the limit �=1 reduces to r3{ln(r) sin ✓ + ✓ cos ✓}. The coe�cient of
this term will be

A0 =
A

1

(1)
N 0(1)

=
Sb

4N
1

, (10.59)

agreeing with the corresponding coe�cient, A0, in the special solution of
§10.3.1 (see equations (10.44)).

A similar limiting process yields the form and coe�cients of the remain-
ing 7 stress functions in the solution of §10.3.1. In particular, we note that
the coe�cients B,D in equations (10.49) have a second singular term in the
denominator and hence L’Hôpital’s rule has to be applied twice, leading to
stress functions of the form of the last two terms in equation (10.35).

Thus, we find that the solution to the more general problem of equation
(10.45) includes that of §10.3.1 as a limiting case and there are no values of �
for which the stress field is singular. The limiting process also shows us a more
general way of obtaining the special stress functions required for the problem
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of §10.3.1. We simply take the stress function (10.46), which degenerates when
�=1, and di↵erentiate it with respect to the parameter, �, before setting �=1.
Since the last two terms of (10.20) are already of this di↵erentiated form, a
second di↵erentiation is required to generate the last two terms of (10.35).

10.4 Some general considerations

Similar examples could be found for other geometries in the two-dimensional
theory of elasticity. To fix ideas, suppose we consider the body a < ⇠ < b,
c<⌘<d in the general system of curvilinear coördinates, ⇠, ⌘. In general we
might anticipate a class of separated-variable solutions of the form

� = f(�, ⇠)g(�, ⌘) , (10.60)

where � is a parameter. An important physical problem is that in which
the boundaries ⌘ = a, b are traction-free and the tractions on the remain-
ing boundaries have a non-zero force or moment resultant. In such cases, we
can generally use dimensional and/or equilibrium arguments to determine
the form of the stress variation in the ⇠-direction and hence the appropriate
function f(�

0

, ⇠). The biharmonic equation will then reduce to a fourth or-
der ordinary di↵erential equation for g(�

0

, ⌘), with four linearly independent
solutions. Enforcement of the traction-free boundary conditions will give a
set of four homogeneous equations for the unknown multipliers of these four
solutions.

If the solution is to be possible, the equations must have a non-trivial so-
lution, implying that the matrix of coe�cients is singular. It therefore follows
that the corresponding inhomogeneous problem cannot be solved by the stress
function of equation (10.60) if the tractions on ⌘=a, b vary with f(�

0

, ⇠) —
i.e. in the same way as the stresses in the homogeneous (end loaded) prob-
lem. However, special stress functions appropriate to this limiting case can be
obtained by di↵erentiating (10.60) with respect to the parameter � and then
setting �=�

0

.
The special solution for � = �

0

is not qualitatively di↵erent from that
at more general values of �, but appears as a regular limit once appropriate

boundary conditions are imposed on the edges ⇠=c, d.
Other simple examples in the two-dimensional theory of elasticity include

the curved beam in bending (§10.1.1) and the wedge with traction-free faces
(§11.2). Similar arguments can also be applied to three-dimensional axisym-
metric problems — e.g. to problems of the cone or cylinder with traction-free
curved surfaces.

10.4.1 Conclusions

Whenever we find a classical solution in which there are two traction-free
boundaries, we can formulate a related inhomogeneous problem for which the
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equation system resulting from these boundary conditions will be singular.
Special solutions for these cases can be obtained by parametric di↵erentiation
of more general solutions for the same geometry. Alternatively, the special case
can be recovered as a limit as the parameter tends to its eigenvalue, provided
that the remaining boundary conditions are satisfied in an appropriate sense
(e.g. in the weak sense of force resultants) before the limit is taken.

PROBLEMS

1. A curved beam of inner radius a and outer radius 5a is subjected to a force
F at its end as shown in Figure 10.5. The line of action of the force passes
through the mid-point of the beam.

Figure 10.5: Curved beam loaded by a central force.

By superposing the solutions for the curved beam subjected to an end
force and to pure bending respectively, find the hoop stress �✓✓ at the point
A(a,⇡/2) and compare it with the value predicted by the elementary Mechan-
ics of Materials bending theory.

2. The curved beam a < r < b, 0 < ✓< ⇡/2 is built in at ✓= ⇡/2 and loaded
only by its own weight, which acts in the direction ✓=�⇡/2. Find the stress
field in the beam.

3. The curved beam a<r<b, 0<✓<⇡/2 is built in at ✓=⇡/2 and loaded by a
uniform normal pressure �rr =�S at r=b, the other edges being traction-free.
Find the stress field in the beam.
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4. The curved beam a<r<b, 0<✓<⇡/2 is built in at ✓=⇡/2 and loaded by
a uniform shear traction �r✓ =S at r=b, the other edges being traction-free.
Find the stress field in the beam.

5. The curved beam a < r < b, 0 < ✓< ⇡/2 rotates about the axis ✓= ⇡/2 at
speed ⌦, the edges r =a, b and ✓=0 being traction-free. Find the stresses in
the beam. Hint: The easiest method is probably to solve first the problem of
the complete annular ring a < r < b rotating about ✓= ⇡/2 and then correct
the boundary condition at ✓=0 (in the weak sense) by superposing a suitable
homogeneous solution.

6. Figure 10.6 shows a crane hook of thickness t that is loaded by a force
F acting through the centre of the curved section. Find the stress field in
the curved portion of the hook and compare the maximum tensile stress with
that predicted by the elementary bending theory. Neglect the self-weight of
the hook.

Figure 10.6: The crane hook.
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WEDGE PROBLEMS

In this chapter, we shall consider a class of problems for the semi-infinite
wedge defined by the lines ↵<✓<�, illustrated in Figure 11.1.

Figure 11.1: The semi-infinite wedge.

11.1 Power law tractions

We first consider the case in which the tractions on the boundaries vary with
rn, in which case equations (8.10, 8.11) suggest that the required stress func-
tion will be of the form

� = rn+2f(✓) . (11.1)

equation (8.16), giving the ordinary di↵erential equation
✓

d2

d✓2

+ (n + 2)2
◆✓

d2

d✓2

+ n2

◆

f = 0 . (11.2)

For n 6=0,�2, the four solutions of this equation define the stress function

� = rn+2{A
1

cos(n + 2)✓ + A
2

cos(n✓) + A
3

sin(n + 2)✓ + A
4

sin(n✓)} (11.3)
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The function f(✓) can be found by substituting (11.1) into the biharmonic
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and the corresponding stress and displacement components can be taken from
Tables 8.1, 9.1 respectively, with appropriate values of n.

11.1.1 Uniform tractions

Timoshenko and Goodier, in a footnote in §45, state that the uniform terms in
the four boundary tractions are not independent and that only three of them
may be prescribed. This is based on the argument that in a more general non-
singular series solution, the uniform terms represent the stress in the corner,
r=0 and the stress at a point only involves three independent components in
two-dimensions.

However, the di↵erential equation (11.2) has four independent non-trivial
solutions for n=0, corresponding to the stress function1

� = r2{A
1

cos(2✓) + A
2

+ A
3

sin(2✓) + A
4

✓} . (11.4)

The corresponding stress components are

�rr = �2A
1

cos(2✓) + 2A
2

� 2A
3

sin(2✓) + 2A
4

✓ (11.5)
�r✓ = 2A

1

sin(2✓)� 2A
3

cos(2✓)�A
4

(11.6)
�✓✓ = 2A

1

cos(2✓) + 2A
2

+ 2A
3

sin(2✓) + 2A
4

✓ , (11.7)

and, in general, these permit us to solve the problem of the wedge with any
combination of four independent traction components on the faces2. Timo-
shenko’s assertion is therefore incorrect.

Uniform shear on a right-angle wedge

To explore this paradox further, it is convenient to consider the problem of
Figure 11.2, in which the right-angle corner x>0, y>0 is subjected to uniform
shear on one face defined by

�xy = S ; �xx = 0 ; x = 0 (11.8)
�yy = 0 ; �yx = 0 ; y = 0 . (11.9)

1 Another way of generating this special solution is to note that the term in (11.2)
which degenerates when n = 0 is A4 sin(n✓). Following §8.3.3, we can find the
special solution by di↵erentiating with respect to n, before proceeding to the
limit n!0, giving the result A4✓.

2 This problem was investigated by E.Reissner, Note on the theorem of the sym-
metry of the stress tensor, Journal of Mathematics and Physics Vol. 23 (1944),
pp.192–194. See also D.B.Bogy and E.Sternberg, The e↵ect of couple-stresses on
the corner singularity due to an asymmetric shear loading, International Journal
of Solids and Structures, Vol. 4 (1968), pp.159–174.
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Figure 11.2: Uniform shear on a right-angle wedge.

Timoshenko’s footnote would seem to argue that this is not a well-posed
problem, since it implies that �xy 6=�yx at x=y=0.

Casting the problem in polar coördinates, (r, ✓), the boundary conditions
become

�✓r = �S ; �✓✓ = 0 ; ✓ =
⇡

2
(11.10)

�✓r = 0 ; �✓✓ = 0 ; ✓ = 0 . (11.11)

Using the stress field of equations (11.5–11.7), this reduces to the system
of four algebraic equations

2A
3

�A
4

= �S (11.12)
�2A

1

+ 2A
2

+ A
4

⇡ = 0 (11.13)
�2A

3

�A
4

= 0 (11.14)
2A

1

+ 2A
2

= 0 , (11.15)

with solution

A
1

=
⇡S

8
; A

2

= �⇡S

8
; A

3

= �S

4
; A

4

=
S

2
, (11.16)

giving the stress function

� = S

✓

⇡r2 cos(2✓)
8

� ⇡r2

8
� r2 sin(2✓)

4
+

r2✓

2

◆

. (11.17)

Timoshenko’s ‘paradox’ is associated with the apparent inconsistency in
the stress components �xy,�yx at x = y = 0, so it is convenient to recast the
stress function in Cartesian coördinates as

� = S

✓

⇡

8
(x2 � y2)� ⇡(x2 + y2)

8
� xy

2
+

(x2 + y2)
2

arctan
y

x

◆

. (11.18)
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We then determine the shear stress �xy as

�xy = � @2�

@x@y
=

Sy2

x2 + y2

. (11.19)

It is easily verified that this expression tends to zero for y = 0 and to S
for x=0, except of course that it is indeterminate at the point x=y=0. The
first three terms in the stress function (11.18) are second degree polynomials
in x, y and therefore define a uniform state of stress throughout the wedge,
but the fourth term, resulting from A

4

r2✓ in (11.4), defines stresses which are
uniform along any line ✓=constant, but which vary with ✓. Thus, any stress
component � is a bounded function of ✓ only. It follows that the corner of
the wedge is not a singular point, but the stress gradients in the ✓-direction
�

1

r
@�
@✓

�

increase with r�1 as r!0. This arises because lines of constant ✓ meet
at r=0.

11.1.2 The rectangular body revisited

We noted in Chapter 6 that convergence problems are encountered in series so-
lutions for the rectangular body when the shear tractions are discontinuous in
the corners. One way to circumvent this di�culty is to extract the discontinu-
ity explicitly, using appropriate multiples of the stress function (11.4) centred
on each corner. In fact, it is clear from the Cartesian coördinate expression
(11.18) that only the term

(x2 + y2)
2

arctan
y

x

contributes to the discontinuity. For example, we can construct a particular
solution for the symmetric/symmetric problem of equations (6.29, 6.30) in the
form

�P = C [f(a, b) + f(�a, b) + f(a,�b) + f(�a,�b)] (11.20)

where
f(c, d) =

((x� c)2 + (y � d)2)
2

arctan
✓

y � d

x� c

◆

(11.21)

and C is a constant. The corresponding shear tractions in the corner (a, b)
then have a discontinuity defined by

lim
y!b

�xy(a, y)� lim
x!a

�yx(x, b) = C . (11.22)

Thus, if we choose C =g(b)�h(a), the corrective boundary value problem de-
fined by the stress function �C =���P will involve continuous shear tractions
at all four corners (because of symmetry) and the series solution of §6.4 will
converge.
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It is interesting to note that the form of the corner stress field defined
by equation (11.20) was obtained by Meleshko and Gomilko3 using the series
(6.31) with parameters (6.38), by examining the limiting form of the coe�-
cients at large m,n.

11.1.3 More general uniform loading

More generally, there is no inconsistency in specifying four independent uni-
form traction components on the faces of a wedge, though values which are
inconsistent with the conditions for stress at a point will give infinite stress
gradients in the corner.

For the general case, it is convenient to choose a coördinate system sym-
metric with respect to the two faces of the wedge, which is then bounded by
the lines ✓=±↵.

Writing the boundary conditions

�✓r = T
1

; ✓ = ↵ (11.23)
�✓r = T

2

; ✓ = �↵ (11.24)
�✓✓ = N

1

; ✓ = ↵ (11.25)
�✓✓ = N

2

; ✓ = �↵ , (11.26)

and using the solution (11.5–11.7), we obtain the four algebraic equations

2A
1

sin(2↵)� 2A
3

cos(2↵)�A
4

= T
1

(11.27)
�2A

1

sin(2↵)� 2A
3

cos(2↵)�A
4

= T
2

(11.28)
2A

1

cos(2↵) + 2A
2

+ 2A
3

sin(2↵) + 2A
4

↵ = N
1

(11.29)
2A

1

cos(2↵) + 2A
2

� 2A
3

sin(2↵)� 2A
4

↵ = N
2

. (11.30)

As in §6.2.2, we can exploit the symmetry of the problem to partition the
coe�cient matrix by taking sums and di↵erences of these equations in pairs,
obtaining the simpler set

�4A
3

cos(2↵)� 2A
4

= T
1

+ T
2

(11.31)
4A

1

sin(2↵) = T
1

� T
2

(11.32)
4A

1

cos(2↵) + 4A
2

= N
1

+ N
2

(11.33)
4A

3

sin(2↵) + 4A
4

↵ = N
1

�N
2

, (11.34)

where we note that the terms involving A
1

, A
2

correspond to a symmetric
stress field and those involving A

3

, A
4

to an antisymmetric field.
3 V.V.Meleshko and A.M.Gomilko, Infinite systems for a biharmonic problem in a

rectangle, Proceeedings of the Royal Society of London, Vol. A453 (1997), pp.2139–
2160.
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11.1.4 Eigenvalues for the wedge angle

The solution of these equations is routine, but we note that there are two
eigenvalues for the wedge angle 2↵ at which the matrix of coe�cients is sin-
gular. In particular, the solution for the symmetric terms (equations (11.32,
11.33) is singular if

sin(2↵) = 0 , (11.35)

i.e. at 2↵=180o or 360o, whilst the antisymmetric terms are singular when

tan(2↵) = 2↵ , (11.36)

which occurs at 2↵= 257.4o. The 180o wedge is the half plane x > 0, whilst
the 257.4o wedge is a reëntrant corner.

As in the problem of §10.3, special solutions are needed for the inhomoge-
neous problem if the wedge has one of these two special angles. As before, they
can be obtained by di↵erentiating the general solution (11.3) with respect to
n before setting n=0, leading to the new terms, r2{ln(r) cos(2✓)� ✓ sin(2✓)}
and r2 ln(r). A particular problem for which these solutions are required is
that of the half plane subjected to a uniform shear traction over half of its
boundary (see Problem 11.1, below).

The homogeneous solution

For wedges of 180o and 257.4o, the homogeneous problem, where N
1

= N
2

=
T

1

=T
2

=0 has a non-trivial solution. For the 180o wedge (i.e. the half plane
x> 0), this solution can be seen by inspection to be one of uniaxial tension,
�yy = S, which is non-trivial, but involves no tractions on the free surface
x = 0. The same state of stress is also a non-trivial solution for the 360o

wedge, which corresponds to a semi-infinite crack (see Figure 11.6 and §11.2.3
below).

11.2 Williams’ asymptotic method

Figure 11.3 shows a body with a notch, loaded by tractions on the remote
boundaries. Intuitively we anticipate a stress concentration at the notch and
we shall show in this section that the stress field there is generally singular
— i.e. that the stress components tend to infinity as we approach the sharp
corner of the notch.
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Figure 11.3: The notched bar in tension.

Williams4 developed a method of exploring the nature of the stress field
near this singularity by defining a set of polar coördinates centred on the
corner and expanding the stress field as an asymptotic series in powers of r.

11.2.1 Acceptable singularities

Before developing the asymptotic solution in detail, we must first address the
question as to whether singular stress fields are ever acceptable in elasticity
problems.

Engineering criteria

This question can be approached from various points of view. The engineer
is usually inclined to argue that no real materials are capable of sustaining
an infinite stress and hence any situation in which such a stress is predicted
by an elastic analysis will in practice lead to yielding or some other kind of
failure.

We also note that stress singularities are always associated with disconti-
nuities in the geometry or the boundary conditions — for example, a sharp
corner, as in the present instance, or a concentrated (delta function) load.
In practice, there are no sharp corners and loads can never be perfectly con-
centrated. If we are to give any meaning to these solutions, they must be
considered as limits of more practical situations, such as a corner with a very
small fillet radius or a load applied over a very small region of the boundary.

Yet another practical limitation is that of the continuum theory. Real
materials are not continua — they have atomic structure and often a larger
4 M.L.Williams, Stress singularities resulting from various boundary conditions in

angular corners of plates in extension, ASME Journal of Applied Mechanics, Vol.
19 (1952), pp.526–528.
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scale granular structure as well. Thus, it doesn’t make much practical sense
to talk about the value of quantities nearer to a corner than (say) one atomic
distance, since the theory is going to break down there anyway.

Of course, we find this kind of argument whenever we try to idealize a
physical system, which means essentially whenever we try to describe its be-
haviour in mathematical terms. Because there are so many idealizations or
approximations involved in the modeling process, it is never certain which
one is responsible when mathematical di�culties are encountered in a prob-
lem and often there are several ways of reformulating the problem to introduce
more physical reality and avoid the di�culty.

Mathematical criteria

A totally di↵erent approach to the question — more favoured by mathemati-
cians — is to make choices based on questions of uniqueness, convergence and
existence of solutions, rather than on the physical grounds discussed above.
In terms of the functional analysis, we choose to locate the theory of elasticity
in a function space which guarantees that problems are mathematically well-
posed. A function space here denotes a set of functions in which the solution
is to be sought, and generally this involves some statement about the strength
of acceptable singularities in the solution.

In this context, the engineer’s objections outlined above can be addressed
by limiting arguments. It is not logically impossible that a material should
have a yield strength of any arbitrarily large (but finite) magnitude, that the
radius of a corner should be arbitrarily small, but finite, etc. Solutions of prob-
lems involving singularities are then to be conceived as the result of allowing
these quantities to tend to their limits. Generally the di↵erence between the
real problem and the limiting case will be only localized.

In regions of a body or its boundary where no concentrated traction etc. is
applied, we adopt the criterion that the only acceptable singularities are those
for which the total strain energy in a small region surrounding the singular
point vanishes as the size of that region tends to zero.

If the stresses and hence the strains vary with ra as we approach the point
r = 0, the strain energy in a two-dimensional problem will be an integral of
the form

U =
1
2

Z

2⇡

0

Z r

0

�ijeijrdrd✓ = C

Z r

0

r2a+1dr , (11.37)

where C is a constant which depends on the elastic constants and the nature
of the stress variation with ✓. This integral is bounded if a >�1 and other-
wise unbounded. Thus, singular stress fields are acceptable if and only if the
exponent on the stress components exceeds �1.

Concentrated forces and dislocations5 involve stress singularities with ex-
ponent a=�1 and are therefore excluded by this criterion, since the integral
5 See Chapter 13 below.
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in (11.37) would lead to a logarithm, which is unbounded at r =0. However,
these solutions can be permitted on the understanding that they are really
idealizations of explicitly specified distributions. In this case, it is important
to recognize that the resulting solutions are not meaningful at or near the
singular point. We also use these and other singular solutions as Green’s func-
tions — i.e. as the kernels of convolution integrals to define the solution of a
non-singular problem. This technique will be illustrated in Chapters 12 and
13, below.

11.2.2 Eigenfunction expansion

We are concerned only with the stress components in the notch at very small
values of r and hence we imagine looking at the corner through a strong
microscope, so that we see the wedge of Figure 11.4. The magnification is so
large that the other surfaces of the body, including the loaded boundaries,
appear far enough away for us to treat the wedge as infinite, with ‘loading at
infinity’.

Figure 11.4: The semi-infinite notch.

The stress field at the notch is of course a complicated function of r, ✓,
but as in Chapter 6, we seek to expand it as a series of separated-variable
terms, each of which satisfies the traction-free boundary conditions on the
wedge faces. The appropriate separated-variable form is of course that given
by equation (11.3), except that we increase the generality of the solution by
relaxing the requirement that the exponent n be an integer — indeed, we shall
find that most of the required solutions have complex exponents.

Following Williams’ notation, we replace n by (��1) in equation (11.3),
obtaining the stress function



158 11 Wedge problems

� = r�+1{A
1

cos(�+ 1)✓+ A
2

cos(�� 1)✓+ A
3

sin(�+ 1)✓+ A
4

sin(�� 1)✓} ,
(11.38)

with stress components

�rr = r��1{�A
1

�(�+ 1) cos(�+ 1)✓ �A
2

�(�� 3) cos(�� 1)✓
�A

3

�(�+ 1) sin(�+ 1)✓ �A
4

�(�� 3) sin(�� 1)✓} (11.39)
�r✓ = r��1{A

1

�(�+ 1) sin(�+ 1)✓ + A
2

�(�� 1) sin(�� 1)✓
�A

3

�(�+ 1) cos(�+ 1)✓ �A
4

�(�� 1) cos(�� 1)✓} (11.40)
�✓✓ = r��1{A

1

�(�+ 1) cos(�+ 1)✓ + A
2

�(�+ 1) cos(�� 1)✓
+A

3

�(�+ 1) sin(�+ 1)✓ + A
4

�(�+ 1) sin(�� 1)✓} . (11.41)

For this solution to satisfy the traction-free boundary conditions

�✓r = �✓✓ = 0; ✓ = ±↵ (11.42)

we require

�{A
1

(�+ 1) sin(�+ 1)↵+ A
2

(�� 1) sin(�� 1)↵
�A

3

(�+ 1) cos(�+ 1)↵�A
4

(�� 1) cos(�� 1)↵} = 0 (11.43)
�{�A

1

(�+ 1) sin(�+ 1)↵�A
2

(�� 1) sin(�� 1)↵
�A

3

(�+ 1) cos(�+ 1)↵�A
4

(�� 1) cos(�� 1)↵} = 0 (11.44)
�{A

1

(�+ 1) cos(�+ 1)↵+ A
2

(�+ 1) cos(�� 1)↵
+A

3

(�+ 1) sin(�+ 1)↵+ A
4

(�+ 1) sin(�� 1)↵} = 0 (11.45)
�{A

1

(�+ 1) cos(�+ 1)↵+ A
2

(�+ 1) cos(�� 1)↵
�A

3

(�+ 1) sin(�+ 1)↵�A
4

(�+ 1) sin(�� 1)↵} = 0 . (11.46)

This is a set of four homogeneous equations for the four constants A
1

, A
2

,
A

3

, A
4

and will have a non-trivial solution only for certain eigenvalues of the
exponent �. Since all the equations have a � multiplier, � = 0 must be an
eigenvalue for all wedge angles. We can simplify the equations by canceling
this factor and taking sums and di↵erences in pairs to expose the symmetry
of the system, with the result

A
1

(�+ 1) sin(�+ 1)↵+ A
2

(�� 1) sin(�� 1)↵ = 0 (11.47)
A

1

(�+ 1) cos(�+ 1)↵+ A
2

(�+ 1) cos(�� 1)↵ = 0 (11.48)
A

3

(�+ 1) cos(�+ 1)↵+ A
4

(�� 1) cos(�� 1)↵ = 0 (11.49)
A

3

(�+ 1) sin(�+ 1)↵+ A
4

(�+ 1) sin(�� 1)↵ = 0 . (11.50)

This procedure partitions the coe�cient matrix, to yield the two independent
matrix equations



(�+ 1) sin(�+ 1)↵ (�� 1) sin(�� 1)↵
(�+ 1) cos(�+ 1)↵ (�+ 1) cos(�� 1)↵

�⇢

A
1

A
2

�

= 0 (11.51)
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and


(�+ 1) cos(�+ 1)↵ (�� 1) cos(�� 1)↵
(�+ 1) sin(�+ 1)↵ (�+ 1) sin(�� 1)↵

�⇢

A
3

A
4

�

= 0 . (11.52)

The symmetric terms A
1

, A
2

have a non-trivial solution if and only if
the determinant of the coe�cient matrix in (11.51) is zero, leading to the
characteristic equation

� sin 2↵+ sin(2�↵) = 0 , (11.53)

whilst the antisymmetric terms A
3

, A
4

have a non-trivial solution if and only
if

� sin 2↵� sin(2�↵) = 0 , (11.54)

from (11.52).

11.2.3 Nature of the eigenvalues

We first note from equations (11.39–11.41) that the stress components are
proportional to r��1 and hence � is restricted to positive values by the energy
criterion of §11.2.1. Furthermore, we shall generally be most interested in
the lowest possible eigenvalue6, since this will define the strongest singularity
that can occur at the notch and will therefore dominate the stress field at
su�ciently small r.

Both equations (11.53, 11.54) are satisfied for all ↵ if �=0 and (11.54) is
also satisfied for all ↵ if �=1.

The case �= 0 is strictly excluded by the energy criterion, but we shall
find in the next chapter that it corresponds to the important case in which a
concentrated force is applied at the origin. It can legitimately be regarded as
describing the stress field su�ciently distant from a load distributed on the
wedge faces near the origin, but as such it is clearly not appropriate to the
unloaded problem of Figure 11.3.

The solution �=1 of equation (11.54) is a spurious eigenvalue, since if we
compute the corresponding eigenfunction, it turns out to have the null form
�=A

4

sin(0). The correct limiting form for �=1 requires the modified stress
function (11.4) and leads to the condition (11.36) for antisymmetric fields,
which is satisfied only for 2↵=257.4o.

Some insight into the nature of the eigenvalues for more general wedge
angles can be gained from the graphical representation of Figure 11.5, where
we plot the two terms in equations (11.53, 11.54) against x = 2�↵. The sine
wave represents the term sin(2�↵) (= sinx) and the straight lines represent
various possible positions for the terms ±� sin(2↵)=±x(sin(2↵)/2↵).
6 More rigorously, a general stress field near the corner can be expressed as an

eigenfunction expansion, but the term with the smallest eigenvalue will be arbi-
trarily larger than the next term in the expansion at su�ciently small values of
r.
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Figure 11.5: Graphical solution of equations (11.53, 11.54).

The simplest case is that in which 2↵ = 2⇡ and the wedge becomes the
crack illustrated in Figure 11.6. We then have sin(2↵) = 0 and the solutions
of both equations (11.53, 11.54) correspond to the points where the sine wave
crosses the horizontal axis — i.e.

� =
1
2
, 1,

3
2
, . . . (11.55)

This is an important special case because of its application to fracture
mechanics. In particular, we note that the lowest positive eigenvalue of � is 1

2

and hence the crack-tip field is square-root singular for both symmetric and
antisymmetric loading.

Figure 11.6: Tip of a crack considered as a 360o wedge.

Suppose we now consider a wedge of somewhat less than 2⇡, in which case
equations (11.53, 11.54) are represented by the intersection between the sine
wave and the lines A,A0 respectively in Figure 11.5.

As the wedge angle is reduced, the slope (sin(2↵)/2↵) of the lines first
becomes increasingly negative until a maximum is reached at 2↵ = 257.4o,
corresponding to the tangential line B0 and its mirror image B. Further re-
duction causes the slope to increase monotonically, passing through zero again
at 2↵=⇡ (corresponding to the case of the half plane) and reaching the limit
C,C 0 at 2↵=0.

Clearly, if the lines A,A0 are even slightly inclined to the horizontal, they
will only intersect a finite number of waves, corresponding to a finite set of
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real roots, the number of real roots increasing as the slope approaches zero.
Increasing the slope causes initially equal-spaced real roots to become closer
in pairs such as b, c in Figure 11.5. For any given pair, there will be a critical
slope at which the roots coalesce and for further increase in slope, a pair of
complex conjugate roots will be developed.

In the antisymmetric case for 360o > 2↵ > 257.4o, the intersection b0 in
Figure 11.5 corresponds to the spurious eigenvalue of (11.54), but a0 is a
meaningful eigenvalue corresponding to a stress singularity that weakens from
square-root at 2↵=360o to zero at 2↵=257.4o. For smaller wedge angles, a0

is the spurious eigenvlaue and b0 corresponds to a real but non-singular root.

Figure 11.7: Strength of the singularity in a reëntrant corner.

In the symmetric case, the root a gives a real eigenvalue corresponding
to a singular stress field whose strength falls monotonically from square-root
to zero as the wedge angle is reduced from 2⇡ to ⇡. The strength of the
singularity (��1) for both symmetric and antisymmetric terms is plotted
against total wedge angle7 in Figure 11.7. The singularity associated with
the symmetric field is always stronger than that for the antisymmetric field
except in the limit 2↵ = 2⇡, where they are equal, and there is a range of
angles (257.4o > 2↵ > 180o) where the symmetric field is singular, but the
antisymmetric field is not.

For non-reëntrant wedges (2↵<⇡), both fields are bounded, the dominant
eigenvalue for the symmetric field becoming complex for 2↵ < 146o. Since
bounded solutions correspond to eigenfunctions with r raised to a power with
7 Figure 11.7 is reproduced by courtesy of Professor D.A.Hills of Oxford University.
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positive real part, the stress field always tends to zero in a non-reëntrant
corner.

11.2.4 The singular stress fields

If �=�S is an eigenvalue of (11.53), the two equations (11.47, 11.48) will not
be linearly independent and we can satisfy both of them by choosing A

1

, A
2

such that

A
1

= A(�S � 1) sin(�S � 1)↵ (11.56)
A

2

= �A(�S + 1) sin(�S + 1)↵ , (11.57)

where A is a new arbitrary constant. The corresponding (symmetric) singular
stress field is then defined through the stress function

�S = Ar�S+1

�

(�S � 1) sin(�S � 1)↵ cos(�S + 1)✓

� (�S + 1) sin(�S + 1)↵ cos(�S � 1)✓
 

. (11.58)

A similar procedure with equations (11.49, 11.50) defines the antisymmet-
ric singular field through the stress function

�A = Br�A+1

�

(�A + 1) sin(�A � 1)↵ sin(�A + 1)✓

� (�A + 1) sin(�A + 1)↵ sin(�A � 1)✓
 

, (11.59)

where �A is an eigenvalue of (11.54) and B is an arbitrary constant.
For the crack tip of Figure 11.6, the eigenvalues of both equations are given

by equation (11.55) and the dominant singular fields correspond to the values
�S =�A = 1

2

. Substituting this value into (11.58) and the resulting expression
into (8.10, 8.11), we obtain the symmetric singular field as

�rr =
KIp
2⇡r

⇢

5
4

cos
✓

✓

2

◆

� 1
4

cos
✓

3✓
2

◆�

(11.60)

�✓✓ =
KIp
2⇡r

⇢

3
4

cos
✓

✓

2

◆

+
1
4

cos
✓

3✓
2

◆�

(11.61)

�r✓ =
KIp
2⇡r

⇢

1
4

sin
✓

✓

2

◆

+
1
4

sin
✓

3✓
2

◆�

, (11.62)

where we have introduced the new constant

KI = 3A

r

⇡

2
, (11.63)

known as the mode I stress intensity factor

8.
8 Brittle materials typically fail when the stress intensity factor at a crack tip

reaches a critical value. This will be discussed in more detail in §13.3.
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The corresponding antisymmetric singular crack-tip field is obtained from
(11.59) as

�rr =
KIIp
2⇡r

⇢

�5
4

sin
✓

✓

2

◆

+
3
4

sin
✓

3✓
2

◆�

(11.64)

�✓✓ =
KIIp
2⇡r

⇢

�3
4

sin
✓

✓

2

◆

� 3
4

sin
✓

3✓
2

◆�

(11.65)

�r✓ =
KIIp
2⇡r

⇢

1
4

cos
✓

✓

2

◆

+
3
4

cos
✓

3✓
2

◆�

, (11.66)

where KII is the mode II stress intensity factor.

11.2.5 Other geometries

Williams’ method can also be applied to other discontinuities in elasticity
and indeed in other fields in mechanics. For example, we can extend it to
determine the strength of the singularity in a composite wedge of two di↵erent
materials9. A special case is illustrated in Figure 11.8, where two dissimilar
materials are bonded10, leaving a composite wedge of angle 3⇡/2 at the points
A,B. Another composite wedge is the tip of a crack (or debonded zone) at
the interface between two dissimilar materials (see Chapter 32).

Figure 11.8: Composite T-bar, with composite notches at the reëntrant cor-
ners A,B.
9 D.B.Bogy, Two edge-bonded elastic wedges of di↵erent materials and wedge an-

gles under surface tractions, ASME Journal of Applied Mechanics, Vol. 38 (1971),
pp.377–386.

10 A problem of this kind was solved by G.G.Adams, A semi-infinite elastic strip
bonded to an infinite strip, ASME Journal of Applied Mechanics, Vol. 47 (1980),
pp.789–794.
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The method has also been applied to determine the asymptotic fields in
contact problems, with and without friction11 (see Chapter 12 below).

These problems generally involve both traction and displacement bound-
ary conditions. For example, if the dissimilar wedges ↵

1

< ✓ < ↵
0

and
↵

0

< ✓<↵
2

are bonded together at the common plane ✓=↵
0

and the other
faces ✓=↵

1

,↵
2

are traction-free, the boundary conditions are

�1

✓✓(r,↵1

) = 0 (11.67)
�1

✓r(r,↵1

) = 0 (11.68)
�1

✓✓(r,↵0

)� �2

✓✓(r,↵0

) = 0 (11.69)
�1

✓r(r,↵0

)� �2

✓r(r,↵0

) = 0 (11.70)
u1

r(r,↵0

)� u2

r(r,↵0

) = 0 (11.71)
u1

✓(r,↵0

)� u2

✓(r,↵0

) = 0 (11.72)
�2

✓✓(r,↵2

) = 0 (11.73)
�2

✓r(r,↵2

) = 0 (11.74)

where superscripts 1, 2 refer to the two wedges, respectively. Equations (11.69,
11.70) can be seen as statements of Newton’s third law for the tractions trans-
mitted between the two wedges, whilst (11.71, 11.72) express the fact that if
two bodies are bonded together, adjacent points on opposite sides of the bond
must have the same displacement.

To formulate asymptotic problems of this type, the stress equations (11.39–
11.41) must be supplemented by the corresponding expressions for the dis-
placements ur, u✓. These can be written down from Table 9.1, since in that
table the parameter n does not necessarily have to take integer values. Alter-
natively, they can be obtained directly by substituting the expression (11.38)
into the Maple or Mathematica file ‘urt’. Omitting the rigid-body displace-
ments, we obtain

2µur = r�{�A
1

(�+ 1) cos(�+ 1)✓ + A
2

(� �) cos(�� 1)✓
�A

3

(�+ 1) sin(�+ 1)✓ + A
4

(� �) sin(�� 1)✓} (11.75)
2µu✓ = r�{A

1

(�+ 1) sin(�+ 1)✓ + A
2

(+ �) sin(�� 1)✓
�A

3

(�+ 1) cos(�+ 1)✓ �A
4

(+ �) cos(�� 1)✓} (11.76)

The results of asymptotic analysis are very useful in numerical methods,
since they enable us to predict the nature of the local stress field and hence
devise appropriate special elements or meshes. Failure to do this in problems
with singular fields will always lead to numerical ine�ciency and sometimes
to lack of convergence, mesh sensitivity or instability.
11 J.Dundurs and M.S.Lee, Stress concentration at a sharp edge in contact problems,

Journal of Elasticity, Vol. 2 (1972), pp.109–112, M.Comninou, Stress singularities
at a sharp edge in contact problems with friction, Zeitschrift für angewandte
Mathematik und Physik, Vol. 27 (1976), pp.493–499.
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To look ahead briefly to three-dimensional problems, we note that when
we concentrate our attention on a very small region at a corner, the result-
ing magnification makes all other dimensions (including radii of curvature
etc) look very large. Thus, a notch in a three-dimensional body will generally
have a two-dimensional asymptotic field at small r. The above results and the
underlying method are therefore of very general application. Another conse-
quence is that the out-of-plane dimension becomes magnified indefinitely, so
that plane strain (rather than plane stress) conditions are appropriate in all
three-dimensional asymptotic problems.

11.3 General loading of the faces

If the faces of the wedge ✓ =±↵ are subjected to tractions that can be ex-
panded as power series in r, a solution can be obtained using a series of terms
like (11.1). However, as with the rectangular beam, power series are of limited
use in representing a general traction distribution, particularly when it is rel-
atively localized. Instead, we can adapt the Fourier transform representation
(5.129) to the wedge, by noting that the stress function (11.38) will oscillate
along lines of constant ✓ if we choose complex values for �. This leads to a
representation as a Mellin transform defined as

�(r, ✓) =
1

2⇡i

Z c+ı1

c�ı1
f(s, ✓)r�sds (11.77)

for which the inversion is12

f(s, ✓) =
Z 1

0

�(r, ✓)rs�1dr . (11.78)

The integrand of (11.77) is the function (11.38) with � = �s� 1. The
integral is path-independent in any strip of the complex plane in which the
integrand is a holomorphic13 function of s. If we evaluate it along the straight
line s=c+ı!, it can be written in the form

rc�(r, ✓) =
1
2⇡

Z 1

�1
f(c + ı!, ✓)r�ı!d!

=
1
2⇡

Z 1

�1
f(c + ı!)eı! ln(r)d! , (11.79)

which is readily converted to a Fourier integral14 by the change of variable
t=ln(r). The constant c has to be chosen to ensure regularity of the integrand.
12 I.N.Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.
13 See Chapter 18 and in particular, §18.5.
14 The basic theory of the Mellin transform and its relation to the Fourier transform

is explained by I.N.Sneddon, loc. cit.. For applications to elasticity problems for
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If there are no unacceptable singularities in the tractions and the latter are
bounded at infinity, it can be shown that a suitable choice is c=�1.

The Mellin transform and power series methods can be applied to a wedge
of any angle, but it should be remarked that, because of the singular asymp-
totic fields obtained in §11.2, meaningful results for the reëntrant wedge
(2↵>⇡) can only be obtained if the conditions at infinity are also prescribed
and satisfied.

More precisely, we could formulate the problem for the large but finite
sector �↵ < ✓ < ↵, 0 < r < b, with precribed tractions on all edges15. The
procedure would be first to develop a particular solution for the loading on
the faces ✓=±↵ as if the wedge were infinite and then to correct the boundary
conditions at r=b by superposing an infinite sequence of eigenfunctions from
§11.2 with appropriate multipliers16. For su�ciently large b, the stress field
near the apex of the wedge would be adequately described by the particular
solution and the singular terms from the eigenfunction expansion.

the wedge, see E.Sternberg and W.T.Koiter, The wedge under a concentrated
couple: A paradox in the two-dimensional theory of elasticity, ASME Journal of
Applied Mechanics, Vol. 25 (1958), pp.575–581, W.J.Harrington and T.W.Ting,
Stress boundary-value problems for infinite wedges, Journal of Elasticity, Vol. 1
(1971), pp.65–81.

15 A problem of this kind was considered by G.Tsamasphyros and P.S.Theocaris, On
the solution of the sector problem, Journal of Elasticity, Vol. 9 (1979), pp.271–
281.

16 This requires that the eigenfunction series is complete for this problem. The proof
is given by R.D.Gregory, Green’s functions, bi-linear forms and completeness of
the eigenfunctions for the elastostatic strip and wedge, Journal of Elasticity, Vol.
9 (1979), pp.283–309.
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PROBLEMS

1. Figure 11.9 shows a half plane, y<0, subjected to a uniform shear traction,
�xy =S on the half-line, x> 0, y =0, the remaining tractions on y =0 being
zero.

Figure 11.9: The half plane with shear tractions.

Find the complete stress field in the half plane. Note: This is a problem
requiring a special stress function with a logarithmic multiplier (see §11.1.4
above).

2. The half plane y<0 is subjected to a uniform normal pressure �yy =�S on
the half-line, x > 0, y = 0, the remaining tractions on y = 0 being zero. Find
the complete stress field in the half plane.

3. The wedge �↵<✓<↵ is loaded by a concentrated moment M
0

at the apex,
the plane edges being traction free. Use dimensional arguments to show that
the stress components must all have the separated-variable form

� =
f(✓)
r2

.

Use this result to choose a suitable stress function and hence find the complete
stress field in the wedge.

4. Show that � = Ar2✓ can be used as a stress function and determine the
tractions which it implies on the boundaries of the region �⇡/2 < ✓ < ⇡/2.
Hence show that the stress function appropriate to the loading of Figure 11.10
is

� = � F

4⇡a
(r2

1

✓
1

+ r2

2

✓
2

)

where r
1

, r
2

, ✓
1

, ✓
2

are defined in the Figure.
Determine the principal stresses at the point B.
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Figure 11.10: Uniform loading over a discrete region.

5. A wedge-shaped concrete dam is subjected to a hydrostatic pressure ⇢gh
varying with depth h on the vertical face ✓=0 as shown in Figure 11.11, the
other face ✓=↵ being traction-free. The dam is also loaded by self-weight, the
density of concrete being ⇢c =2.3⇢.

Find the minimum wedge angle ↵ if there is to be no tensile stress in the
dam.

Figure 11.11: The wedge-shaped dam.
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6. Figure 11.12 shows a 45o triangular plate ABC built in at BC and loaded
by a uniform pressure p

0

on the upper edge AB. The inclined edge AC is
traction-free.

Find the stresses in the plate, using weak boundary conditions on the
edge BC (which do not need to be explicitly enforced). Hence compare the
maximum tensile stress with the prediction of the elementary bending theory.

Figure 11.12

7. The wedge �↵<✓<↵ is bonded to a rigid body on both edges ✓=±↵. Use
the eigenfunction expansion of §11.2.2 to determine the characteristic equa-
tions that must be satisfied by the exponent � in the stress function (11.38) for
symmetric and antisymmetric stress fields. Show that these equations reduce
to (11.53, 11.54) if ⌫=0.5 and plane strain conditions are assumed.

8. Find the equation that must be satisfied by � if the stress function (11.38)
is to define a non-trivial solution of the problem of the half plane 0 < ✓< ⇡,
traction-free on ✓ = 0 and in frictionless contact with a rigid plane surface
at ✓ = ⇡. Find the lowest value of � that satisfies this equation and obtain
explicit expressions for the form of the corresponding singular stress field near
the corner. This solution is of importance in connection with the frictionless
indentation of a smooth elastic body by a rigid body with a sharp corner.

9. Two large bodies of similar materials with smooth, continuously di↵eren-
tiable curved surfaces make frictionless contact. Use the asymptotic method
of §11.2 to examine the asymptotic stress fields near the edge of the resulting
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contact area. The solution of this problem must also satisfy two inequalities:
that the contact tractions in the contact region must be compressive and that
the normal displacements in the non-contact region must cause a non-negative
gap. Show that one or other of these conditions is violated, whatever sign is
taken for the multiplier on the first eigenfunction. What conclusion do you
draw from this result?

10. Find the equation that must be satisfied by � if the stress function (11.38)
is to define a non-trivial solution of the problem of the wedge 0 < ✓ < ⇡/2,
traction-free on ✓=0 and bonded to a rigid plane surface at ✓=⇡/2. Do not
attempt to solve the equation.



12

PLANE CONTACT PROBLEMS
1

In the previous chapter, we considered problems in which the infinite wedge
was loaded on its faces or solely by tractions on the infinite boundary. A
related problem of considerable practical importance concerns the wedge with
traction-free faces, loaded by a concentrated force F at the vertex, as shown
in Figure 12.1.

Figure 12.1: The wedge loaded by a force at the vertex.

12.1 Self-similarity

scale. An enlarged photograph of the problem would look the same as the
1 For a more detailed discussion of elastic contact problems, see K.L.Johnson, Con-

tact Mechanics, Cambridge University Press, 1985 and G.M.L.Gladwell, Contact
Problems in the Classical Theory of Elasticity, Sijtho↵ and Noordho↵, Alphen
aan den Rijn, 1980.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172,
DOI 10.1007/978-90-481-3809-8_12, © Springer Science+Business Media B.V. 2010 

An important characteristic of this problem is that there is no inherent length

171
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original. The solution must therefore share this characteristic and hence, for
example, contours of the stress function � must have the same geometric shape
at all distances from the vertex. Problems of this type — in which the solution
can be mapped into itself after a change of length scale — are described as
self-similar.

An immediate consequence of the self-similarity is that all the stress com-
ponents must be capable of expression in the separated-variable form

� = f(r)g(✓) . (12.1)

Furthermore, since the tractions on the line r=a must balance a constant
force F for all a, we can deduce that f(r) = r�1, because the area available
for transmitting the force increases linearly with radius2.

12.2 The Flamant Solution

Choosing those terms in Table 8.1 that give stresses proportional to r�1, we
obtain

� = C
1

r✓ sin ✓ + C
2

r✓ cos ✓ + C
3

r ln(r) cos ✓ + C
4

r ln(r) sin ✓ , (12.2)

for which the stress components are

�rr = r�1(2C
1

cos ✓ � 2C
2

sin ✓ + C
3

cos ✓ + C
4

sin ✓)
�r✓ = r�1(C

3

sin ✓ � C
4

cos ✓) (12.3)
�✓✓ = r�1(C

3

cos ✓ + C
4

sin ✓) .

For the wedge faces to be traction-free, we require

�✓r = �✓✓ = 0 ; ✓ = ↵,� , (12.4)

which can be satisfied by taking C
3

, C
4

=0.
To determine the remaining constants C

1

, C
2

, we consider the equilibrium
of the region 0<r<a, obtaining

Fx + 2
Z �

↵

✓

C
1

cos ✓ � C
2

sin ✓
a

◆

a cos ✓d✓ = 0 (12.5)

Fy + 2
Z �

↵

✓

C
1

cos ✓ � C
2

sin ✓
a

◆

a sin ✓d✓ = 0 . (12.6)

These two equations permit us to choose the constants C
1

, C
2

to give the
applied force F any desired magnitude and direction. Notice that the radius a

2 In the same way, we can deduce that the stresses in a cone subjected to a force
at the vertex must vary with r�2.
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cancels in equations (12.5, 12.6) and hence, if they are satisfied for any radius,
they are satisfied for all.

This is known as the Flamant solution, or sometimes as the simple ra-

dial distribution, since the act of setting C
3

= C
4

= 0 clears all ✓-surfaces of
tractions, leaving

�rr =
2C

1

cos ✓
r

� 2C
2

sin ✓
r

(12.7)

as the only non-zero stress component.

12.3 The half-plane

If we take ↵=�⇡ and �=0 in the above solution, we obtain the special case
of a force acting at a point on the surface of the half-plane y<0 as shown in
Figure 12.2.

Figure 12.2: Force acting on the surface of a half-plane.

For this case, performing the integrals in equations (12.5, 12.6), we find

Fx + 2
Z

0

�⇡

(C
1

cos2 ✓ � C
2

sin ✓ cos ✓)d✓ = Fx + ⇡C
1

= 0 (12.8)

Fy + 2
Z

0

�⇡

(C
1

cos ✓ sin ✓ � C
2

sin2 ✓)d✓ = Fy � ⇡C
2

= 0 (12.9)

and hence
C

1

= �Fx

⇡
; C

2

=
Fy

⇡
. (12.10)

It is convenient to consider these terms separately.

12.3.1 The normal force F
y

The normal (tensile) force Fy produces the stress field

�rr = �2Fy sin ✓
⇡r

, (12.11)
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which reaches a maximum tensile value on the negative y-axis (✓=�⇡/2) —
i.e. directly beneath the load — and falls to zero as we approach the surface
along any line other than one which passes through the point of application
of the force.

The displacement field corresponding to this stress can conveniently be
taken from Table 9.1 and is

2µur =
Fy

2⇡
{(� 1)✓ cos ✓ � (+ 1) ln r sin ✓ + sin ✓} (12.12)

2µu✓ =
Fy

2⇡
{�(� 1)✓ sin ✓ � (+ 1) ln(r) cos ✓ � cos ✓} . (12.13)

These solutions will be used as Green’s functions for problems in which
a half-plane is subjected to various surface loads and hence the surface dis-
placements are of particular interest.

On ✓=0, (y=0, x>0), we have

2µur = 2µux = 0 (12.14)

2µu✓ = 2µuy =
Fy

2⇡
{�(+ 1) ln(r)� 1} , (12.15)

whilst on ✓=�⇡, (y=0, x<0), we have

2µur = �2µux =
Fy

2
(� 1) (12.16)

2µu✓ = �2µuy =
Fy

2⇡
{(+ 1) ln(r) + 1} . (12.17)

It is convenient to impose symmetry on the solution by superposing a
rigid-body displacement

2µux =
Fy(� 1)

4
; 2µuy =

Fy

2⇡
, (12.18)

after which equations (12.14–12.17) can be summarised in the form

ux =
Fy(� 1)sgn(x)

8µ
(12.19)

uy = �Fy(+ 1) ln |x|
4⇡µ

, (12.20)

where the function sgn(x) is defined to be +1 for x>0 and �1 for x<0.
Note incidentally that r= |x| on y=0.

12.3.2 The tangential force F
x

The tangential force Fx produces the stress field
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�rr = �2Fx cos ✓
⇡r

, (12.21)

which is compressive ahead of the force (✓=0) and tensile behind it (✓=�⇡)
as we might expect.

The corresponding displacement field is found from Table 9.1 as before
and after superposing an appropriate rigid-body displacement as in §12.3.1,
the surface displacements can be written

ux = �Fx(+ 1) ln |x|
4⇡µ

(12.22)

uy = �Fx(� 1)sgn(x)
8µ

. (12.23)

12.3.3 Summary

We summarize the results of §§12.3.1, 12.3.2 in the equations

ux = �Fx(+ 1) ln |x|
4⇡µ

+
Fy(� 1)sgn(x)

8µ
(12.24)

uy = �Fx(� 1)sgn(x)
8µ

� Fy(+ 1) ln |x|
4⇡µ

, (12.25)

see Figure 12.3.

Figure 12.3: Surface displacements due to a surface force.

12.4 Distributed normal tractions

Now suppose that the surface of the half-plane is subjected to a distributed
normal load p(⇠) per unit length as shown in Figure 12.4. The stress and
displacement field can be found by superposition, using the Flamant solution
as a Green’s function — i.e. treating the distributed load as the limit of a set
of point loads of magnitude p(⇠)�⇠.

Of particular interest is the distortion of the surface, defined by the normal
displacement uy. At the point P (x, 0), this is given by
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uy = � (+ 1)
4⇡µ

Z

A

p(⇠) ln |x� ⇠|d⇠ , (12.26)

from equation (12.20), where A is the region over which the load acts.

Figure 12.4: Half-plane subjected to a distributed traction.

The displacement defined by equation (12.26) is logarithmically unbounded
as x tends to infinity. In general, if a finite region of the surface of the half-
plane is subjected to a non-self-equilibrated system of loads, the stress and
displacement fields at a distance r � A will approximate those due to the
force resultants applied as concentrated forces — i.e. to the expressions of
equations (12.11–12.13) for normal loading. In other words, the stresses will
decay with 1/r and the displacements (being integrals of the strains) will vary
logarithmically.

This means that the half-plane solution can be used for the stresses in a
finite body loaded on a region of the surface which is small compared with
the linear dimensions of the body, since 1/r is arbitrarily small for su�ciently
large r. However, the logarithm is not bounded at infinity and hence the rigid-
body displacement of the loaded region with respect to distant parts of the
body cannot be found without a more exact treatment taking into account
the finite dimensions of the body. For this reason, contact problems for the
half-plane are often formulated in terms of the displacement gradient

duy

dx
= � (+ 1)

4⇡µ

Z

A

p(⇠)d⇠
(x� ⇠)

, (12.27)

thereby avoiding questions of rigid-body translation.
When the point x = ⇠ lies within A, the integral in (12.27) is interpreted

as a Cauchy principal value — for example

Z b

a

p(⇠)d⇠
(x� ⇠)

= lim
✏!0

 

Z x�✏

a

+
Z b

x+✏

!

p(⇠)d⇠
(x� ⇠)

; a < x < b . (12.28)
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12.5 Frictionless contact problems

The results of the last section permit us to develop a solution to the problem
of a half-plane indented by a frictionless rigid punch of known profile (see
Figure 12.5).

Figure 12.5: The elastic half-plane indented by a frictionless rigid punch.

We suppose that the load F is su�cient to establish contact over the whole
of the contact area A, in which case, the displacement of the half-plane must
satisfy the equation

uy = �u
0

(x) + C
1

x + C
0

(12.29)
in A, where u

0

is a known function of x which describes the profile of the
punch.

The constants C
0

, C
1

define an unknown rigid-body translation and rota-
tion of the punch respectively, which can generally be assigned in such a way
as to give a pressure distribution p(⇠) which is statically equivalent to the
force F — i.e.

Z

A

p(⇠)d⇠ = �F (12.30)
Z

A

p(⇠)⇠d⇠ = �Fd , (12.31)

where d defines the line of action of F as shown in Figure 12.5 and the negative
signs are a consequence of the tensile positive convention for p(⇠). These two
equations are su�cient to determine the constants C

0

, C
1

.
If the contact region, A, is connected, we can define a coördinate system

with origin at the mid-point and denote the half-length of the contact by a.
Equations (12.27, 12.29) then give

�du
0

dx
+ C

1

= � (+ 1)
4⇡µ

Z a

�a

p(⇠)d⇠
(x� ⇠)

; �a < x < a , (12.32)

which is a Cauchy singular integral equation for the unknown pressure p(⇠).
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12.5.1 Method of solution

Integral equations of this kind arise naturally in the application of the com-
plex variable method to two-dimensional potential problems and they are
extensively discussed in a classical text by Muskhelishvili3. However, for our
purposes, a simpler solution will su�ce, based on the change of variable

x = a cos� ; ⇠ = a cos ✓ (12.33)

and expansion of the two sides of the equation as Fourier series.
Substituting (12.33) into (12.32), we find

1
a sin�

du
0

d�
+ C

1

= � (+ 1)
4⇡µ

Z ⇡

0

p(✓) sin ✓d✓
(cos�� cos ✓)

; 0 < � < ⇡ , (12.34)

which can be simplified using the result4
Z ⇡

0

cos(n✓)d✓
(cos�� cos ✓)

= �⇡ sin(n�)
sin�

. (12.35)

Writing

p(✓) =
1
X

n=0

pn cos(n✓)
sin ✓

(12.36)

du
0

d�
=

1
X

n=1

un sin(n�) , (12.37)

we find
1
X

n=1

un sin(n�) + C
1

a sin� =
(+ 1)a sin�

4⇡µ

1
X

n=1

⇡pn sin(n�)
sin�

=
(+ 1)a

4µ

1
X

n=1

pn sin(n�) (12.38)

and hence, equating Fourier coe�cients,

pn =
4µun

(+ 1)a
; n > 1 (12.39)

p
1

=
4µ(C

1

a + u
1

)
(+ 1)a

. (12.40)

3 N.I.Muskhelishvili, Singular Integral Equations, (English translation by
J.R.M.Radok, Noordho↵, Groningen, 1953). For applications to elasticity prob-
lems, including the above contact problem, see N.I.Muskhelishvili, Some Ba-
sic Problems of the Mathematical Theory of Elasticity, (English translation by
J.R.M.Radok, Noordho↵, Groningen, 1953). For a simpler discussion of the solu-
tion of contact problems involving singular integral equations, see K.L.Johnson,
loc. cit, §2.7.

4 For a method of proving this result, see Problem 18.7.
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Thus, if the shape of the punch u
0

is expanded as in equation (12.37), the
corresponding coe�cients in the pressure series (12.36) can be written down
using (12.39), except for n=0, 1.

The two coe�cients p
0

, p
1

are found by substituting (12.36) into the equi-
librium conditions (12.30, 12.31). From (12.30), we have

�F =
Z a

�a

p(x0)dx0 =
Z ⇡

0

p(✓)a sin ✓d✓

= a
1
X

n=0

pn

Z ⇡

0

cos(n✓)d✓ = ⇡ap
0

(12.41)

and from (12.31),

�Fd =
Z a

�a

p(x0)x0dx0 =
Z ⇡

0

p(✓)a2 sin ✓ cos ✓d✓

= a2

1
X

n=0

pn

Z ⇡

0

cos ✓ cos(n✓)d✓ =
⇡a2p

1

2
. (12.42)

Hence,

p
0

= � F

⇡a
; p

1

= �2Fd

⇡a2

. (12.43)

The rigid-body rotation of the punch C
1

can then be found by eliminating
p
1

between equations (12.40, 12.43), with the result

C
1

= �Fd(+ 1)
2⇡µa2

� u
1

a
. (12.44)

Alternatively, if the punch is constrained to move vertically without rotation,
C

1

will be zero and we can solve for the applied moment Fd as

Fd = �2⇡µu
1

a

(+ 1)
, (12.45)

from (12.44).

12.5.2 The flat punch

We first consider the case of a flat punch with a symmetric load as shown in
Figure 12.6. The profile of the punch is described by the equation

u
0

= C ;
du

0

dx
= 0 (12.46)

and hence pn =0 for n>1 from equation (12.39). Furthermore, since the load
is symmetric (d = 0), p

1

is also zero (equation (12.43)) and p
0

is given by
(12.43).
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Figure 12.6: Half-plane indented by a flat rigid punch.

The traction distribution under the punch is therefore

p(x) =
p
0

sin�
= � F

⇡a
p

1� x2/a2

= � F

⇡
p

a2 � x2

. (12.47)

We note that the sharp corners of the punch cause a square root singularity
in traction at the edges, x=±a. This is typical of indentation problems where
the punch has a sharp corner and could have been predicted by performing
an asymptotic analysis of the local stress field, using the methods developed
in §11.2 (see Problem 11.8). The traction distribution is illustrated in Figure
12.7.

Figure 12.7: Contact pressure distribution under the flat rigid punch.
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12.5.3 The cylindrical punch (Hertz problem)

We next consider the indentation of a half-plane by a frictionless rigid cylinder
(Figure 12.8), which is a special case of the contact problem associated with
the name of Hertz.

Figure 12.8: The Hertzian contact problem.

This problem di↵ers from the previous example in that the contact area
semi-width a depends on the load F and cannot be determined a priori.
Strictly, a must be determined from the pair of inequalities

p(x)  0 ; �a < x < a (12.48)
�uy(x) � u

0

(x) ; |x| > a , (12.49)

which express the physical requirements that the contact traction should not
be tensile (12.48) and that there should be no interference between the bodies
outside the contact area (12.49). However, it can be shown that these condi-
tions are in most cases formally equivalent to the requirement that the contact
traction should not be singular at x=±a. This question will be discussed more
rigorously in connection with three-dimensional contact problems in Chapter
29. Here it is su�cient to remark that a traction singularity such as that
obtained at the sharp corner of the flat punch (equation (12.47)) causes a dis-
continuity in the displacement gradient duy/dx, which will cause a violation
of (12.49) if the punch is smooth.

If the radius of the cylinder is R, we have

d2u
0

dx2

= � 1
R

(12.50)

and hence
u

0

= C
0

� x2

2R
= C

0

� a2 cos(2�)
4R

� a2

4R
. (12.51)

Thus
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du
0

d�
=

a2 sin 2�
2R

(12.52)

and the only non-zero coe�cient in the series (12.37) is

u
2

=
a2

2R
. (12.53)

It follows that
p
2

=
2µa

R(+ 1)
, (12.54)

from (12.39).
For the cylinder, the load must be symmetrical to retain equilibrium and

hence p
1

=0. As before, p
0

is given by (12.43) and hence

p(✓) =
✓

� F

⇡a
+

2µa

R(+ 1)
cos(2✓)

◆�

sin ✓ . (12.55)

Now this expression will be singular at ✓=0,⇡ (x=±a) unless we choose
a such that

F

⇡a
=

2µa

R(+ 1)
,

i.e.

a =

s

F (+ 1)R
2⇡µ

. (12.56)

Note that for plane strain, =(3�4⌫) and

2µ

(+ 1)
=

E

4(1� ⌫2)
, (12.57)

whilst for plane stress, =(3�⌫)/(1+⌫) and

2µ

(+ 1)
=

E

4
. (12.58)

With the value of a from (12.56), we find

p(✓) = �F{1� cos(2✓)}
⇡a sin ✓

= �2F sin ✓
⇡a

(12.59)

i.e.

p(x) = �2F
p

a2 � x2

⇡a2

. (12.60)

This pressure distribution is illustrated in Figure 12.9.
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Figure 12.9: The Hertzian pressure distribution.

12.6 Problems with two deformable bodies

The same method can be used to treat problems involving the contact of
two deformable bodies, provided that they have su�ciently large radii in the
vicinity of the contact area to be approximated by half-planes — i.e. R

1

, R
2

�
a, where R

1

, R
2

are the local radii5 (see Figure 12.10). We shall also take the
opportunity to generalize the formulation to the case where, in addition to
the normal tractions py, there are tangential tractions px at the interface due
to friction.

Figure 12.10: Contact of two curved deformable bodies.

We first note that, by Newton’s third law, the tractions must be equal and
opposite on the two surfaces, so the appropriate Green’s function corresponds
to the force pairs Fx, Fy of Figure 12.11.
5 In fact the same condition must be satisfied even for the case where the curved

body is rigid, since otherwise the small strain assumption of linear elasticity
(e

ij

⌧1) will be violated near the contact area.
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Figure 12.11: Green’s function for contact problems.

Suppose that the bodies are placed lightly in contact, as shown in Figure
12.12, and that the initial gap between their surfaces is a known function
g
0

(x).

Figure 12.12: Initial gap between two unloaded contacting bodies.

We now give the upper body a vertical rigid-body translation C
0

and a small
clockwise rotation C

1

such that, in the absence of deformation, the gap would
become

g(x) = g
0

(x)� C
0

� C
1

x . (12.61)

In addition, we assume that the contact tractions will cause some elastic de-
formation, represented by the displacements u1,u2 in bodies 1,2 respectively.

As a result of these operations, the gap will be modified to

g(x) = g
0

(x)� uy1

(x, 0) + uy2

(x, 0)� C
0

� C
1

x (12.62)

and it follows that the contact condition analogous to (12.29) can be written

uy1

(x, 0)� uy2

(x, 0) = g
0

(x)� C
0

� C
1

x ; in A , (12.63)

since, in a contact region, the gap is by definition zero.
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The surface displacement uy1

(x, 0) of body 1 is simply (12.26) generalized
to include the e↵ect of the tangential traction px (see equation (12.25)) — i.e.

uy1

(x, 0) = � (+ 1)
4⇡µ

Z a

�a

py(⇠) ln |x� ⇠|d⇠

� (� 1)
8µ

Z a

�a

px(⇠)sgn(x� ⇠)d⇠ (12.64)

and hence6

duy1

dx
= � (+ 1)

4⇡µ

Z a

�a

py(⇠)d⇠
(x� ⇠)

� (� 1)
4µ

px(x) . (12.65)

We also record the corresponding expression for the tangential displace-
ment ux1

, which is

dux1

dx
= � (+ 1)

4⇡µ

Z a

�a

px(⇠)d⇠
(x� ⇠)

+
(� 1)

4µ
py(x) , (12.66)

from (12.24).
Comparing Figure 12.11 with Figure 12.3, we see that equations (12.65,

12.66) can be used for the displacements ux, uy of body 1, but for the corre-
sponding displacements of body 2 we have to take account of the fact that
the tractions px, py are reversed and that the y-axis is now directed into the
body. It is easily verified that this can be achieved by changing the signs in
the expressions involving uy, px, whilst leaving those expressions with ux, py

unchanged. It then follows that

d

dx
(uy1

� uy2

) = � A

4⇡

Z a

�a

py(⇠)d⇠
(x� ⇠)

� B

4
px(x) (12.67)

d

dx
(ux1

� ux2

) = � A

4⇡

Z a

�a

px(⇠)d⇠
(x� ⇠)

+
B

4
py(x) , (12.68)

where

A =
(

1

+ 1)
µ

1

+
(

2

+ 1)
µ

2

(12.69)

B =
(

1

� 1)
µ

1

� (
2

� 1)
µ

2

. (12.70)

6 Notice that an alternative representation of sgn(x) is 2H(x)�1, where H(x) is
the Heaviside step function. It follows that the derivative of sgn(x) is 2�(x) and
that the derivative of the integral in the second term of (12.64) is simply twice
the value of p

x

(⇠) at the point ⇠=x.
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12.7 Uncoupled problems

We can now substitute (12.67) into the derivative of the contact condition
(12.63), obtaining

g0
0

(x)� C
1

= � A

4⇡

Z a

�a

py(⇠)d⇠
(x� ⇠)

� B

4
px(x) ; �a < x < a . (12.71)

This equation is similar in form to (12.32), except for the presence of the
term involving px. It can therefore be solved in the same way if for any reason
this term is identically zero. Four important cases where this condition is
satisfied are:-

(i) The contact is frictionless, so px =0.
(ii) The materials are similar (

1

=
2

, µ
1

=µ
2

) and hence B=0.
(iii) Both materials are incompressible (⌫

1

=⌫
2

=0.5, 
1

=
2

=1, µ
1

6=µ
2

).
(iv) One body is rigid (µ

1

=1) and the other incompressible (
2

=1).

Of course, no real materials are even approximately rigid, but the coupling
terms in equations (12.67, 12.68) — i.e. those connecting uy, px and ux, py —
can reasonably be neglected provided that the ratio

� =
B

A
=
✓

(
1

� 1)
µ

1

� (
2

� 1)
µ

2

◆�✓

(
1

+ 1)
µ

1

+
(

2

+ 1)
µ

2

◆

⌧ 1 . (12.72)

This will be true if µ
1

� µ
2

and (
2

� 1) ⌧ 1 and it is a reasonable ap-
proximation to the practically important case of rubber in contact with steel.
The dimensionless parameter � is one of Dundurs’ bimaterial parameters (see
§4.4.3).

In the rest of this chapter, we shall restrict attention to problems in which
the coupling terms can be neglected for one of the reasons given above.

12.7.1 Contact of cylinders

If the two bodies are cylinders with radii R
1

, R
2

(see Figure 12.10), we have

g00
0

(x) =
1

R
1

+
1

R
2

=
R

1

+ R
2

R
1

R
2

⌘ 1
R

. (12.73)

Hence, comparing equations (12.73, 12.50) and (12.71, 12.32), we find that
the solution can be written down from equations (12.56, 12.60) by replacing
(+1)/µ by A of equation (12.69) and R by R

1

R
2

/(R
1

+R
2

) — i.e.

a =

s

FR
1

R
2

2⇡(R
1

+ R
2

)

✓

(
1

+ 1)
µ

1

+
(

2

+ 1)
µ

2

◆

(12.74)

py(x) = �2F
p

a2 � x2

⇡a2

. (12.75)
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12.8 Combined normal and tangential loading

Tangential tractions can be transmitted between contacting bodies only by
means of friction and the complete specification of the problem then requires
an assumption about the friction law relating the tangential traction to the
relative tangential motion at the interface.

As in the normal contact analysis, tangential relative displacement or shift,
h(x), can result from rigid-body motion, C, and/or elastic deformation, being
given by

h(x) = ux2

(x, 0)� ux1

(x, 0) + C , (12.76)

where a positive shift corresponds to displacement of the upper body to the
right relative to the lower body.

We shall define a state of stick as one in which the time derivative of the
shift, ḣ(x)=0. A state with ḣ(x) 6=0 will be referred to as positive or negative

slip, depending on the sign of ḣ(x).
The simplest frictional assumption is that usually referred to as Coulomb’s

law, which, in terms of the above notation, can be defined as

ḣ(x) = u̇x2

� u̇x1

+ Ċ = 0 ; fpy(x) < px(x) < �fpy(x) (12.77)

in stick regions and
px(x) = �fpy(x)sgn(ḣ(x)) (12.78)

in slip regions, where f is a constant known as the coe�cient of friction

7.
We make no distinction between dynamic and static friction coe�cients. In
interpreting these equations, the reader should recall that the normal traction
py(x) is always compressive and hence negative in contact problems.

The function sgn(ḣ(x)) in (12.78) ensures that the frictional traction op-
poses the relative motion and hence dissipates energy. This condition and
the inequality in (12.77) serve to determine the division of the contact region
into positive slip, negative slip and stick zones in much the same way as the
inequalities (12.48, 12.49) determine the contact area in the normal contact
problem.

Notice that both of equations (12.77, 12.78) involve time derivatives. Thus,
frictional contact problems are incremental in nature. It is not generally suf-
ficient to know the final loading condition — we also need to know how that
condition was reached. In other words, frictional contact problems are history-

dependent. They share this and other properties with problems involving an-
other well-known dissipative mechanism — plastic deformation.
7 The more usual symbol µ for the coe�cient of friction would lead to confusion

with Lamé’s constant.
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12.8.1 Cattaneo and Mindlin’s problem

Consider the problem of two elastic cylinders which are first pressed together
by a normal compressive force F and then subjected to a monotonically in-
creasing tangential force T as shown in Figure 12.13. We restrict attention to
the uncoupled case, �=0.

Figure 12.13: Loading for Cattaneo and Mindlin’s problem.

The first phase of the loading is described by the analysis of §12.7.1, the
contact semi-width a and the normal tractions py(x) being defined by equa-
tions (12.74, 12.75). The condition �=0 ensures that these normal tractions
produce no tendency for slip (see equations (12.68, 12.72)) and it follows that
no tangential tractions are induced and that the whole contact area remains
in a state of stick as the normal force F is applied.

The absence of coupling also ensures that the contact area and the normal
tractions remain constant during the tangential loading phase. Suppose we
first assume that stick prevails everywhere during this phase as well.

Di↵erentiating (12.77) with respect to x and substituting for the displace-
ment derivatives from (12.68) with B=0, we obtain

� A

4⇡

Z a

�a

ṗx(⇠)d⇠
(x� ⇠)

= 0 ; �a < x < a . (12.79)

This equation is identical in form to (12.32) and is solved in the same way.
The solution is easily shown to be

ṗx(x) =
Ṫ

⇡
p

a2 � x2

, (12.80)

by analogy with (12.47) and hence

px(x) =
T

⇡
p

a2 � x2

, . (12.81)

since a is independent of time during the tangential loading phase.
This result shows that the assumption of stick throughout the contact

area �a < x < a leads to a singularity in px at the edges x =±a and hence
the frictional inequality (12.77) must be violated there for any f , since py is
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bounded. We deduce that some slip will occur near the edges of the contact
region for any non-zero T , however small.

The problem with slip zones was first solved apparently independently by
Cattaneo8 and Mindlin9. In the slip zones, the tractions satisfy the condition
px =�fpy. We therefore consider the solution for the tangential tractions as
the sum of two parts:-

(i) a shear traction

px(x) = �fpy(x) =
2fF

p
a2 � x2

⇡a2

, (12.82)

from equation (12.75) throughout the contact area �a<x<a.
(ii) a corrective shear traction p⇤x, which must be zero in the slip zones and

which is su�cient to restore the condition (12.77) in the stick zone.

As a first step towards finding the corrective traction p⇤x, we find the shift
due to the traction distribution (12.82), which is defined by

h0(x) =
d

dx
(ux1

�ux2

) =
A

4⇡

Z a

�a

2fF
p

a2� ⇠2d⇠

⇡a2(x� ⇠)
= �fFA

2⇡a2

Z ⇡

0

sin2 ✓d✓

(cos�� cos ✓)

= �fFA

2⇡a
cos� = �fFAx

2⇡a2

; �a < x < a . (12.83)

Now, in the stick zone, we require the shift to be independent of x and
hence we seek corrective shear tractions in the stick zone that will cancel the
right-hand side of equation (12.83). By analogy with equations (12.82, 12.83),
it is clear that this cancellation can be achieved by the distribution10

p⇤x(x) = �2fF
p

c2 � x2

⇡a2

; �c < x < c , (12.84)

— i.e. a traction similar in form to equation (12.82), but distributed over a
smaller centrally located slip zone of width 2c.
8 C.Cattaneo, Sul contatto di corpi elastici, Accademia dei Lincei, Rendiconti, Ser

6, Vol. 27 (1938), pp.342–348, 433–436, 474–478.
9 R.D.Mindlin, Compliance of elastic bodies in contact, ASME Journal of Applied

Mechanics, Vol. 17 (1949), pp.259–268.
10 Notice that the assumption is that all points in �c < x < c are in a state of

stick throughout the loading process. It is therefore possible to integrate (12.77)
and write the boundary condition in terms of h(x) instead of ḣ(x). In general,
this is possible as long as no point passes from a state of slip to one of stick
during the loading. In particular, the stick zone must not advance into the slip
zone during loading. For an exhaustive study of the e↵ect of loading history
in frictional contact problems, see J.Dundurs and M.Comninou, An educational
elasticity problem with friction: Part 1, Loading and unloading paths for weak
friction, ASME Journal of Applied Mechanics, Vol. 48 (1981), pp.841–845; Part
2: Unloading for strong friction and reloading, ibid., Vol. 49 (1982), pp.47–51;
Part 3: General load paths, ibid, Vol. 50 (1983), pp.77–84.
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Thus, the complete shear traction distribution is

px(x) =
2fF

⇡a2

n

p

a2 � x2 �H(c2 � x2)
p

c2 � x2

o

; �a < x < a , (12.85)

which is illustrated in Figure 12.14.

Figure 12.14: Shear traction distribution for Cattaneo and Mindlin’s
problem.

The stick zone semi-width c can be determined by requiring

T =
Z a

�a

px(x)dx = fF � fF
⇣ c

a

⌘

2

, (12.86)

from (12.85) and hence

c = a

s

1� T

fF
. (12.87)

As we would expect, the stick zone shrinks to zero as the applied tangen-
tial force T approaches fF , after which gross slip (i.e. large scale rigid-body
motion) occurs.

Finally, we note that it can be shown that the signs of the displacement
derivatives satisfy the condition (12.78), provided that T increases monoton-
ically in time (i.e. Ṫ >0 for all t)11.
11 The e↵ect of non-monotonic loading in the related problem of two contacting

spheres was considered by R.D.Mindlin and H.Deresiewicz, Elastic spheres in
contact under varying oblique forces, ASME Journal of Applied Mechanics, Vol.
21 (1953), pp.327-344. The history-dependence of the friction law leads to quite
complex arrangements of slip and stick zones and consequent variation in the load-
compliance relation. These results also find application in the analysis of oblique
impact, where neither normal nor tangential loading is monotonic (see N.Maw,
J.R.Barber and J.N.Fawcett, The oblique impact of elastic spheres, Wear, Vol.
38 (1976), pp.101-114).
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The related solution for two spheres in contact (also due to Mindlin) has
been verified experimentally by observing the damaged regions produced by
cyclic microslip between tangentially loaded spheres12.

A significant generalization of these results has recently been discovered
independently by Jäger13 and Ciavarella14, who showed that the frictional
traction distribution satisfying both equality and inequality conditions for
any plane frictional contact problem (not necessarily Hertzian) will consist
of a superposition of the limiting friction distribution and an opposing dis-
tribution equal to the coe�cient of friction multiplied by the normal contact
pressure distribution at some smaller value of the normal load. Thus, as the
tangential force is increased at constant normal force, the stick zone shrinks,
passing monotonically through the same sequence of areas as the normal con-
tact area passed through during the normal loading process. These results can
be used to predict the size of the slip zone in conditions of fretting fatigue15.
One consequence of this result is that wear in the sliding regions due to an
oscillating tangential load will not change the extent of the adhesive region,
so that in the limit the contact is pure adhesive and a singularity develops in
the normal traction at the edge of this region16.

12.8.2 Steady rolling: Carter’s solution

A final example of considerable practical importance is that in which two
cylinders roll over each other whilst transmitting a constant tangential force,
T . If we assume that the rolling velocity is V , the solution will tend to a
steady-state which is invariant with respect to the moving coördinate system

⇠ = x� V t . (12.88)

In this system, we can write the ‘stick’ condition (12.77) as

ḣ(x, t) =
d

dt

�

ux2

(x� V t)� ux1

(x� V t) + C
 

= V
d

d⇠
(ux1

� ux2

) + Ċ = 0 ,

(12.89)
12 K.L.Johnson, Energy dissipation at spherical surfaces in contact transmitting os-

cillating forces, Journal of Mechanical Engineering Science, Vol. 3 (1961), pp.362–
368.

13 J.Jäger, Half-planes without coupling under contact loading. Archive of Applied
Mechanics Vol. 67 (1997), pp.247–259.

14 M.Ciavarella, The generalized Cattaneo partial slip plane contact problem. I-
Theory, II-Examples. International Journal of Solids and Structures. Vol. 35
(1998), pp.2349–2378.

15 D.A.Hills and D.Nowell, D. Mechanics of Fretting Fatigue. Kluwer, Dordrecht,
1994, M.P.Szolwinski and T.N.Farris, Mechanics of fretting fatigue crack forma-
tion. Wear Vol. 198 (1996), pp.93–107.

16 M.Ciavarella and D.A.Hills, Some observations on the oscillating tangential forces
and wear in general plane contacts, European Journal of Mechanics A–Solids. Vol.
18 (1999), pp.491–497.
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where Ċ is an arbitrary but constant rigid-body slip (or creep) velocity. Sim-
ilarly, the slip condition (12.78) becomes

px(⇠) = �fpy(⇠)sgn
✓

V
d

d⇠
(ux1

� ux2

)
◆

+ Ċ . (12.90)

At first sight, we might think that the Mindlin traction distribution (12.85)
satisfies this condition, since it gives

d

d⇠
(ux1

� ux2

) = 0 (12.91)

in the central stick zone and Ċ can be chosen arbitrarily. However, if we
substitute the resulting displacements into the slip condition (12.90), we find
a sign error in the leading slip zone. This can be explained as follows: In the
Mindlin problem, as T is increased, positive slip (i.e. ḣ(x)= u̇x2

�u̇x1

+Ċ >0)
occurs in both slip zones and the magnitude of h(x) increases from zero at
the stick-slip boundary to a maximum at x=±a. It follows that d

d⇠ (ux1

�ux2

)
is negative in the right slip zone and positive in the left slip zone. Thus, if
this solution is used for the steady rolling problem, a violation of (12.90) will
occur in the right zone if V is positive and in the left zone if V is negative. In
each case there is a violation in the leading slip zone — i.e. in that zone next
to the edge where contact is being established.

Now in frictional problems, when we make an assumption that a given
region slips and then find that it leads to a sign violation, it is usually an in-
dication that we made the wrong assumption and that the region in question
should be in a state of stick. Thus, in the rolling problem, there is no leading
slip zone17. Carter18 has shown that the same kind of superposition can be
used for the rolling problem as for Mindlin’s problem, except that the correc-
tive traction is displaced to a zone adjoining the leading edge. A corrective
traction

p⇤x(⇠) =
2fF

⇡a2

s

✓

a� c

2

◆

2

�
✓

⇠ � a + c

2

◆

2

=
2fF

⇡a2

p

(a� ⇠)(⇠ � c) (12.92)

produces a displacement distribution

d

d⇠
(ux1

� ux2

) =
fFA

2⇡a2

✓

⇠ � a + c

2

◆

; c < ⇠ < a , (12.93)

17 Note that this applies to the uncoupled problem (� = 0) only. With dissimilar
materials, there is generally a leading slip zone and there can also be an additional
slip zone contained within the stick zone. This problem is treated by R.H.Bentall
and K.L.Johnson, Slip in the rolling contact of dissimilar rollers, International
Journal of Mechanical Sciences, Vol. 9 (1967), pp.389–404.

18 F.W.Carter, On the action of a locomotive driving wheel, Proceedings of the Royal
Society of London, Vol. A112 (1926), pp.151–157.
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which cancels the x-varying term in (12.83), leaving only an admissable con-
stant Ċ (see equation (12.89)). Hence, the traction distribution for positive V
is

px(⇠) =
2fF

⇡a2

n

p

a2 � ⇠2 �H(⇠ � c)
p

(a� ⇠)(⇠ � c)
o

; �a < ⇠ < a ,

(12.94)
which is illustrated in Figure 12.15.

Stick occurs in the leading zone c< ⇠<a and positive slip in the trailing
zone �a<⇠<c.

Figure 12.15: Shear traction distribution for Carter’s problem.

The corresponding total tangential load is

T = fF

(

1�
✓

a� c

2a

◆

2

)

(12.95)

and hence the stick-slip boundary ⇠=c is given by

c = a

 

1� 2

s

1� T

fF

!

. (12.96)

An interesting feature of this solution is that the creep velocity Ċ is not
zero — i.e. there is a small steady-state relative tangential velocity between
the two bodies. This has the e↵ect of making the driven roller rotate slightly
more slowly than a rigid-body kinematic analysis would lead us to expect.
This in turn means that more energy is provided to the driving roller than is
recovered from the driven roller, the balance of course being dissipated in the
microslip regions in the form of heat. The creep velocity can be calculated by
substituting the superposition of (12.83) and (12.93) into (12.89), with the
result
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Ċ = �fV a

R

 

1�
s

1� T

fF

!

, (12.97)

where R is given by (12.73).
It is interesting to note that Carter’s solution was published 20 years before

Mindlin’s, but there is no evidence that either Mindlin or Cattaneo was aware
of it, despite the similarity of the techniques used19.

PROBLEMS

1. Figure 12.16 shows a disk of radius a subjected to two equal and opposite
forces F at the points A,B, the rest of the boundary r=a being traction-free.

Figure 12.16: Disk loaded by concentrated forces.

The stress function

� = �F

⇡
(r

1

✓
1

sin ✓
1

+ r
2

✓
2

sin ✓
2

)

is proposed to account for the localized e↵ect of the forces. Find the stress
field due to this function and, in particular, find the tractions implied upon
the boundary r = a. Then complete the solution by superposing appropriate
stress functions from Table 8.1, so as to satisfy the traction-free boundary
condition.
19 For a more extensive discussion of frictional problems of this type, see

K.L.Johnson, loc. cit., Chapters 5,7,8.
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2. The disk 0 r < a is accelerated from rest by two concentrated forces F
acting in the positive ✓-direction at the points (a,±⇡/2), as shown in Figure
12.17. Use the Flamant solution in appropriate local coördinates to describe
the concentrated forces and the solution of §7.4.1 to describe the inertia forces.
Complete the solution by superposing appropriate stress functions from Table
8.1, so as to satisfy the traction-free boundary condition.

Figure 12.17: Disk accelerated by concentrated tangential forces.

3. Figure 12.18 shows a heavy disk of radius a and density ⇢ supported by a
concentrated force ⇡a2⇢g. Find a solution for the stress field in the disk by
combining the Flamant solution with appropriate terms from Table 8.1 in a
coordinate system centred on the disk.

Figure 12.18: Heavy disk supported by a concentrated force.
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4. A rigid flat punch of width 2a is pressed into an elastic half-plane by a force
F whose line of action is displaced a distance b from the centreline, as shown
in Figure 12.19.

Figure 12.19: Punch with an eccentric load.

(i) Assuming that the punch makes contact over the entire face �a<x<a,
find the pressure distribution p(x) and the angle of tilt of the punch.
Assume the half-plane is prevented from rotating at infinity.

(ii) Hence find the maximum value of b for which there is contact throughout
�a<x<a.

(iii) Re-solve the problem, assuming that b is larger than the critical value
found in (ii). Contact will now occur in the range c < x < a and the
unknown left hand end of the contact region (x= c) must be found from
a smoothness condition on p(x). Express c and p(x) as functions of F, x
and b.

5. Two half-planes y > 0 and y < 0 of the same material are welded together
along the section �a<x<a of their common interface y = 0. Equal and op-
posite forces F are now applied at infinity tending to load the weld in tension.
Use a symmetry argument to deduce conditions that must be satisfied on the
symmetry line y =0 and hence determine the tensile stresses transmitted by
the weld as a function of x. Find also the stress intensity factor KI , defined
as

KI ⌘ lim
x!a�

�yy(x, 0)
p

2⇡(a� x) .

6. A flat rigid punch is pressed into the surface y = 0 of the elastic half-
plane y > 0 by a force F . A tangential force T is then applied to the punch.
If Coulomb friction conditions apply at the interface with coe�cient f and
Dundurs constant � = 0, show that no microslip will occur until T reaches
the value fF at which point gross slip starts.
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7. Express the stress function

� =
Fyr✓ cos ✓

⇡

in Cartesian coördinates and hence find the stress components �xx,�xy,�yy

due to the point force Fy in Figure 12.2.
Use this result and the integration procedure of §12.4 (Figure 12.4) to

determine the stress field in the half-plane y<0 due to the Hertzian traction
distribution of equation (12.60). Make a contour plot of the Von Mises stress
�E of equation (1.31) and identify the maximum value and its location.

8. From §12.5.2 and equation (12.47), it follows that the contact traction
distribution

p(x, a) =
1p

a2 � x2

; |x| < a

= 0 ; |x| > a

produces zero surface slope duy/dx in |x|<a. Use equation (12.27) to deter-
mine the corresponding value of slope outside the contact area (|x|> a) and
hence construct the discontinuous function

u(x, a) ⌘ duy

dx
,

such that p(x, a) produces u(x, a).
Linear superposition then shows that the more general traction distribu-

tion

p(x) =
Z b

0

g(a)p(x, a)da

produces the surface slope

duy

dx
=
Z b

0

g(a)u(x, a)da ,

where g(a) is any function of a. In e↵ect this is a superposition of a range of
‘flat punch’ traction distributions over di↵erent width strips up to a maximum
semi-width of b, so the traction will still be zero for |x|>b.

Use this representation to solve the problem of the indentation by a wedge
of semi-angle ⇡/2�↵ (↵⌧1), for which

du
0

dx
= �|↵| ; |x| < b ,

where b is the semi-width of the contact area. In particular, find the contact
traction distribution and the relation between b and the applied force F .

Hint: You will find that the boundary condition leads to an Abel integral
equation, whose solution is given in Table 30.2 in Chapter 30.
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9. Modify the method outlined in Problem 8 to solve the problem of the
indentation of a half plane by an unsymmetrical wedge, for which

du
0

dx
= �↵ ; 0 < x < c

= � ; �d < x < 0 ,

where the unsymmetrical contact area extends from �d to c. In particular,
find the contact traction distribution and both c and d as functions of the
applied force F .

The modification involves moving the origin to destroy the symmetry once
the function u(x, a) has been determined. In other words, instead of super-
posing a set of symmetrically disposed ‘flat punch’ distributions, superpose a
similar set arranged so that the common point is displaced from the origin.
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FORCES, DISLOCATIONS AND CRACKS

In this chapter, we shall discuss the applications of two solutions which are
singular at an interior point of a body, and which can be combined to give
the stress field due to a concentrated force (the Kelvin solution) and a dislo-
cation. Both solutions involve a singularity in stress with exponent �1 and
are therefore inadmissable according to the criterion of §11.2.1. However, like
the Flamant solution considered in Chapter 12, they can be used as Green’s
functions to describe distributions, resulting in convolution integrals in which
the singularity is integrated out. The Kelvin solution is also useful for describ-
ing the far field (i.e. the field a long way away from the loaded region) due to
a force distributed over a small region.

13.1 The Kelvin solution

We consider the problem in which a concentrated force, F acts in the x-
direction at the origin in an infinite body. This is not a perturbation problem
like the stress field due to a hole in an otherwise uniform stress field, since the

boundary of the body, there will have to be some traction to oppose the force.
In fact, self-similarity arguments like those used in §§12.1, 12.2 show that the
stress field must decay with r�1.

The Flamant solution has this behaviour and it corresponds to a concen-
trated force (see §12.2), but it cannot be used at an interior point in the body,
since the corresponding displacements (equations (12.12, 12.13)) are multival-
ued1. However, we can construct a solution with the same character and with
single-valued displacements from the more general stress function (12.2) by
choosing the coe�cients in such a way that the multivalued terms cancel.
1 This was not a problem for the surface loading problem, since the wedge of Figure

12.1 only occupies a part of the ✓-domain and hence a suitable principal value of
✓ can be chosen to be both single-valued and continuous.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 199

force has a non-zero resultant. Thus, no matter how far distant we make the
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In view of the symmetry of the problem about ✓=0, we restrict attention
to the symmetric terms

� = C
1

r✓ sin ✓ + C
3

r ln(r) cos ✓ (13.1)

of (12.2), for which the stress components are

�rr =
2C

1

cos ✓
r

+
C

3

cos ✓
r

(13.2)

�r✓ =
C

3

sin ✓
r

(13.3)

�✓✓ =
C

3

cos ✓
r

, (13.4)

from Table 8.1 and the displacement components are

2µur =
C

1

2
{(� 1)✓ sin ✓ � cos ✓ + (+ 1) ln r cos ✓}

+
C

3

2
{(+ 1)✓ sin ✓ � cos ✓ + (� 1) ln(r) cos ✓} (13.5)

2µu✓ =
C

1

2
{(� 1)✓ cos ✓ � sin ✓ � (+ 1) ln r sin ✓}

+
C

3

2
{(+ 1)✓ cos ✓ � sin ✓ � (� 1) ln(r) sin ✓} , (13.6)

from Table 9.1.
Suppose we make an imaginary cut in the plane at ✓ = 0, 2⇡ and define

a principal value of ✓ such that 0  ✓ < 2⇡. This makes ✓ discontinuous at
✓=2⇡, but the trigonometric functions of course remain continuous. The only
potential di�culty is associated with the expressions ✓ sin ✓, ✓ cos ✓.

Now ✓ sin ✓=0 at ✓=2⇡ and hence this expression has the same value at
the two sides of the cut and is continuous. We can therefore make the whole
displacement field continuous by choosing C

1

, C
3

such that the terms ✓ cos ✓
in u✓ cancel — i.e. by setting2

C
1

(� 1) + C
3

(+ 1) = 0 , (13.7)

which for plane stress is equivalent to

(1� ⌫)C
1

+ 2C
3

= 0 . (13.8)

This leaves us with one degree of freedom (one free constant) to satisfy the
condition that the force at the origin is equal to F . Considering the equilibrium
of a small circle of radius r surrounding the origin, we have
2 Notice that this choice also has the e↵ect of cancelling the ✓ sin ✓ terms in (13.5),

so that the complete displacement field, like the stress field, depends on ✓ only
through sine and cosine terms.
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F +
Z

2⇡

0

(�rr cos ✓ � �r✓ sin ✓)rd✓ = 0 . (13.9)

We now substitute for the stress components from equations (13.2, 13.3),
obtaining

C
1

= � F

2⇡
, (13.10)

after which we recover the constant C
3

from equation (13.8) as

C
3

=
(1� ⌫)F

4⇡
. (13.11)

Finally, we substitute these constants back into (13.2–13.4) to obtain

�rr = � (3 + ⌫)F cos ✓
4⇡r

(13.12)

�r✓ =
(1� ⌫)F sin ✓

4⇡r
(13.13)

�✓✓ =
(1� ⌫)F cos ✓

4⇡r
. (13.14)

These are the stress components for Kelvin’s problem, where the force acts
in the x-direction. The corresponding results for a force in the y-direction
can be obtained in the same way, using the antisymmetric terms in (12.2).
Alternatively, we can simply rotate the axis system in the above solution by
redefining ✓!(✓�⇡/2).

13.1.1 Body force problems

Kelvin’s problem is a special case of a body force problem — that in which
the body force is a delta function at the origin. The solution can also be used
to solve more general body force problems by convolution. We consider the
body force px�x�y acting on the element �x�y as a concentrated point force
and use the above solution to determine its e↵ect on the stress components at
an arbitrary point. Treating the component py in the same way and summing
over all the elements of the body then gives a double integral representation
of the stress field.

This method is not restricted to the infinite body, since we only seek
a particular solution of the body force problem. We can therefore use the
convolution method to develop a solution for the stresses in an infinite body
with the appropriate body force distribution, after which we ‘cut out’ the
shape of the real body and correct the boundary conditions as required, using
an appropriate homogeneous solution (i.e. a solution without body forces).

Any body force distribution can be treated this way — the method is
not restricted to conservative vector fields. It is generally more algebraically
tedious than the methods developed in Chapter 7, but it lends itself natu-
rally to numerical implementation. For example, it can be used to extend the
boundary integral method to body force problems.
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13.2 Dislocations

The term dislocation has related, but slightly di↵erent meanings in Elasticity
and in Materials Science. In Elasticity, the material is assumed to be a contin-
uum — i.e. to be infinitely divisible. Suppose we take an infinite continuous
body and make a cut along the half-plane x>0, y =0. We next apply equal
and opposite tractions to the two surfaces of the cut such as to open up a
gap of constant thickness, as illustrated in Figure 13.1. We then slip a thin
slice of the same material into the space to keep the surfaces apart and weld
the system up, leaving a new continuous body which will now be in a state of
residual stress.

Figure 13.1: The climb dislocation solution.

The resulting stress field is referred to as the climb dislocation solution. It can
be obtained from the stress function of equation (13.1) by requiring that there
be no net force at the origin, with the result C

1

=0 (see equation 13.10). We
therefore have

� = C
3

r ln(r) cos ✓ . (13.15)

The strength of the dislocation can be defined in terms of the discontinuity
in the displacement u✓ on ✓=0, 2⇡, which is also the thickness of the slice of
extra material which must be inserted to restore continuity of material. This
thickness is

� = u✓(0)� u✓(2⇡) = �⇡(+ 1)C
3

2µ
. (13.16)

Thus, we can define a climb dislocation of strength By as one which opens a
gap �=By, corresponding to

C
3

= � 2µBy

⇡(+ 1)
, (13.17)

where
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2µ

(+ 1)
=

µ(1 + ⌫)
2

=
E

4
(plane stress)

=
µ

2(1� ⌫)
=

E

4(1� ⌫2)
(plane strain), (13.18)

using equation (3.20).
The stress field due to the climb dislocation is

�rr = �✓✓ = �2µBy cos ✓
⇡(+ 1)r

(13.19)

�r✓ = �2µBy sin ✓
⇡(+ 1)r

. (13.20)

We also record the stress components at y = 0, — i.e. ✓ = 0,⇡ — in
rectangular coördinates, which are

�xx = �yy = � 2µBy

⇡(+ 1)x
(13.21)

�yx = 0 . (13.22)

This solution is called a climb dislocation, because it opens a gap on the
cut at ✓ = 0, 2⇡. A corresponding solution can be obtained from the stress
function

� =
2µBxr ln(r) sin ✓

⇡(+ 1)
(13.23)

which is discontinuous in the displacement component ur — i.e. for which the
two surfaces of the cut experience a relative tangential displacement but do
not separate. This is called a glide dislocation. The stress field due to a glide
dislocation is given by

�rr = �✓✓ =
2µBx sin ✓
⇡(+ 1)r

(13.24)

�r✓ = �2µBx cos ✓
⇡(+ 1)r

(13.25)

and on the surface y = 0, these reduce to

�xx = �yy = 0 (13.26)

�yx = � 2µBx

⇡(+ 1)x
, (13.27)

where Bx = ur(0)� ur(2⇡) is the strength of the dislocation.
The solutions (13.19, 13.20) and (13.24, 13.25) actually di↵er only in orien-

tation. The climb dislocation solution defines a glide dislocation if we choose to
make the cut along the line ✓=�3⇡/2,⇡/2 (i.e. along the y-axis instead of the
x-axis3). The dislocation strengths Bx, By can be regarded as the components
of a vector, known as the Burgers vector.
3 In fact, the cut can be made along any (not necessarily straight) line from the

origin to infinity. The solution of equations (13.19, 13.20) will then exhibit a



204 13 Forces dislocations and cracks

13.2.1 Dislocations in Materials Science

Real materials have a discrete atomic or molecular structure. However, we
can follow a similar procedure by imagining cleaving the solid between two
sheets of molecules up to the line x = y = 0 and inserting one extra layer

of molecules. When the system is released, there will be some motion of the
molecules, mostly concentrated at the end of the added layer, resulting in
an imperfection in the regular molecular array. This is what is meant by a
dislocation in Materials Science.

Considerable insight into the role of dislocations in material behaviour was
gained by the work of Bragg4 with bubble models. Bragg devised a method of
generating a two-dimensional collection of identical size bubbles. Attractive
forces between the bubbles ensured that they adopted a regular array wherever
possible, but dislocations are identifiable as can be seen in Figure 13.2.

Figure 13.2: The bubble model — a dislocation5.

When forces are applied to the edges of the bubble assembly, the disloca-
tions are found to move in such a way as to permit the boundaries to move.
This dislocation motion is believed to be the principal mechanism of plastic
deformation in ductile materials. Larger bubble assemblies exhibit discrete
regions in which the arrays are di↵erently aligned as in Figure 13.3. These are
analogous with grains in multigranular materials. When the structure is de-
formed, the dislocations typically move until they reach a grain boundary, but
the misalignment prohibits further motion and the sti↵ness of the assembly

discontinuity in u
y

of magnitude B
y

at all points along the cut, as long as the
principal value of ✓ is appropriately defined.

4 L.Bragg and J.F.Nye, A dynamical model of a crystal structure, Proceedings of
the Royal Society of London, Vol. A190 (1947), pp.474–481.

5 Figures 13.2 and 13.3 are reproduced by kind permission of the Royal Society of
London.
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increases. This pile-up of dislocations at grain boundaries is responsible for
work-hardening in ductile materials. Also, the accumulated dislocations coa-
lesce into larger disturbances in the crystal structure such as voids or cracks,
which function as initiation points for failure by fatigue or fracture.

Figure 13.3: The bubble model — grain boundaries.

13.2.2 Similarities and di↵erences

It is tempting to deduce that the elastic solution of §13.2 describes the stresses
due to the molecular structure dislocation, if we multiply by a constant defin-
ing the thickness of a single layer of molecules. However, the concept of stress is
rather vague over dimensions comparable with interatomic distances. In fact,
this is preëminently a case where the apparent singularity of the mathematical
solution is moderated in reality by the discrete structure of the material.

Notice also that the continuum dislocation of §13.2 can have any strength,
corresponding to the fact that Bx, By are arbitrary real constants. By con-
trast, the thickness of the inserted layer is restricted to one layer of molecules
in the discrete theory. This thickness is su�ciently small to ensure that the
‘stresses’ due to a material dislocation are very small in comparison with
typical engineering magnitudes, except in the immediate vicinity of the de-
fect. Furthermore, although a stress-relieved metallic component will gener-
ally contain numerous dislocations, they will be randomly oriented, leaving
the components essentially stress-free on the macroscopic scale.
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However, if the component is plastically deformed, the dislocation motion
will lead to a more systematic structure, which can result in residual stress.
Indeed, one way to represent the stress field due to plastic deformation is as a
distribution of mathematical dislocations. For example, the motion of a single
dislocation can be represented by introducing a dislocation pair comprising a
negative dislocation at the original location and an equal positive dislocation
at the final location. This implies a closure condition as in §§13.2.3, 13.2.4
below.

13.2.3 Dislocations as Green’s functions

In the Theory of Elasticity, the principal use of the dislocation solution is
as a Green’s function to represent localized processes. Suppose we place a
distribution of dislocations in some interior domain ⌦ of the body, which is
completely surrounded by elastic material. The resulting stress field obtained
by integration will satisfy the conditions of equilibrium everywhere (since
the dislocation solution involves no force) and will satisfy the compatibility
condition everywhere except in ⌦. There is of course the possibility that the
displacement may be multiple-valued outside ⌦, but we can prevent this by
enforcing the two closure conditions

Z Z

⌦

Bx(x, y)dxdy = 0 ;
Z Z

⌦

By(x, y)dxdy = 0 , (13.28)

which state that the total strength of the dislocations in ⌦ is zero6.

13.2.4 Stress concentrations

A special case of some importance is that in which the enclosed domain ⌦
represents a hole which perturbs the stress field in an elastic body.

It may seem strange to place dislocations in a region which is strictly not
a part of the body. However, we might start with an infinite body with no
hole, place dislocations in ⌦ generating a stress field and then make a cut
along the boundary of ⌦ producing the body with a hole. The stress field
will be unchanged by the cut provided we place tractions on its boundary
equal to those which were transmitted across the same surface in the original
continuous body. In particular, if we choose the dislocation distribution so as
to make the boundaries of ⌦ traction-free, we can cut out the hole without
changing the stress distribution, which is therefore the solution of the original
problem for the body with a hole.

The general idea of developing perturbation solutions by placing singu-
larities in a region where the governing equations (here the compatibility
condition) are not required to be enforced is well-known in many branches of
6 This does not mean that the stress field is null, since the various self-cancelling

dislocations have di↵erent locations.
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Applied Mechanics. For example, the solution for the flow of a fluid around a
rigid body can be developed in many cases by placing an appropriate distribu-
tion of sources and sinks in the region occupied by the body, the distribution
being chosen so as to make the velocity component normal to the body surface
be everywhere zero.

The closure conditions (13.28) ensure that acceptable dislocation distri-
butions can be represented in terms of dislocation pairs — i.e. as matched
pairs of dislocations of equal magnitude and opposite direction. It follows
that acceptable distributions can be represented as distributions of disloca-

tion derivatives, since, for example, a dislocation at P and an equal negative
dislocation at Q is equivalent to a uniform distribution of derivatives on the
straight line joining P and Q7.

Now the stress components in the dislocation solution (equations (13.19,
13.20)) decay with r�1 and hence those in the dislocation derivative solution
will decay with r�2. It therefore follows that the dominant term in the per-
turbation (or corrective) solution due to a hole will decay at large r with r�2.
We see this in the particular case of the circular hole in a uniform stress field
(§§8.3.2, 8.4.1). The same conclusion follows for the perturbation in the stress
field due to an inclusion — i.e. a localized region whose properties di↵er from
those of the bulk material.

13.3 Crack problems

Crack problems are particularly important in Elasticity because of their rel-
evance to the subject of Fracture Mechanics, which broadly speaking is the
study of the stress conditions under which cracks grow. For our purposes, a
crack will be defined as the limiting case of a hole whose volume (at least in
the unloaded case) has shrunk to zero, so that opposite faces touch. It might
also be thought of as an interior surface in the body which is incapable of
transmitting tension.

In practice, cracks will generally have some small thickness, but if this is
small, the crack will behave unilaterally with respect to tension and compres-
sion — i.e. it will open if we try to transmit tension, but close in compression,
transmitting the tractions by means of contact. For this reason, a cracked body
will appear sti↵er in compression than it does in tension. Also, the crack acts
as a stress concentration in tension, but not in compression, so cracks do not
generally propagate in compressive stress fields.

13.3.1 Linear Elastic Fracture Mechanics

We saw in §11.2.3 that the asymptotic stress field at the tip of a crack has
a square-root singularity and we shall find this exemplified in the particular
7 To see this, think of the derivative as the limit of a pair of equal and opposite

dislocations separated by a distance �S whose magnitude is proportional to 1/�S.
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solutions that follow. The simplest and most prevalent theory of brittle frac-
ture — that due to Gri�th — states in essence that crack propagation will
occur when the scalar multiplier on this singular stress field exceeds a certain
critical value. More precisely, Gri�th proposed the thesis that a crack would
propagate when propagation caused a reduction in the total energy of the
system. Crack propagation causes a reduction in strain energy in the body,
but also generates new surfaces which have surface energy. Surface energy is
related to the force known as surface tension in fluids and follows from the
fact that to cleave a solid body along a plane involves doing work against the
interatomic forces across the plane. When this criterion is applied to the stress
field in particular cases, it turns out that for a small change in crack length,
propagation is predicted when the multiplier on the singular term, known as
the stress intensity factor, exceeds a certain critical value, which is a constant
for the material known as the fracture toughness.

It may seem paradoxical to found a theory of real material behaviour on
properties of a singular elastic field, which clearly cannot accurately repre-
sent conditions in the precise region where the failure is actually to occur.
However, if the material is brittle, non-linear e↵ects will be concentrated in a
relatively small process zone surrounding the crack tip. Furthermore, the cer-
tainly very complicated conditions in this process zone can only be influenced
by the surrounding elastic material and hence the conditions for failure must
be expressible in terms of the characteristics of the much simpler surrounding
elastic field. As long as the process zone is small compared with the other
linear dimensions of the body8 (notably the crack length), it will have only a
very localized e↵ect on the surrounding elastic field, which will therefore be
adequately characterized by the dominant singular term in the linear elastic
solution, whose multiplier (the stress intensity factor) then determines the
conditions for crack propagation.

It is notable that this argument requires no assumption about or knowledge
of the actual mechanism of failure in the process zone and, by the same token,
the success of Linear Elastic Fracture Mechanics (LEFM) as a predictor of
the strength of brittle components provides no evidence for or against any
particular failure theory9.
8 This is often referred to as the small scale yielding condition.
9 For more details of the extensive development of the field of Fracture Mechan-

ics, the reader is referred to the many excellent texts on the subject, such as
M.F.Kanninen and C.H.Popelar, Advanced Fracture Mechanics, Clarendon Press,
Oxford, 1985, H.Leibowitz, ed., Fracture, An Advanced Treatise, 7 Vols., Aca-
demic Press, New York, 1971. Stress intensity factors for a wide range of geome-
tries are tabulated by G.C.Sih, Handbook of Stress Intensity Factors, Institute of
Fracture and Solid Mechanics, Lehigh University, Bethlehem, PA, 1973.
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13.3.2 Plane crack in a tensile field

Two-dimensional crack problems are very conveniently formulated using the
methods outlined in §§13.2.3, 13.2.4. Thus, we seek a distribution of disloca-
tions on the plane of the crack (which appears as a line in two-dimensions),
which, when superposed on the unperturbed stress field, will make the sur-
faces of the crack traction-free. We shall illustrate the method for the simple
case of a plane crack in a tensile stress field.

Figure 13.4 shows a plane crack of width 2a occupying the region �a <
x<a, y =0 in a two-dimensional body subjected to uniform tension �yy =S
at its remote boundaries.

Figure 13.4: Plane crack in a tensile field.

Assuming that the crack opens, the boundary conditions for this problem
can be stated in the form

�yx = �yy = 0 ; �a < x < a, y = 0 ; (13.29)

�yy ! S ; �xy,�xx ! 0 ; r !1 . (13.30)

Following the procedure of §8.3.2, we represent the solution as the sum of
the stress field in the corresponding body without a crack — here a uniform
uniaxial tension �yy =S — and a corrective solution, for which the boundary
conditions are therefore

�yx = 0 ; �yy = �S ; �a < x < a, y = 0 ; (13.31)

�xx,�xy,�yy ! 0 ; r !1 . (13.32)

..
a a

y

S

S

xO
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Notice that the corrective solution corresponds to the problem of a crack
in an otherwise stress-free body opened by compressive normal tractions of
magnitude S.

The most general stress field due to the crack would involve both climb
and glide dislocations, but in view of the symmetry of the problem about the
plane y=0, we conclude that there is no relative tangential motion between the
crack faces and hence that the solution can be constructed with a distribution
of climb dislocations alone. More precisely, we respresent the solution in terms
of a distribution By(x) of dislocations per unit length in the range �a<x<
a, y=0.

We consider first the traction �yy at the point (x, 0) due to those dislo-
cations between ⇠ and ⇠ + �⇠ on the line y = 0. If �⇠ is small, they can be
considered as a concentrated dislocation of strength By(⇠)�⇠ and hence they
produce a traction

�yy = � 2µBy(⇠)�⇠
⇡(+ 1)(x� ⇠)

, (13.33)

from equation (13.21), since the distance from (⇠, 0) to (x, 0) is (x�⇠).
The traction due to the whole distribution of dislocations can therefore be

written as the integral

�yy = � 2µ

⇡(+ 1)

Z a

�a

By(⇠)d⇠
(x� ⇠)

(13.34)

and the boundary condition (13.31) leads to the following Cauchy singular
integral equation for By(⇠)

Z a

�a

By(⇠)d⇠
(x� ⇠)

=
⇡(+ 1)S

2µ
; �a < x < a . (13.35)

This is of exactly the same form as equation (12.32) and can be solved in
the same way. Writing

x = a cos� ; ⇠ = a cos ✓ , (13.36)

we have
Z ⇡

0

By(✓) sin ✓d✓
(cos�� cos ✓)

=
⇡(+ 1)S

2µ
; 0 < � < ⇡ . (13.37)

Now (12.35) with n=1 gives
Z ⇡

0

cos ✓d✓
(cos�� cos ✓)

= �⇡ ; 0 < � < ⇡ (13.38)

and hence
By(✓) = � (+ 1)S cos ✓

2µ sin ✓
+

A

sin ✓
, (13.39)

— i.e.
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By(⇠) = � (+ 1)S⇠
2µ
p

a2 � ⇠2
+

Aa
p

a2 � ⇠2
. (13.40)

The arbitrary constant A is determined from the closure condition (13.28)
which here takes the form

Z a

�a

By(⇠)d⇠ = 0 (13.41)

and leads to the result A=0.
From a Fracture Mechanics perspective, we are particularly interested in

the stress field surrounding the crack tip. For example, the stress component
�yy in |x|>a, y=0 is given by

�yy = � 2µ

⇡(+ 1)

Z a

�a

By(⇠)d⇠
(x� ⇠)

(13.42)

=
S

⇡

Z a

�a

⇠d⇠

(x� ⇠)
p

a2 � ⇠2

= S

✓

�1 +
|x|p

x2 � a2

◆

; |x| > a, y = 0 (13.43)

using (13.40) and 3.228.2 of Gradshteyn and Ryzhik10.
Remembering that this is the corrective solution, we add the uniform stress

field �yy =S to obtain the complete stress field, which on the line y=0 gives

�yy =
S|x|p
x2 � a2

; |x| > a . (13.44)

This tends to the uniform field as it should as x!1 and is singular as
x!a+. We define11 the mode I stress intensity factor, KI as

KI ⌘ lim
x!a+

�yy(x)
p

2⇡(x� a) (13.45)

= lim
x!a+

Sx
p

2⇡(x� a)p
x2 � a2

= S
p
⇡a . (13.46)

We can also calculate the crack opening displacement

�(x) ⌘ uy(x, 0+)� uy(x, 0�) =
Z x

�a

By(⇠)d⇠ =
(+ 1)S

2µ

p

a2 � x2 . (13.47)

Thus, the crack is opened to the shape of a long narrow ellipse as a result
of the tensile field.
10 I.S.Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series and Products, Aca-

demic Press, New York, 1980.
11 Notice that the factor 2⇡ in this definition is conventional, but essentially arbi-

trary. In applying fracture mechanics arguments, it is important to make sure
that the results used for the stress intensity factor (a theoretical or numerical
calculation) and the fracture toughness (from experimental data) are based on
the same definition of K.
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13.3.3 Energy release rate

If a crack extends as a result of the local stress field, there will generally be
a reduction in the total strain energy U of the body. We shall show that the
strain energy release rate, defined as

G = �@U

@S
(13.48)

where S is the extent of the crack, is a unique function of the stress intensity
factor. We first note that in the immediate vicinity of the crack tip x = a, the
stress component �yy can be approximated by the dominant singular term as

�yy(s) =
KIp
2⇡s

; s > 0 , (13.49)

from equation (13.45) with s=(x�a). A similar approximation for the crack
opening displacement �(s) is

�(s) =
S(+ 1)

2µ

p

2a(�s) =
KI(+ 1)

2µ

r

2(�s)
⇡

, (13.50)

using (13.46, 13.47).

Figure 13.5: Geometry of crack extension.

Figure 13.5 shows the configuration of the open crack before and after
extension of the crack tip by an infinitesimal distance�S. The tractions on the
crack plane before crack extension are given by (13.49), where s is measured
from the initial position of the crack tip. The crack opening displacement in
�S after extension is given by

�(s) =
KI(+ 1)

2µ

r

2(�S � s)
⇡

, (13.51)

since the point s<�S is now a distance �S�s to the left of the new crack tip.
The reduction in strain energy during crack extension can be found by follow-
ing a scenario in which the tractions (13.49) are gradually released, allowing
work W = ��U to be done on them in moving through the displacements
(13.51). We obtain

before crack extension

after crack extension
δ(s)

∆S

s
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W =
1
2

Z �S

0

�yy(s)�(s)ds =
K2

I (+ 1)
4⇡µ

Z �S

0

r

(�S � s)
s

ds =
K2

I�S(+ 1)
8µ

(13.52)
and hence

G = �@U

@S
=
@W

@S
=

K2

I (+ 1)
8µ

. (13.53)

A similar calculation can be performed for a crack loaded in shear, causing a
mode II stress intensity factor KII . The two deformation modes are orthogonal
to each other, so that the energy release rate for a crack loaded in both modes
I and II is given by

G =
(K2

I + K2

II)(+ 1)
8µ

. (13.54)

This expression can be written in terms of E, ⌫, using (13.18). We obtain

G =
(K2

I + K2

II)
E

(plane stress) (13.55)

=
(K2

I + K2

II)(1� ⌫2)
E

(plane strain). (13.56)

As long as the process zone is small in the sense defined in §13.3.1, a
component containing a crack loaded in tension (mode I) will fracture when

KI = KIc or G = Gc ,

where KIc, Gc are interrelated material properties, the former being known as
the fracture toughness. The critical energy release rate Gc seems to imply a
single failure criterion under combined mode I and mode II loading, but this
is illusory, since experiments show that the value of Gc varies with the mode
mixity ratio KII/KI .

13.4 Method of images

The method described in §13.3.2 applies strictly to the case of a crack in an
infinite body, but it will provide a reasonable approximation if the length of
the crack is small in comparison with the shortest distance to the boundary
of a finite body or to some other geometric feature such as another crack or
an interface to a di↵erent material. However, the same methodology could be
applied to other problems if we could obtain the solution for a dislocation
located at an arbitrary point in the uncracked body.

Closed-form solutions exist for bodies of a variety of shapes, including
the traction-free half plane, the infinite body with a traction-free circular
hole and the infinite body containing a circular inclusion of a di↵erent elastic
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material12. These solutions all depend on the location of image singularities
at appropriate points outside the body. The nature and strength of these
singularities can be chosen so as to satisfy the required boundary conditions on
the boundary of the original body. Earlier treatments of the subject proceeded
in an essentially ad hoc way until the required boundary conditions were
satisfied, but a unified treatment for the case of a plane interface was developed
by Aderogba13.

We consider the case in which the half plane y > 0 with elastic constants
µ

1

,
1

is bonded to the half plane y<0 with constants µ
2

,
2

. Suppose that a
singularity (typically a dislocation or a concentrated force) exists somewhere
in y > 0 and that the same singularity in an infinite plane would correspond
to the Airy stress function �

0

(x, y) defined throughout the infinite plane.
Aderogba showed that the resulting stress field in the bonded bi-material
plane is defined by the stress functions

�
1

(x, y) = �
0

(x, y) + L{�
0

(x,�y)} y > 0
�

2

(x, y) = J {�
0

(x, y)} y < 0 , (13.57)

where the linear operators L,J are defined by

L{·} = A



1� 2y
@

@y
+ y2r2

�

+
(A�B)

4

Z Z

r2{·}dydy

J {·} = 1 + A +
(A�B)

4



Z Z

r2{·}dydy � 2y

Z

r2{·}dy

�

,

with
A =

(� � 1)
(�

1

+ 1)
; B =

(�
1

� 
2

)
(� + 

2

)
; � =

µ
2

µ
1

. (13.58)

These bimaterial constants are related to Dundurs’ constants (4.12, 4.13)
through the equations

A =
↵� �

1 + �
; B =

↵+ �

1� �
.

Notice that the arbitrary functions of x implied in the indefinite integrals with
respect to y in (13.57) must be chosen so as to ensure that the resulting stress
functions �

1

,�
2

are biharmonic.
The special case of the traction-free half plane can be recovered in the

limit �!0 and hence A,B!�1, giving

L{·} = �1 + 2y
@

@y
� y2r2 . (13.59)

12 See for example J.Dundurs, Concentrated force in an elastically embedded disk,
ASME Journal of Applied Mechanics, Vol.30 (1963), pp.568–570, J.Dundurs and
G.P.Sendeckyj, Edge dislocation inside a circular inclusion, Journal of the Me-
chanics and Physics of Solids, Vol.13 (1965), pp.141–147.

13 K.Aderogba, An image treatment pf elastostatic transmission from an interface
layer, Journal of the Mechanics and Physics of Solids, Vol. 51 (2003), pp.267–279.
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Example

As an example, we consider the case where a glide dislocation is situated at
the point (0, a) in the traction-free half plane y>0. The corresponding infinite
plane solution is given by equation (13.23) as

�
0

=
2µBxr ln(r) sin ✓

⇡(+ 1)
,

where r, ✓ are measured from the dislocation. Converting to Cartesian coör-
dinates and moving the origin to the surface of the half plane, we have

�
0

(x, y) =
µBx(y � a)
⇡(+ 1)

ln
�

x2 + (y � a)2
�

.

Substituting into equation (13.59), we have

L{�
0

(x,�y)} = � µBx

⇡(+ 1)



(y � a) ln
�

x2 + (y + a)2
�

+
4ay(y + a)

x2 + (y + a)2

�

and hence the complete stress function is

� =
µBx

⇡(+ 1)



(y � a) ln
✓

x2 + (y � a)2

x2 + (y + a)2

◆

� 4ay(y + a)
x2 + (y + a)2

�

.

The circular hole

A similar procedure can be used to find the perturbation in a stress field due
to the presence of the traction-free circular hole r=a. If the unperturbed field
is defined by the function �

0

(r, ✓), the perturbed field can be obtained as

� = �
0

(r, ✓)� L


r2

a2

�
0

✓

a2

r
, ✓

◆�

+
C(r2 � 2a2 ln(r))

4
, (13.60)

where

L{·} =
r2

a2

+
✓

1� r2

a2

◆

r
@

@r
+

a2

4

✓

1� r2

a2

◆

2

r2

and the constant C is defined as

C = lim
r!0

r2�
0

(r, ✓) .

These mathematical operations are performed by the Maple and Mathematica
files ‘holeperturbation’ and the reader can verify (for example) that they gen-
erate the solutions of §8.3.2, §8.4.1, starting from the stress functions defining
the corresponding unperturbed uniform stress fields.
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PROBLEMS

1. Figure 13.6 shows a large body with a circular hole of radius a, subjected
to a concentrated force F , tangential to the hole. The remainder of the hole
surface is traction-free and the stress field is assumed to tend to zero as r!1.

Figure 13.6

(i) Find the stress components at the point B(a, ✓) on the surface of the hole,
due to the candidate stress function

� =
F

⇡
R cos 

in polar coördinates R, centred on the point A as shown.
(ii) Transform these stress components into the polar coördinate system r, ✓

with origin at the centre of the hole, O.
Note: For points on the surface of the hole (r = a), we have R =
2a sin(✓/2), sin =cos(✓/2), cos =� sin(✓/2).

(iii) Complete the solution by superposing stress functions (in r, ✓) from Ta-
bles 8.1, 9.1 with appropriate Fourier components in the tractions and
determining the multiplying constants from the conditions that (a) the
surface of the hole be traction-free (except at A) and (b) the displace-
ments be everywhere single-valued.

2. Use a method similar to that outlined in Problem 13.1 to find the stress
field if the force F acts in the direction normal to the surface of the otherwise
traction-free hole r=a.

3. A large plate is in a state of pure bending such that �xx =�xy =0, �yy =Cx,
where C is a constant.
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We now introduce a crack in the range �a<x<a, y=0.

(i) Find a suitable corrective solution which, when superposed on the simple
bending field, will make the surfaces of the crack free of tractions. (Hint:
represent the corrective solution by a distribution of climb dislocations in
�a<x<a. Don’t forget the closure condition (13.41)).

(ii) Find the corresponding crack opening displacement as a function of x and
show that it has an unacceptable negative value in �a<x<0.

(iii) Re-solve the problem assuming that there is frictionless contact in some
range �a<x<b, where b is a constant to be determined. The dislocations
will now have to be distributed only in b < x < a and b is found from a
continuity condition at x = b. (Move the origin to the mid-point of the
range b<x<a.)

(iv) For the case with contact, find expressions for (a) the crack opening
displacement, (b) the stress intensity factor at x = a, (c) the dimension
b and (d) the contact traction in �a < x < b and hence verify that the
contact inequalities are satisfied.

4. A state of uniform shear �xy =S,�xx =�yy =0 in a large block of material
is perturbed by the presence of the plane crack �a<x<a, y=0. Representing
the perturbation due to the crack by a distribution of glide dislocations along
the crack line, find the shear stress distribution on the line x > a, y = 0, the
relative motion between the crack faces in �a<x<a, y =0 and the mode II
stress intensity factor KII defined as

KII ⌘ lim
x!a+

�yx(x, 0)
p

2⇡(x� a) .

5. A state of uniform general bi-axial stress �xx = Sxx,�yy = Syy,�xy = Sxy

in a large block of material is perturbed by the presence of the plane crack
�a<x<a, y=0. Note that the crack will close completely if Syy < 0 and will
be fully open if Syy >0. Use the method proposed in Problem 13.4 to find the
mode II stress intensity factor KII for both cases, assuming that Coulomb
friction conditions hold in the closed crack with coe�cient f .

If the block contains a large number of widely separated similar cracks of
all possible orientations and if the block fails when at any one crack

q

K2

I + K2

II = KIc ,

where the fracture toughness KIc is a material constant, sketch the biaxial
failure surface for the material — i.e. the locus of all failure points in principal
biaxial stress space (�

1

,�
2

).

6. Find the stress field due to a climb dislocation of unit strength located
at the point (0, a) in the traction-free half-plane y > 0, using the following
method:
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(i) Write the stress function (13.15) in Cartesian coördinates.
(ii) Find the solution for a dislocation at (0, a) in the full plane �1<y<1

by making a change of origin.
(iii) Superpose additional singularities centred on the image point (0,�a)

to make the surface y = 0 traction-free. Notice that these singularities
are outside the actual body and are therefore admissible. Appropriate
functions (in polar coördinates centred on (0,�a)) are

C
1

r ln(r) cos ✓ ;
C

2

cos ✓
r

; C
3

sin(2✓) .

7. Solve Problem 6 using Aderogba’s result (13.59, 13.57) for step (iii).

8. Find the stress field due to a concentrated force F applied in the x-direction
at the point (0, a) in the half-plane y > 0, if the surface of the half-plane is
traction-free. Verify that the results reduce to those of §12.3 in the limit as
a!0.

9. Two dissimilar elastic half planes are bonded on the interface y = 0 and
have material properties as defined in §13.4. Use Aderogba’s formula (13.57)
to determine the stress field due to a climb dislocation at the point (0, a) in
the half-plane y > 0. In particular, find the location and magnitude of the
maximum shear traction at the interface.

10. Use equation (13.60) to solve Problem 8.2.
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THERMOELASTICITY

Most materials tend to expand if their temperature rises and, to a first ap-
proximation, the expansion is proportional to the temperature change. If the
expansion is unrestrained, all dimensions will expand equally — i.e. there will
be a uniform dilatation described by

exx = eyy = ezz = ↵T (14.1)
exy = eyz = ezx = 0 , (14.2)

where ↵ is the coe�cient of linear thermal expansion. Notice that no shear
strains are induced in unrestrained thermal expansion, so that a body which
is heated to a uniformly higher temperature will get larger, but will retain the
same shape.

Thermal strains are additive to the elastic strains due to local stresses, so
that Hooke’s law is modified to the form

exx =
�xx

E
� ⌫�yy

E
� ⌫�zz

E
+ ↵T (14.3)

exy =
�xy(1 + ⌫)

E
. (14.4)

14.1 The governing equation

the governing equation will generally include additional terms associated with
the temperature field. Repeating the derivation of §4.4.1, but using (14.3) in
place of (1.58), we find that the compatibility condition demands that

@2�xx

@y2

� ⌫ @
2�yy

@y2

+E↵
@2T

@y2

�2(1+ ⌫)
@2�xy

@x@y
+
@2�yy

@x2

� ⌫ @
2�xx

@x2

+E↵
@2T

@x2

= 0

(14.5)
and after substituting for the stress components from (4.6) and rearranging,
we obtain
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The Airy stress function can be used for two-dimensional thermoelasticity, but
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r4� = �E↵r2T , (14.6)

for plane stress.
The corresponding plane strain equations can be obtained by a similar pro-

cedure, noting that the restraint of the transverse strain ezz (14.1) will induce
a stress �zz = �E↵T and hence additional in-plane strains ⌫↵T . Equation
(14.6) is therefore modified to

r4� = � E↵

(1� ⌫)
r2T , (14.7)

for plane strain and we can supplement the plane stress to plane strain con-
versions (3.18) with the relation

↵ = ↵0(1 + ⌫0) . (14.8)

Equations (14.6, 14.7) are similar in form to that obtained in the presence
of body forces (7.8) and can be treated in the same way. Thus, we can seek any
particular solution of (14.6) and then satisfy the boundary conditions of the
problem by superposing a more general biharmonic function, since the bihar-
monic equation is the complementary or homogeneous equation corresponding
to (14.6, 14.7).

Example

As an example, we consider the case of the thin circular disk, r < a, with
traction-free edges, raised to the temperature

T = T
0

y2 = T
0

r2 sin2 ✓ , (14.9)

where T
0

is a constant.
Substituting this temperature distribution into equation (14.6), we obtain

r4� = �2E↵T
0

(14.10)

and a simple particular solution is

�
0

= �E↵T
0

r4

32
. (14.11)

The stresses corresponding to �
0

are

�rr = �E↵T
0

r2

8
; �✓✓ = �3E↵T

0

r2

8
; �r✓ = 0 (14.12)

and the boundary r =a can be made traction-free by superposing a uniform
hydrostatic tension E↵T

0

a2/8, resulting in the final stress field1

�rr =
E↵T

0

(a2 � r2)
8

; �✓✓ =
E↵T

0

(a2 � 3r2)
8

; �r✓ = 0 . (14.13)

1 It is interesting to note that the stress field in this case is axisymmetric, even
though the temperature field (14.9) is not.
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14.2 Heat conduction

The temperature field might be a given quantity — for example, it might be
measured using thermocouples or radiation methods — but more often it has
to be calculated from thermal boundary conditions as a separate boundary-
value problem. Most materials approximately satisfy the Fourier heat conduc-
tion law, according to which the heat flux per unit area q is linearly propor-
tional to the local temperature gradient. i.e.

q = �KrT , (14.14)

where K is the thermal conductivity of the material. The conductivity is
usually assumed to be constant, though for real materials it depends upon
temperature. However, the resulting non-linearity is only important when the
range of temperatures under consideration is large.

We next apply the principle of conservation of energy to a small cube of
material. Equation (14.14) governs the flow of heat across each face of the
cube and there may also be heat generated, Q per unit volume, within the
cube due to some mechanism such as electrical resistive heating or nuclear
reaction etc. If the sum of the heat flowing into the cube and that generated
within it is positive, the temperature will rise at a rate which depends upon
the thermal capacity of the material. Combining these arguments we find that
the temperature T must satisfy the equation2

⇢c
@T

@t
= Kr2T + Q , (14.15)

where ⇢, c are respectively the density and specific heat of the material, so
that the product ⇢c is the amount of heat needed to increase the temperature
of a unit volume of material by one degree.

In equation (14.15), the first term on the right-hand side is the net heat
flow into the element per unit volume and the second term, Q is the rate of
heat generated per unit volume. The algebraic sum of these terms gives the
heat available for raising the temperature of the cube.

It is convenient to divide both sides of the equation by K, giving the more
usual form of the heat conduction equation

r2T =
1


@T

@t
� Q

K
, (14.16)

where
 =

K

⇢c
(14.17)

2 More detail about the derivation of this equation and other information about the
linear theory of heat conduction can be found in the classical text H.S.Carslaw
and J.C.Jaeger, Conduction of Heat in Solids, 2nd.ed., Clarendon Press, Oxford,
1959.
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is the thermal di↵usivity of the material. Thermal di↵usivity has the dimen-
sions area/time and its magnitude gives some indication of the rate at which
a thermal disturbance will propagate through the body.

We can substitute (14.16) into (14.6) obtaining

r4� = �E↵

✓

1


@T

@t
� Q

K

◆

(14.18)

for plane stress.

14.3 Steady-state problems

Equation (14.18) shows that if the temperature is independent of time and
there is no internal source of heat in the body (Q=0), � will be biharmonic. It
therefore follows that in the steady-state problem without heat generation, the
stress field is una↵ected by the temperature distribution. In particular, if the
boundaries of the body are traction-free, a steady-state (and hence harmonic)
temperature field will not induce any thermal stresses.

Furthermore, if there are internal heat sources — i.e. if Q 6=0 — the stress
field can be determined directly from equation (14.18), using Q, without the
necessity of first solving a boundary value problem for the temperature T .
This also implies that the thermal boundary conditions in two-dimensional
steady-state problems have no e↵ect on the thermoelastic stress field.

All of these deductions rest on the assumption that the elastic problem is
defined in terms of tractions. If some of the boundary conditions are stated in
terms of displacements, the resulting thermal distortion will induce boundary
tractions and the stress field will be a↵ected, though it will still be the same
as that which would have been produced by the same tractions if they had
been applied under isothermal conditions.

Recalling the arguments of §2.2.1, we conclude that similar considerations
apply to the multiply connected body, for which there exists an implied dis-
placement boundary condition. In other words, multiply connected bodies will
generally develop non-zero thermal stresses even under steady-state conditions
with no boundary tractions. However, the resulting stress field is essentially
that associated with the presence of a dislocation in the hole and hence can
be characterized by relatively few parameters3.

Appropriate conditions for multiply connected bodies can be explicitly
imposed, but in general it is simpler to obviate the need for such a condition
by reverting to a displacement function representation. We shall therefore
postpone discussion of thermoelastic problems for multiply connected bodies
until Chapter 22 where such a formulation is introduced.
3 See for example J.Dundurs, Distortion of a body caused by free thermal expan-

sion, Mechanics Research Communications, Vol. 1 (1974), pp.121-124.
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14.3.1 Dundurs’ Theorem

If the conditions discussed in the last section are satisfied and the temperature
field therefore induces no thermal stress, the strains will be given by equations
(14.1, 14.2). It then follows that

@2uy

@x2

= � @2ux

@x@y
, (14.19)

because of (14.2)

= �@exx

@y
= �↵@T

@y
=
↵qy

K
, (14.20)

from (14.1, 14.14). In view of (14.8), the corresponding result for plane strain
can be written

@2uy

@x2

=
↵(1 + ⌫)qy

K
. (14.21)

In this equation, the constant of proportionality ↵(1+⌫)/K is known as the
thermal distortivity of the material and is denoted by the symbol �.

Equations (14.20, 14.21) state that the curvature of an initially straight
line segment in the x-direction (@2uy/@x2) is proportional to the local heat
flux across that line segment. This result was first proved by Dundurs4 and is
referred to as Dundurs’ Theorem. It is very useful as a guide to determining
the e↵ect of thermal distortion on a structure. Figure 14.1 shows some simple
bodies with various thermal boundary conditions and the resulting steady-
state thermal distortion.

Notice that straight boundaries that are unheated remain straight, those
that are heated become convex outwards, whilst those that are cooled become
concave. The angles between the edges are una↵ected by the distortion, be-
cause there is no shear strain. Since the thermal field is in the steady-state
and there are no heat sources, the algebraic sum of the heat input around the
boundary must be zero. Thus, although the boundary is locally rotated by
the cumulative heat input from an appropriate starting point, this does not
lead to incompatibility at the end of the circuit.

Many three-dimensional structures such as box-sections, tanks, rectangu-
lar hoppers etc., are fabricated from plate elements. If the unrestrained ther-
mal distortions of these elements are considered separately, the incompatibili-
ties of displacement developed at the junctions between elements permits the
thermal stress problem to be described in terms of dislocations, the physical
e↵ects of which are more readily visualized.
4 J.Dundurs loc. cit.
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Figure 14.1: Distortion due to thermal expansion.

Dundurs’ Theorem can also be used to obtain some useful simplifications
in two-dimensional contact and crack problems involving thermal distortion5.

PROBLEMS

1. A direct electric current I flows along a conductor of rectangular cross-
section �4a < x < 4a, �a < y < a, all the surfaces of which are traction
free. The conductor is made of copper of electrical resistivity ⇢, thermal con-
ductivity K, Young’s modulus E, Poisson’s ratio ⌫ and coe�cient of thermal
expansion ↵. Assuming the current density to be uniform and neglecting elec-
tromagnetic e↵ects, estimate the thermal stresses in the conductor when the
temperature has reached a steady state.

2. A fuel element in a nuclear reactor can be regarded as a solid cylinder of
radius a. During operation, heat is generated at a rate Q

0

(1+Ar2/a2) per
5 For more details, see J.R.Barber, Some implications of Dundurs’ Theorem for

thermoelastic contact and crack problems, Journal of Strain Analysis, Vol. 22
(1980), pp.229-232.
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unit volume, where r is the distance from the axis of the cylinder and A is a
constant.

Assuming that the element is immersed in a fluid at pressure p and that ax-

ial expansion is prevented, find the radial and circumferential thermal stresses
produced in the steady state.

3. The instantaneous temperature distribution in the thin plate �a < x <
a,�b<y<b is defined by

T (x, y) = T
0

✓

x2

a2

� 1
◆

,

where T
0

is a positive constant. Find the magnitude and location of (i) the
maximum tensile stress and (ii) the maximum shear stress in the plate if the
edges x=±a, y=±b are traction-free and a�b.

4. The half plane y>0 is subject to periodic heating at the surface y=0, such
that the surface temperature is

T (0, t) = T
0

cos(!t) .

Show that the temperature field

T (y, t) = T
0

e��y cos(!t� �y)

satisfies the heat conduction equation (14.16) with no internal heat generation,
provided that

� =
r

!

2k
.

Find the corresponding thermal stress field as a function of y, t if the surface
of the half plane is traction-free.

Using appropriate material properties, estimate the maximum tensile
stress generated in a large rock due to diurnal temperature variation, with
a maximum daytime temperature of 30oC and minimum nighttime tempera-
ture of 10oC.

5. The layer 0<y<h rests on a frictionless rigid foundation at y=0 and the
surface y = h is traction-free. The foundation is a thermal insulator and the
free surface is subjected to the steady state heat input

qy = q
0

cos(mx) .

Use Dundurs’ theorem to show that the layer will not separate from the foun-
dation and find the amplitude of the sinusoidal perturbation in the free surface
due to thermal distortion.



15

ANTIPLANE SHEAR

In Chapters 3–14, we have considered two-dimensional states of stress involv-
ing the in-plane displacements ux, uy and stress components �xx,�xy,�yy.
Another class of two-dimensional stress states that satisfy the elasticity equa-
tions exactly is that in which the in-plane displacements ux, uy are everywhere
zero, whilst the out-of-plane displacement uz is independent of z — i.e.

ux = uy = 0 ; uz = f(x, y) . (15.1)

Substituting these results into the strain-displacement relations (1.51) yields

exx = eyy = ezz = 0 (15.2)

and
exy = 0 ; eyz =

1
2
@f

@y
; ezx =

1
2
@f

@x
. (15.3)

It then follows from Hooke’s law (1.71) that

�xx = �yy = �zz = 0 (15.4)

and
�xy = 0 ; �yz = µ

@f

@y
; �zx = µ

@f

@x
. (15.5)

�zx,�zy and these are functions of x, y only. Such a stress state is known as
antiplane shear or antiplane strain.

The in-plane equilibrium equations (2.2, 2.3) are identically satisfied by the
stress components (15.4, 15.5) if and only if the in-plane body forces px, py are
zero. However, substituting (15.5) into the out-of-plane equilibrium equation
(2.4) yields

µr2f + pz = 0 . (15.6)

Thus, antiplane problems can involve body forces in the axial direction, pro-
vided these are independent of z.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 227

In other words, the only non-zero stress components are the two shear stresses
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In the absence of body forces, equation (15.6) reduces to the Laplace equa-
tion

r2f = 0 . (15.7)

15.1 Transformation of coordinates

It is often convenient to regard the two stress components on the z-plane as
components of a shear stress vector

⌧ = i�zx + j�zy = µrf (15.8)

from (15.5). The vector transformation equations (1.14) then show that the
stress components in the rotated coordinate system x0, y0 of Figure 1.3 are

�zx0 = �zx cos ✓ + �zy sin ✓ (15.9)
�zy0 = �zy cos ✓ � �zx sin ✓ . (15.10)

Equation (15.8) can also be used to define the expressions for the stress com-
ponents in polar coordinates as

�zr = µ
@f

@r
; �z✓ =

µ

r

@f

@✓
. (15.11)

The maximum shear stress at any given point is the magnitude of the
vector ⌧ and is given by

|⌧ | = µ

s

✓

@f

@x

◆

2

+
✓

@f

@y

◆

2

. (15.12)

15.2 Boundary conditions

Only one boundary condition can be imposed at each point on the boundary.
The axial displacement uz =f may be prescribed, or the traction

�nz = µ
@f

@n
(15.13)

may be prescribed, where n is the local outward normal to the cross-section.
Thus, antiplane problems reduce to the solution of the Poisson equation (15.6)
(or the Laplace equation (15.7) when there is no body force) with prescribed
values of f or @f/@n on the boundary. This is a classical boundary-value prob-
lem that is somewhat simpler than that involved in the solution for the Airy
stress function, but essentially similar methods can be used for both. Simple
examples can be defined for all of the geometries considered in Chapters 5–13.
In the present chapter, we shall consider a few special cases, but a wider range
of examples can be found in the problems at the end of this chapter.
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15.3 The rectangular bar

Figure 15.1 shows the cross-section of a long bar of rectangular cross-section
2a⇥ b, where a�b. The short edges x=±a are built in to rigid supports, the
edge y = b is loaded by a uniform shear traction �yz = S and the remaining
edge y=0 is traction-free.

Figure 15.1: Rectangular bar with shear loading on one edge.

Using equations (15.4, 15.5), the boundary conditions can be written in
the mathematical form

f = 0 ; x = ±a (15.14)
@f

@y
=

S

µ
; y = b (15.15)

@f

@y
= 0 ; y = 0 . (15.16)

However, as in Chapter 5, a finite polynomial solution can be found only if the
boundary conditions (15.14) on the shorter edges are replaced by the weak
form, which in this case take the form

Z b

0

f(x, y)dy = 0 ; x = ±a . (15.17)

This problem is even in x and a solution can be obtained using the trial
function

f = C
1

x2 + C
2

y2 + C
3

y + C
4

. (15.18)

Substitution into equations (15.7, 15.15–15.17) yields the conditions

2C
1

+ 2C
2

= 0 (15.19)

2C
2

b + C
3

=
S

µ
(15.20)

C
3

= 0 (15.21)

C
1

a2b +
C

2

b3

3
+

C
3

b2

2
+ C

4

= 0 (15.22)
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with solution

C
1

= � S

2µb
; C

2

=
S

2µb
; C

3

= 0 ; C
4

=
S(3a2 � b2)

6µb
. (15.23)

The final solution for the stresses and displacements is therefore

uz =
S

2µb

✓

y2 � x2 + a2 � b2

3

◆

(15.24)

�zx = �Sx

b
(15.25)

�zy =
Sy

b
, (15.26)

from equations (15.23, 15.1, 15.5).

15.4 The concentrated line force

Consider an infinite block of material loaded by a force F per unit length
acting along the z-axis. This problem is axisymmetric, in contrast to that
solved in §13.1, since the force this time is directed along the axis rather
than perpendicular to it. It follows that the resulting displacement function f
must be axisymmetric and equation (15.7) reduces to the ordinary di↵erential
equation

d2f

dr2

+
1
r

df

dr
= 0 , (15.27)

since there is no body force except at the origin. Equation (15.27) has the
general solution

f = C
1

ln(r) + C
2

, (15.28)

leading to the stress field

�rz =
µC

1

r
; �✓z = 0 , (15.29)

from (15.11). The constant C
1

can be determined by considering the equilib-
rium of a cylinder of material of radius a and unit length. We obtain

F +
Z

2⇡

0

�rz(a, ✓)ad✓ = 0 (15.30)

and hence
C

1

= � F

2⇡µ
. (15.31)

The corresponding stresses are then obtained from (15.29) as

�rz = � F

2⇡r
; �✓z = 0 . (15.32)
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Of course, the same result could have been obtained without recourse to elas-
ticity arguments, appealing simply to axisymmetry and equilibrium and hence
the same stresses would be obtained for a fairly general non-linear or inelastic
material, as long as it is isotropic.

The elastic displacement is

uz = f = �F ln(r)
2⇡µ

+ C
2

, (15.33)

where the constant C
2

represents an arbitrary rigid-body displacement.

Figure 15.2: Half-space loaded by an out-of-plane line force.

All ✓-surfaces are traction-free and hence the same solution can be used
for a wedge of any angle loaded by a uniform force per unit length acting at
and parallel to the apex, though the factor of 2⇡ in C

1

will then be replaced
by the subtended wedge angle. In particular, Figure 15.2 shows the half-space
�⇡<✓<0 loaded by a uniformly distributed tangential force along the z-axis,
for which it is easily shown that

�rz = � F

⇡r
; uz = �F ln(r)

⇡µ
+ C

2

. (15.34)

This result can be used to solve frictional contact problems analogous to those
considered in Chapter 12 (see Problems 15.11, 15.12).

15.5 The screw dislocation

The dislocation solution in antiplane shear corresponds to the situation in
which the infinite body is cut on the half-plane x > 0, y = 0 and the two
faces of the cut experience a relative displacement �=Bz in the z-direction.
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Describing the cut space as the wedge 0<✓<2⇡, the boundary conditions for
this problem can be written

uz(r, 0)� uz(r, 2⇡) = Bz (15.35)

and a suitable solution satisfying equation (15.7) is

uz = �Bz✓

2⇡
; �zr = 0 ; �z✓ =

µBz

2⇡r
. (15.36)

The corresponding material defect is known as a screw dislocation. Notice that
the stress components due to a screw dislocation decay with r�1 with distance
from the origin, as do those for the in-plane climb and glide dislocations
discussed in §13.2.

A distribution of screw dislocations can be used to solve problems involving
cracks in an antiplane shear field, using the technique introduced in §13.3.

PROBLEMS

1. The long rectangular bar 0 < x < a, 0 < y < b, a� b is built in to a rigid
support at x=a and loaded by a uniform shear traction �yz =S at y=b. The
remaining surfaces are free of traction. Find a solution for the displacement
and stress fields, using strong boundary conditions on the edges y=0, b.

2. Figure 15.3 shows the cross-section of a long bar of equilateral triangular
cross-section of side a. The three faces of the bar are built in to rigid supports
and the axis of the bar is vertical, resulting in gravitational loading pz =�⇢g.

Figure 15.3: Cross-section of the triangular bar.

Show that an exact solution for the stress and displacement fields can be
obtained using a stress function of the form
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f = C(y �
p

3x)(y +
p

3x)

 

y �
p

3a

2

!

.

Find the value of the constant C and the location and magnitude of the
maximum shear stress.

3. A state of uniform shear �xz = S,�yz = 0 in a large block of material is
perturbed by the presence of a small traction-free hole whose boundary is
defined by the equation r=a in cylindrical polar coordinates r, ✓, z. Find the
complete stress field in the block and hence determine the appropriate stress
concentration factor.

4. A state of uniform shear �xz = S,�yz = 0 in a large block of material
is perturbed by the presence of a rigid circular inclusion whose boundary
is defined by the equation r = a in cylindrical polar coordinates r, ✓, z. The
inclusion is perfectly bonded to the elastic material and is prevented from
moving, so that uz = 0 at r = a. Find the complete stress field in the block
and hence determine the appropriate stress concentration factor.

5. The body defined by a<r<b, 0<✓<⇡/2,�1<z<1 is built in at ✓=⇡/2
and loaded by a shear force F per unit length in the z-direction on the surface
✓=0. The curved surfaces r=a, b are traction-free. Find the stress field in the
body, using the strong boundary conditions on the curved surfaces and weak
conditions elsewhere.

6. The body defined by a < r < b, 0 < ✓ < ⇡/2,�1 < z <1 is built in at
✓= ⇡/2, such that the z-axis is vertical. It is loaded only by its own weight
with density ⇢, the curved surfaces r=a, b being traction-free. Find the stress
field in the body, using the strong boundary conditions on the curved surfaces
and weak conditions elsewhere.

7. The body defined by a < r < b, 0 < ✓ < ⇡/2,�1 < z <1 is built in at
✓ = ⇡/2 and loaded by the uniform shear traction �rz = S on r = a, the
other surfaces being traction-free. Find the stress field in the body, using
the strong boundary conditions on the curved surfaces and weak conditions
elsewhere. Hint: This is a degenerate problem in the sense of §10.3.1 and
requires a special stress function. Equilibrium arguments suggest that the
stress component �✓z must increase with ✓, implying a function f varying
with ✓2. You can construct a suitable function by starting with the harmonic
function rn cos(n✓), di↵erentiating twice with respect to n and then setting
n=0.

8. The body �↵< ✓< ↵, 0 r < a is supported at r = a and loaded only by
a uniform antiplane shear traction �✓z = S on the surface ✓ = ↵, the other
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surface being traction-free. Find the complete stress field in the body, using
strong boundary conditions on ✓=±↵ and weak conditions on r=a.

9. The half-space �⇡<✓<0 is bonded to a rigid body in the region ✓=0, the
remaining surface ✓=�⇡ being traction-free. If the rigid body is loaded in the
z-direction (out-of-plane), use an asymptotic argument analogous to that in
§11.2 to determine the exponent of the most singular term in the stress field
near the origin.

10. The wedge �↵< ✓<↵ has traction-free surfaces ✓=±↵ and is loaded at
large r in antiplane shear. Develop an asymptotic (eigenfunction) expansion
for the most general stress field near the apex r = 0 and plot the exponent
of the dominant term for (i) symmetric and (ii) antisymmetric stress fields as
functions of the complete wedge angle 2↵.

11. Two large parallel cylinders each of radius R are pressed together by a
normal force P per unit length. An axial tangential force Q per unit length is
then applied, tending to make the cylinders slide relative to each other along
the axis as shown in Figure 15.4. If the coe�cient of friction is f and Q<fP ,
find the extent of the contact region, the extent of the slip and stick regions
and the distribution of normal and tangential traction in the contact area1

Figure 15.4: Contacting cylinders loaded out of plane.
1 This problem is analogous to Mindlin’s problem discussed in §12.8.1.
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12. Solve Problem 15.11 for the case where the cylinders are rolling against
each other, as in Carter’s problem (§12.8.2). If the rolling speed is ⌦, find the
relative (axial) creep velocity.

Now suppose that the axes of the cylinders are very slightly misaligned
through some angle ✏ which is insu�cient to make the contact conditions vary
significantly along the axis. If the cylinders run in bearings which prevent
relative axial motion, find the axial bearing force per unit length and the
maximum misalignment which can occur without there being gross slip.

13. A state of uniform shear �xz = 0,�yz = S in a large block of material is
perturbed by the presence of the plane crack �a<x<a, y =0. Representing
the perturbation due to the crack by a distribution of screw dislocations along
the crack line, find the shear stress distribution on the line x > a, y = 0, the
relative motion between the crack faces in �a<x<a, y=0 and the mode III
stress intensity factor KIII defined as

KIII ⌘ lim
x!a+

�yz(x, 0)
p

2⇡(x� a) .



Part III

END LOADING OF THE PRISMATIC BAR
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One of the most important problems in the technical application of Elas-
ticity concerns a long2 bar of uniform cross-section loaded only at the ends.
Recalling Saint Venant’s principle3, we anticipate a region near the ends where
the stress field is influenced by the exact local traction distribution, but these
end e↵ects should decay with distance from the ends, leaving the stress field
in a central region depending only upon the force resultants transmitted along
the bar. In this section we shall consider the problem of determining this ‘pre-
ferred’ form of stress distribution associated with various force resultant end
loadings of the bar.

The most general end loading of the bar will comprise an axial force F ,
shear forces Vx, Vy in the x- and y-directions respectively, bending moments
Mx,My about the x- and y-axes and a torque T . The axial force and bending
moments cause normal stresses �zz on the cross-section, whilst the torque and
shear forces cause shear stresses �zx,�zy. Notice however that the existence
of a shear force implies a bending moment varying linearly with z. These
problems are strictly three-dimensional in that the displacements vary with
z, but this variation is at most linear or quadratic and the mathematical
formulation of the problem therefore reduces to the solution of a boundary
value problem on the two-dimensional cross-sectional domain.

Elementary Mechanics of Materials solutions of these problems are based
on ad hoc assumptions, most notably the assumption that plane sections re-
main plane during bending. In Elasticity it is legitimate to use the same
approach provided that the final stress field is checked to ensure that it satis-
fies the equilibrium equations (2.5) and that the corresponding strains satisfy
the six compatibility equations (2.10). However, a more satisfactory starting
point is to note that in the central region the stress state is independent4 of z
and hence each ‘slice’ of bar defined by initially parallel cross-sectional planes
must deform in exactly the same way. Thus, if initially plane sections deform
out of plane, this deformation is independent of z and the distance between
corresponding points on two such sections after deformation will be defined
by a general rigid-body translation and rotation. This argument is su�cient
to establish that the strain ezz is a linear function of x, y, as assumed in the
classical theory of pure bending. Notice incidentally that the constitutive law
is not required for this argument and hence the conclusion holds for a general
non-linear or inelastic material5.

Using these arguments, it is easily shown that the elementary Mechanics
of Materials results are exact for the case where the bar is loaded by an axial
force and/or a bending moment. It is convenient to locate the origin at the
centroid of the cross-section, in which case a tensile force F acting along the
2 Here ‘long’ implies that the length of the bar is at least several times larger than

the largest dimension in the cross-section.
3 See §3.1.2 and Chapter 6.
4 Except for the linear increase of bending stresses due to a shear force.
5 See J.R.Barber, Intermediate Mechanics of Materials, McGraw-Hill, Burr Ridge,

2000, Chapter 5.
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z-axis will generate the uniform uniaxial stress field

�zz =
F

A
; �yy = �yy = �xy = �yz = �zx = 0 ,

where A is the area of the cross-section. For the bending problem, some simpli-
fication results if we choose the coördinate axes to coincide with the principal
axes of bending of the bar6. The bending stress field is then given by

�zz =
M

1

y

I
1

� M
2

x

I
2

; �yy = �yy = �xy = �yz = �zx = 0 ,

where I
1

, I
2

are the principal second moments of area of the cross-section and
M

1

,M
2

are the bending moments about the corresponding axes, chosen to
coincide with the x, y-directions respectively.

The problem of the bar loaded in torsion or shear cannot be treated exactly
using elementary Mechanics of Materials arguments7 and will be discussed in
the next two chapters.

6 See for example J.R.Barber, Intermediate Mechanics of Materials, McGraw-Hill,
Burr Ridge, 2000, Chapter 4.

7 Except for the special case of a circular bar loaded only in torsion.
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TORSION OF A PRISMATIC BAR

If a bar is loaded by equal and opposite torques T on its ends, we anticipate
that the relative rigid-body displacement of initially plane sections will consist
of rotation, leading to a twist per unit length �. These sections may also
deform out of plane, but this deformation must be the same for all values of
z. These kinematic considerations lead to the candidate displacement field

ux = ��zy ; uy = �zx ; uz = �f(x, y) , (16.1)

where f is an unknown function of x, y describing the out-of-plane deforma-
tion. Notice that it is convenient to extract the factor � explicitly in uz, since

must be linearly proportional to the applied torque and hence to the twist per
unit length.

Substituting these results into the strain-displacement relations (1.51)
yields

exx = eyy = ezz = exy = 0 ; ezx =
�

2

✓

@f

@x
� y

◆

; ezy =
�

2

✓

@f

@y
+ x

◆

(16.2)
and it follows from Hooke’s law (1.71) that

�xx = �yy = �zz = 0 (16.3)

and

�xy = 0 ; �zx = µ�

✓

@f

@x
� y

◆

; �zy = µ�

✓

@f

@y
+ x

◆

. (16.4)

There are no body forces, so substitution into the equilibrium equations
(2.5) yields

r2f = 0 . (16.5)

The torsion problem is therefore reduced to the determination of a harmonic
function f such that the stresses (16.4) satisfy the traction-free condition

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172,

whatever the exact nature of f , it is clear that the complete deformation field
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condition on the curved surfaces of the bar. The twist per unit length � can
then be determined by evaluating the torque on the cross-section ⌦

T =
Z Z

⌦

(x�zy � y�zx)dxdy . (16.6)

16.1 Prandtl’s stress function

The imposition of the boundary condition is considerably simplified by intro-
ducing Prandtl’s stress function ' defined such that

⌧ ⌘ i�zx + j�zy = curl k' (16.7)

or
�zx =

@'

@y
; �zy = �@'

@x
. (16.8)

With this representation, the traction-free boundary condition can be written

⌧ · n = �zn =
@'

@t
= 0 , (16.9)

where n is the local normal to the boundary of ⌦ and n, t are a corresponding
set of local orthogonal coördinates respectively normal and tangential to the
boundary. Thus ' must be constant around the boundary and for simply
connected bodies this constant can be taken as zero without loss of generality
giving the simple condition

' = 0 . (16.10)
on the boundary.

The expressions (16.8) satisfy the equilibrium equations (2.5) identically.
To obtain the governing equation for ', we eliminate �zx,�zy between equa-
tions (16.4, 16.8), obtaining

@'

@y
= µ�

✓

@f

@x
� y

◆

;
@'

@x
= �µ�

✓

@f

@y
+ x

◆

(16.11)

and then eliminate f between these equations, obtaining

r2' = �2µ� . (16.12)

Thus, in Prandtl’s formulation, the torsion problem reduces to the determina-
tion of a function ' satisfying the Poisson equation (16.12), such that '=0 on
the boundary of the cross-section. The final stage is to determine the constant
� from (16.6), which here takes the form

T = �
Z Z

⌦

✓

x
@'

@x
+ y

@'

@y

◆

dxdy . (16.13)

Integrating by parts and using the fact that '=0 on the boundary of ⌦, we
obtain the simple expression

T = 2
Z Z

⌦

'dxdy . (16.14)
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16.1.1 Solution of the governing equation

The Poisson equation (16.12) is an inhomogeneous partial di↵erential equation
and its general solution can be written

' = 'P + 'H , (16.15)

where 'P is any particular solution of (16.12) and 'H is the general solution
of the corresponding homogeneous equation

r2'H = 0 (16.16)

— i.e. Laplace’s equation. Since (16.12) is a second order equation, it will
yield a constant when substituted with any quadratic polynomial function
and hence suitable particular solutions in Cartesian or polar coördinates are

'P = �µ�x2 ; 'P = �µ�y2 ; 'P = �µ�r2

2
. (16.17)

The homogeneous equation (16.16) is satisfied by both the real and imag-
inary parts of any analytic function of the complex variable

⇣ = x + ıy = reı✓

— i.e.
'H = <(f(⇣)) or 'H = =(f(⇣)) , (16.18)

where f is any function. Simple functions obtained by taking f =⇣n are

C
1

rn cos(n✓) ; C
2

rn sin(n✓) ; C
3

r�n cos(n✓) ; C
4

r�n sin(n✓) , (16.19)

where C
1

, ...C
4

are arbitrary constants. The first two of these correspond to
polynomials in Cartesian coördinates, such as

x ; y ; x2 � y2 ; xy ; x3 � 3y2x ; y3 � 3x2y (16.20)

etc.
Approximate solutions of the torsion problem for particular cross-sections

can be obtained by combining functions such as (16.17, 16.18) and adjusting
the multiplying constants so as to achieve a contour approximating the re-
quired shape. A relatively small number of simple shapes permit exact closed
form solutions, including the circle (Problem 16.1), the equilateral triangle
(Problem 16.4), a circle with a semicircular groove (Problem 16.5) and the
ellipse, which we solve here as an example.
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Example — the elliptical cross-section

We consider the bar of elliptical cross-section defined by the boundary

x2

a2

+
y2

b2

� 1 = 0 , (16.21)

loaded by a torque T . The quadratic function

' = C

✓

x2

a2

+
y2

b2

� 1
◆

(16.22)

clearly satisfies the boundary condition (16.10). Substituting into (16.12), we
obtain

r2' = C

✓

2
a2

+
2
b2

◆

= �2µ� , (16.23)

which will be satisfied for all x, y if

C = �µ�a2b2

a2 + b2

. (16.24)

The torque T is obtained from (16.14) as

T = 2C

Z b

�b

Z a(1�y2/b2)

�a(1�y2/b2)

✓

x2

a2

+
y2

b2

� 1
◆

dxdy = �⇡abC (16.25)

and hence
C = � T

⇡ab
; � =

T (a2 + b2)
⇡µa3b3

. (16.26)

The stresses are then obtained from (16.8) as

�zx =
@'

@y
=

2Cy

b2

= � 2Ty

⇡ab3

(16.27)

�zy = �@'
@x

= �2Cx

a2

=
2Tx

⇡a3b
. (16.28)

The torsional rigidity of the section K, defined such that

T = µK� , (16.29)

is
K =

⇡a3b3

(a2 + b2)
. (16.30)
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16.2 The membrane analogy

Equation (16.12) with the boundary condition (16.10) is similar in form to
that governing the displacement of an elastic membrane stretched between
the boundaries of the cross-sectional curve and loaded by a uniform normal
pressure. This analogy is useful as a means of estimating the e↵ect of the cross-
section on the maximum shear stress and the torsional rigidity of the bar. You
can perform a simple experiment by making a plane wire frame in the shape
of the cross-section, dipping it into a soap solution to develop a soap film and
then blowing gently against one side to see the shape of the deformed film.
The stress function is then proportional to the displacement of the film from
the plane of the frame. The transmitted torque is proportional to the integral
of the stress function over the cross-section (see equation (16.14)) and hence
the sti↵est cross-sections are those which permit the maximum volume to be
developed between the deformed film and the plane of the frame for a given
pressure. The shear stress is proportional to the slope of the film. For sections
such as squares, rectangles, circles, ellipses etc, the maximum displacement
will occur near the centre of the section and the maximum slope (and hence
shear stress) will be at the point on the boundary nearest the centre. For
thin-walled sections, the maximum displacement will occur where the section
is thickest and the maximum stress will be at the corresponding point on the
boundary. However, if there are reëntrant corners in the section, these will
cause locally increased stresses which are unbounded if the corner is sharp.

Notice that it is not really necessary to perform the experiment to come
up with these conclusions. A ‘thought experiment’ is generally su�cient.

16.3 Thin-walled open sections

Many structural components consist of thin-walled sections, for example I-
beams, channel sections and turbine blades. Figure 16.1 shows a generic thin-
walled section of length b, whose thickness t varies with distance ⇠ along the
length. As long as the thickness t of the section does not vary too rapidly with
⇠, it is clear from the membrance analogy that we can neglect the curvature of
the membrane (and hence of the stress function) in the ⇠-direction, reducing
the governing equation to

d2'

d⌘2

= �2µ� , (16.31)

where ⌘ is a coördinate orthogonal to ⇠ measured from the local mid-point of
the cross-section. The solution of this equation satisfying the condition

' = 0 ; ⌘ = ± t

2
(16.32)

is
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' = µ�

✓

t2

4
� ⌘2

◆

(16.33)

and the stress field is

�z⇠ =
@'

@⌘
= �2µ�⌘ ; �z⌘ = 0 . (16.34)

Thus, the shear stress is everywhere parallel to the centreline of the section
and varies linearly from that line reaching a maximum

⌧
max

(⇠) = µ�t(⇠) (16.35)

at the edges of the section ⇠=±t(⇠)/2. It follows that the overall maximum
shear stress must occur at the point where the thickness is a maximum and is

⌧
max

= µ�t
max

. (16.36)

Figure 16.1: Thin-walled open section with variable thickness.

The torque transmitted by the section is obtained from equations (16.14,
16.33) as

T = 2
Z b

0

Z t(⇠)/2

�t(⇠)/2

'd⌘d⇠ =
µ�

3

Z b

0

t(⇠)3d⇠ (16.37)

and hence the torsional rigidity of the section is

K =
1
3

Z b

0

t(⇠)3d⇠ . (16.38)

In the special case where the thickness is constant, we have

K =
bt3

3
; ⌧

max

= µ�t =
3T

bt2
. (16.39)
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16.4 The rectangular bar

The results of the previous section can be used to obtain an approximate
solution for the torsion of the rectangular bar �a < x < a,�b < y < b, when
b�a. Taking the origin at the centre of the cross-section, we obtain

' = µ�(a2 � x2) (16.40)

from (16.33). The corresponding torsional rigidity and maximum shear stress
are

K =
16a3b

3
; ⌧

max

= 2µ�a =
3T

8a2b
. (16.41)

The stress function (16.40) satisfies the governing equation (16.12) and
the boundary condition on the long edges

' = 0 ; x = ±a , (16.42)

but it does not satisfy the corresponding boundary condition on the short
edges

' = 0 ; y = ±b . (16.43)

To satisfy this condition and hence to obtain an exact solution for all val-
ues of the ratio a/b, we need to supplement the stress function (16.40) with
appropriate solutions of the homogeneous equation (16.16). These additional
functions must preserve the condition (16.42) and we therefore seek separated-
variable solutions, as in §6.2.1. Indeed the whole procedure of ‘correcting’ the
approximate solution (16.40) is exactly analogous to that discussed in §6.2.
For harmonic functions, separation of variables demands that the functions
be trigonometric in one coordinate and exponential in the other and the sym-
metry of the boundary-value problem about both axes suggests harmonic
functions of the form cos(�x) cosh(�y). Selecting those values of � that satisfy
(16.42), we obtain the stress function

' = µ�(a2 � x2) +
1
X

n=1

Cn cos
✓

(2n� 1)⇡x

2a

◆

cosh
✓

(2n� 1)⇡y

2a

◆

, (16.44)

where Cn is a set of arbitrary constants. The function (16.44) will satisfy
(16.43) if

1
X

n=1

Cn cos
✓

(2n� 1)⇡x

2a

◆

cosh
✓

(2n� 1)⇡b

2a

◆

= �µ�(a2 � x2) . (16.45)

To evaluate the constants Cn, we multiply both sides of (16.45) by cos((2m�
1)⇡x/2a) and integrate in �a<x<a, obtaining
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1
X

n=1

Cn

Z a

�a

cos
✓

(2n� 1)⇡x

2a

◆

cosh
✓

(2n� 1)⇡b

2a

◆

cos
✓

(2m� 1)⇡x

2a

◆

dx

= �µ�

Z a

�a

(a2 � x2) cos
✓

(2m� 1)⇡x

2a

◆

dx (16.46)

and hence
Cma cosh

✓

(2m� 1)⇡b

2a

◆

=
32µ�(�1)ma3

⇡3(2m� 1)3
(16.47)

or
Cm =

32µ�(�1)ma2

⇡3(2m� 1)3 cosh((2m� 1)⇡b/2a)
, (16.48)

where we have used the orthogonality condition
Z a

�a

cos
✓

(2n� 1)⇡x

2a

◆

cos
✓

(2m� 1)⇡x

2a

◆

dx = a�mn . (16.49)

The transmitted torque is obtained from equations (16.14, 16.44) as

T =
16µ�a3b

3
�

1
X

n=1

32(�1)nCna2 sinh((2n� 1)⇡b/2a)
⇡2(2n� 1)2

=
16µ�a3b

3

 

1�
1
X

n=1

192a

⇡5(2n� 1)5b
tanh

✓

(2n� 1)⇡b

2a

◆

!

, (16.50)

using (16.48) to substitute for the constants Cn. The maximum shear stress
occurs at the points (±a, 0) and is

⌧
max

=
�

�

�

�

@'

@x
(±a, 0)

�

�

�

�

= 2µ�a�
1
X

n=1

16µ�a

⇡2(2n� 1)2 cosh((2n� 1)⇡b/2a)
. (16.51)

We can define the coördinate system such that 0 < a/b < 1 without loss
of generality and in this range the series (16.50, 16.51) converge extremely
rapidly. In fact, taking just one term of each series gives better than 0.5%
accuracy. Figure 16.2 shows the e↵ect of the aspect ratio on the torsional
rigidity and the maximum shear stress, normalized with respect to the thin-
walled expressions (16.41).
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Figure 16.2: E↵ect of aspect ratio a/b on the torsional rigidity and maximum
shear stress in a rectangular bar.

16.5 Multiply connected (closed) sections

The traction-free boundary condition (16.9) implies that the stress function
remains constant as we move around the boundary � and we chose to take
this constant as zero in equation (16.10). However, if the bar contains one or
more enclosed holes, the boundary will be defined by more than one closed
curve �

0

,�
1

,�
2

etc. The condition (16.9) implies that the value of ' on each
such curve will be constant — e.g.

' = '
0

on �
0

; ' = '
1

on �
1

,

but we cannot conclude that '
1

='
0

, since the curves �
1

,�
0

do not connect.
Since the expressions for the stresses involve derivatives of ', one of the

values '
0

,'
1

, ... can be selected arbitrarily and it is convenient to define '
0

=0,
where the corresponding curve �

0

defines the external boundary of the bar.
If there is a single hole with boundary �

1

, the constant '
1

is an additional
unknown which must be determined by imposing a Cesaro integral condition,
as discussed in §2.2.1. In the present case, this condition is easy to define,
since we started from a displacement formulation in equations (16.1).

We require that the displacements be single-valued functions of x, y and
hence that the integral

I

S

@f

@s
ds =

I

S

✓

@f

@x
dx +

@f

@y
dy

◆

= 0 (16.52)
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for all closed curves S. The stress function representation guarantees this for
infinitesimal curves, but as in §2.2.1, we must explicitly enforce the condition
around a representative curve S that encircles the hole.

Eliminating f from (16.52) using (16.4), we obtain

1
µ

I

S

(�zxdx + �zydy)� �

I

S

(xdy � ydx) = 0 . (16.53)

The second integral in (16.53) is equal to twice the area A enclosed by S, so
we obtain the condition

I

S

�zsds = 2µ�A , (16.54)

which serves to determine the free constant '
1

.
If the section contains several holes, there will be a corresponding number

of additional unknowns, but for each hole we can write an integral of the form
(16.54) where the corresponding path S is taken to encircle that particular
hole.

The torque transmitted by a multiply connected section can still be calcu-
lated by (16.13), provided that we recognize that there will be no contribution
from those parts of the total domain ⌦ within the holes. This can be achieved
by adopting the convention that '='

1

throughout the area enclosed by �
1

as well as along the boundary. The derivatives in the integrand in (16.13) in
this area will then be zero as required. With this convention we can still use
the simple expression (16.14) for the torque T , with the result

T = 2
Z Z

¯⌦

'dxdy + 2
X

Ai'i , (16.55)

where Ai is the area of the hole enclosed by the boundary �i on which '='i

and ⌦̄=⌦ �PAi — i.e. the ‘solid’ area of the bar excluding the holes.

16.5.1 Thin-walled closed sections

Most practical applications of multiply connected sections have thin walls,
relative to the other dimensions of the section, as shown for example in Figure
16.3. In this case, the stress function ' can reasonably be approximated as a
linear function between '

1

and zero on the two adjacent boundaries, implying
a local shear stress

�zs =
'

1

t
, (16.56)

where t is the local wall thickness. The value of '
1

can then be determined
from (16.54) as

'
1

= 2µ�A

�

I

S

ds

t
(16.57)

and the torque is approximately
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T = 2A'
1

(16.58)

from (16.55), where A is the area enclosed by the mean line equidistant be-
tween the inner and outer boundary.

Figure 16.3: A thin walled closed section.

It follows that the torsional rigidity of a thin-walled closed section is approx-
imately

K = 4A2

�

I

S

ds

t
. (16.59)

These results can also be derived without reference to a stress function,
using Mechanics of Materials arguments1. For more details, including practical
examples, the reader is referred to the many texts on Advanced Mechanics of
Materials2.

PROBLEMS

1. Find the solution for torsion of a solid circular shaft of radius a by setting
b = a in the solution for the elliptical bar. Express the stress function and
hence the stress components in polar coördinates and verify that these results
and the relation between T and � agree with those given by the elementary
1 J.R.Barber, Intermediate Mechanics of Materials, McGraw-Hill, Burr Ridge,

2000, Chapter 6
2 See for example A.P.Boresi, R.J.Schmidt and O.M.Sidebottom, Advanced Me-

chanics of Materials, John Wiley, New York, 5th edn., 1993, Chapter 6,
W.B.Bickford, Advanced Mechanics of Materials,, Addison Wesley, Menlo Park,
1998, Chapter 3.
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Mechanics of Materials theory of torsion. Also, verify that there is no warping
of the cross-section f =0 in this case.

2. A bar transmitting a torque T has the cross-section of a thin sector 0 <
r < a,�↵ < ✓ < ↵, where ↵ ⌧ 1. Develop an approximate solution for the
shear stress distribution and the twist per unit length, using strong boundary
conditions on the edges ✓=±↵ only.

3. A bar transmitting a torque T has the cross-section of an equilateral trian-
gle of side a. Find the equations of the three sides of the triangle in Cartesian
coördinates, taking the origin at one corner and the x-axis to bisect the op-
posite side. Express these equations in the form fi(x, y)=0, i=1, 2, 3.

Show that the function

' = Cf
1

(x, y)f
2

(x, y)f
3

(x, y)

satisfies the boundary condition (16.10) and can be made to satisfy (16.12)
with a suitable choice of the constant C. Hence find the stress field in the bar
and make a contour plot of the maximum shear stress. Why can this method
not be used for a more general triangular cross-section?

4. A bar transmitting a torque T has the cross-section of a sector 0 < r <
a,�↵<✓<↵, where ↵ is not small compared with unity.

(i) Find a combination of the functions r2 and r2 cos(2✓) that satisfies the
governing equation (16.12) and the boundary condition (16.10) on the

straight edges ✓=±↵ only.

(ii) Superpose a series of harmonic functions of the form r� cos(�✓) where �
is chosen to satisfy (16.10) on ✓=±↵.

(iii) Choose the coe�cients on these terms so as to satisfy the boundary
condition on the curved edge r = a and hence obtain expressions for the
torsional rigidity K and the maximum shear stress.

(iv) Evaluate your results for the special case ↵=⇡/6 and compare them with
those obtained using the thin-walled approximation of §16.3.

5. Figure 16.4 shows the cross-section of a circular shaft of radius a with a
circular groove of radius b whose centre lies on the surface of the ungrooved
shaft. Construct a suitable stress function for this problem using the particular
solution

'P = C(x2 + y2 � b2)

and a homogeneous solution 'H comprising appropriate multipliers of the
harmonic functions r cos ✓ and r�1 cos ✓ centred on the point B, which in
Cartesian coördinates can be written

x and
x

x2 + y2

.
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Remember that the resulting function must be zero at all points on both the
circles x2 +y2 = b2 and (x�a)2 +y2 = a2. Hence find the stress field in the
bar and make a contour plot of the maximum shear stress for the case where
b=0.1a.

Figure 16.4: Circular shaft with a semi-circular groove.

6. Figure 16.5 shows part of a thin-walled open section that is loaded in
torsion. Find the stress function ' in the curved section, assuming that it
depends upon r only and hence estimate3 the maximum shear stress in the
corner if the twist per unit length is � and the shear modulus is µ.

Figure 16.5: Stress concentration due to a bend.

Find the corresponding maximum shear stress in the straight segment, distant
from the corner and hence find the stress concentration factor due to the
corner. Plot the stress concentration factor as a function of the ratio of the
inner radius to the section thickness (b/c).
3 This solution is approximate because the stress function is not independent of ✓ in

the curved region. Otherwise there would be a discontinuity at the curved/straight
transition.
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7. Approximations to the stresses in a square bar in torsion can be obtained
by adding harmonic functions of the form rn cos(n✓) to the axisymmetric
particular solution (16.17).

Express the function
' = r2 + r4 cos(4✓)

in Cartesian coördinates and make a contour plot. Select the contour which
is the best approximation to a square with rounded corners and scale the
resulting function to obtain an approximate solution for the maximum shear
stress in a square bar of side a when the twist per unit length is �. Compare
the result with that obtained from Figure 16.2 when b/a=1.

8. We know from Mechanics of Materials that a bar cross-section posesses a
shear centre which is the point through which a shear force must act if there
is to be no twist of the section. Maxwell’s reciprocal theorem4 implies that
the shear centre must also be the only point in the section that has no in-
plane displacement when the bar is loaded in torsion and hence that equations
(16.1) are correct if and only if the shear centre is taken as origin.

Rederive the torsion theory using a more general origin and hence show
that the formulation in terms of Prandtl’s stress function remains true for all
choices of origin.

9. A titanium alloy turbine blade is idealized by the section of Figure 16.6.
The leading edge is a semicircle of radius 2 mm and the inner and outer edges
of the trailing section are cylindrical surfaces of radius 43 mm and 35 mm
respectively, with centres of curvature on the line Oy. Find the twist per unit
length � and the maximum shear stress when the section is loaded by a torque
of 5 Nm. The shear modulus for the alloy is 43 GPa.

Figure 16.6: Turbine blade cross-section.
4 See Chapter 34.
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10. The W200⇥22 I-beam of Figure 16.7 is made of steel (G = 80 GPa) and
is 15 m long. One end is built in and the other is loaded by two forces F
constituting a torque, as shown. Find the torsional rigidity K for the beam
section and hence determine the value of F needed to cause the end to twist
through an angle of 20o. Does the result surprise you? How large an angle of
twist5 could a person of average strength produce in such a beam using his
or her hands only?

Figure 16.7: I-beam twisted by two forces.

11. Show that the torsional rigidity of a closed thin-walled steel tube of uniform
thickness is reduced by the factor

12A2

A2

s

when a longitudinal slit is made down the whole length of the tube to form
an open section. In this expression, A is the area enclosed by the mean line
of the closed section and As is the cross-sectional area of the steel.

Find also by what ratio the maximum shear stress will increase for a given
applied torque.

5 If you want to impress your unsuspecting colleagues with your engineering exper-
tise (or your immense strength), ask them to guess the answer to this question
and then perform the experiment.
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12. The outer and inner circular walls of a closed thin-walled circular tube
have slightly di↵erent centres, as shown in Figure 16.9, so that the thickness
of the section varies according to

t = t
0

(1� ✏ cos ✓) ,

where ✏ < 1. The mean radius of the tube is a. Find the torsional rigidity K
and the maximum shear stress when the bar is loaded by a torque T . Plot
your results as functions of ✏ in the range 0✏<1.

Figure 16.8: Cylindrical tube with variable wall thickness.

13. Show that the stress function

' = �µ�

2

✓

x2 + y2 � 2a2 � 2ax +
4a3x

(x2 + y2)

◆

defines the exact solution for the cross-section defined by the intersection of
the circles

x2 + y2 = 2a2 and (x� a)2 + y2 = a2 .

Find the corresponding torque T and the maximum shear stress ⌧
max

and
express the latter as a function of T, a only.

Now find an approximate solution to this problem by assuming that it
is a ‘thin-walled section’ — i.e. using equations (16.36, 16.38). What is the
percentage error in the approximate solution (i) in the sti↵ness K and (ii) in
⌧
max

? Are these quantities overestimated or underestimated by the approxi-
mate solution?
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14. Figure 16.9 shows the cross-section of a solid circular bar of radius a which
is slit to the centre along the line ✓=±⇡. The bar is subjected to a prescribed
twist � per unit length.

Figure 16.9

(i) Show that the particular solution

'P = �µ�y2 = �µ�r2 sin2(✓)

satisfies the governing equation and also satisfies the condition that '=0
on the slit ✓=±⇡.

(ii) To complete the solution, we need to superpose a series of stress functions
each of which satisfies the homogeneous equation

r2'H = 0

and ' = 0 on ✓ = ±⇡. Show that the functions r� cos(�✓) meet these
conditions with a suitable choice of �.

(iii) Use these solutions to construct a series solution of the problem and use
the boundary condition on the curved edge r=a to define equations that
the coe�cients of the series must satisfy.

(iv) Solve the equations and hence determine the mode III stress-intensity
factor KIII at r=0, defined as

KIII = lim
r!0

�z✓(r, 0)
p

2⇡r .

a r

θ
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SHEAR OF A PRISMATIC BAR
1

In this chapter, we shall consider the problem in which a prismatic bar oc-
cupying the region z >0 is loaded by transverse forces Fx, Fy in the negative
x- and y-directions respectively on the end z = 0, the sides of the bar being
unloaded. Equilibrium considerations then show that there will be shear forces

Vx ⌘
Z Z

⌦

�zxdxdy = Fx ; Vy ⌘
Z Z

⌦

�zydxdy = Fy (17.1)

and bending moments

Mx ⌘
Z Z

⌦

�zzydxdy = zFy ; My ⌘ �
Z Z

⌦

�zzxdxdy = �zFx , (17.2)

at any given cross-section ⌦ of the bar. In other words, the bar transmits
constant shear forces, but the bending moments increase linearly with distance
from the loaded end.

17.1 The semi-inverse method

To solve this problem, we shall use a semi-inverse approach — i.e. we shall
make certain assumptions about the stress distribution and later verify that

define a solution that satisfies all the equilibrium and compatibility equations.
The assumptions we shall make are

(i) The stress component �zz varies linearly with x, y, as in the elementary
bending theory.

1 In many texts, this topic is referred to as ‘bending’ or ‘flexure’ of prismatic bars.
However, it should not be confused with ‘pure bending’ due to the application
of equal and opposite bending moments at the two ends of the bar. The present
topic is the Elasticity counterpart of that referred to in Mechanics of Materials
as ‘shear stress distribution in beams’.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 259

these assumptions are correct by showing that they are su�ciently general to

DOI 10.1007/978-90-481-3809-8_17, © Springer Science+Business Media B.V. 2010 
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(ii) The shear stresses �zx,�zy due to the shear forces are indpendent of z.
(iii) The in-plane stresses �xx = �xy = �yy = 0.

A more direct justification for these assumptions can be established using
results from Chapter 28, where we discuss the more general problem of the
prismatic bar loaded on its lateral surfaces (see §28.5).

The bending moments vary linearly with z, so assumption (i) implies that

�zz = (Ax + By)z , (17.3)

where A,B are two unknown constants and we have chosen to locate the
origin at the centroid of ⌦. To determine A,B, we substitute (17.3) into
(17.2) obtaining

zFy = (AIxy + BIx)z ; �zFx = �(AIy + BIxy)z , (17.4)

where

Ix =
Z Z

⌦

y2dxdy ; Iy =
Z Z

⌦

x2dxdy ; Ixy =
Z Z

⌦

xydxdy (17.5)

are the second moments of area of the section. Solving (17.4), we have

A =
FxIx � FyIxy

IxIy � I2

xy

; B =
FyIy � FxIxy

IxIy � I2

xy

. (17.6)

17.2 Stress function formulation

Assumptions (ii,iii) imply that the first two equilibrium equations (2.2, 2.3)
are satisfied identically, whilst (2.4) requires that

@�zx

@x
+
@�zy

@y
+ Ax + By = 0 . (17.7)

This equation will be satisfied identically if the shear stresses are defined in
terms of a stress function ' through the relations

�zx =
@'

@y
� Ax2

2
; �zy = �@'

@x
� By2

2
. (17.8)

This is essentially a generalization of Prandtl’s stress function of equations
(16.8, 16.9). The governing equation for ' is then obtained by using Hooke’s
law to determine the strains and substituting the resulting expressions into
the six compatibility equations (2.10). The procedure is algebraically lengthy
but routine and will be omitted here. It is found that the three equations of
the form (2.8) and one of the three like (2.9) are satisfied identically by the
assumed stress field. The two remaining equations yield the conditions
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@

@x
r2' = � B⌫

(1 + ⌫)
;

@

@y
r2' =

A⌫

(1 + ⌫)
(17.9)

which imply that
r2' =

⌫

(1 + ⌫)
(Ay �Bx) + C , (17.10)

where C is an arbitrary constant of integration.

17.3 The boundary condition

We require the boundaries of ⌦ to be traction-free and hence

�zn = �zx
dy

dt
� �zy

dx

dt
= 0 , (17.11)

where n, t is a Cartesian coördinate system locally normal and tangential to
the boundary. Substituting for the stresses from equation (17.8), we obtain

@'

@y

dy

dt
+
@'

@x

dx

dt
=

Ax2

2
dy

dt
� By2

2
dx

dt
, (17.12)

or
@'

@t
=

Ax2

2
dy

dt
� By2

2
dx

dt
. (17.13)

17.3.1 Integrability

In order to define a well-posed boundary-value problem for ', we need to
integrate (17.13) with respect to t to determine the value of ' at all points
on the boundary. This process will yield a single-valued expression except for
an arbitrary constant if and only if the integral

I

�

✓

Ax2

2
dy

dt
� By2

2
dx

dt

◆

dt = 0 , (17.14)

where � is the boundary of the cross-sectional domain ⌦, which we here
assume to be simply connected. Using Green’s theorem in the form

Z Z

⌦

✓

@f

@x
+
@g

@y

◆

dxdy =
Z

�

✓

f
dy

dt
� g

dx

dt

◆

dt , (17.15)

we obtain
I

�

✓

Ax2

2
dy

dt
� By2

2
dx

dt

◆

dt =
Z Z

⌦

(Ax + By)dxdy . (17.16)

The integral on the right-hand side of (17.16) is a linear combination of the
two first moments of area for ⌦ and it is zero because we chose the origin to
be at the centroid.
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We conclude that (17.13) can always be integrated and the problem is
therefore reduced to the solution of the Poisson equation (17.10) with pre-
scribed boundary values of '. This problem has a unique solution for all
simply connected2 domains, thus justifying the assumptions made in §17.1.

17.3.2 Relation to the torsion problem

In the special case where Fx =Fy =0, we have A=B =0 from (17.6) and the
problem is defined by the equations

r2' = C in ⌦ (17.17)
@'

@t
= 0 on � (17.18)

�zx =
@'

@y
; �zy = �@'

@x
, (17.19)

which are identical with (16.12, 16.9, 16.8) of the previous chapter if we write
C =�2µ�. Thus, the present formulation includes the solution of the torsion
problem as a special case and the constant C is proportional to the twist of
the section and hence to the applied torque.

When the resultant shear force F 6=0, superposing a torque on the loading
is equivalent to changing the line of action of F . The constant C in equation
(17.10) provides the degree of freedom needed for this generalization. It is
generally easier to decompose the problem into two parts — a shear loading
problem in which C is set arbitrarily to zero and a torsion problem (in which
A and B are zero). These can be combined at the end to ensure that the
resultant force has the required line of action. In the special case where the
section is symmetric about the axes, setting C =0 will generate a stress field
with the same symmetry, corresponding to loading by a shear force acting
through the origin.

17.4 Methods of solution

The problem defined by equations (17.10, 17.13) can be solved by methods
similar to those used in the torsion problem and discussed in §16.1.1. A partic-
ular solution to (17.10) is readily found as a third degree polynomial and more
general solutions can then be obtained by superposing appropriate harmonic
functions. Closed form solutions can be obtained only for a limited number
of cross-sections, including the circle, the ellipse and the equilateral triangle.
Other cases can be treated by series methods.
2 If the cross-section of the bar has one or more enclosed holes, additional unknowns

will be introduced corresponding to the constants of integration of (17.13) on the
additional boundaries. A corresponding set of additional algebraic conditions is
obtained from the Cesaro integrals around each hole, as in §16.5.
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17.4.1 The circular bar

We consider the case of the circular cylindrical bar bounded by the surface

x2 + y2 = a2 (17.20)

and loaded by a shear force Fy = F acting through the origin3. For the circular
section, we have

Ix = Iy =
⇡a4

4
; Ixy = 0 (17.21)

and hence
A = 0 ; B =

4F

⇡a4

, (17.22)

from (17.6). Substituting into (17.13) and integrating, we obtain

' = �
Z

2Fy2dx

⇡a4

, (17.23)

where the integration must be performed on the line (17.20). Substituting for
y from (17.20) and integrating, we obtain

' = �
Z

2F (a2 � x2)dx

⇡a4

= �2F (3a2x� x3)
3⇡a4

on x2 + y2 = a2 , (17.24)

where we have set the constant of integration to zero to preserve antisymmetry
about x=0.

Equations (17.10, 17.24) both suggest a third order polynomial for ' with
odd powers of x and even powers of y, so we use the trial function

' = C
1

x3 + C
2

xy2 + C
3

x . (17.25)

Substitution into (17.10, 17.24) yields the conditions

6C
1

x + 2C
2

x = � 4F⌫x

⇡a4(1 + ⌫)

C
1

x3 + C
2

x(a2 � x2) + C
3

x = �2F (3a2x� x3)
3⇡a4

, (17.26)

which will be satisfied for all x if

6C
1

+ 2C
2

= � 4F⌫

⇡a4(1 + ⌫)

C
1

� C
2

=
2F

3⇡a4

(17.27)

C
2

a2 + C
3

= � 2F

⇡a2

3 This problem is solved by a di↵erent method in §25.3.1.
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with solution

C
1

=
F (1� 2⌫)

6⇡a4(1 + ⌫)
; C

2

= � F (1 + 2⌫)
2⇡a4(1 + ⌫)

; C
3

= � F (3 + 2⌫)
2⇡a2(1 + ⌫)

. (17.28)

The stress components are then recovered from (17.8) as

�zx = �F (1 + 2⌫)xy

⇡a4(1 + ⌫)
; �zy =

F{(3 + 2⌫)(a2 � y2)� (1� 2⌫)x2}
2⇡a4(1 + ⌫)

. (17.29)

The maximum shear stress occurs at the centre and is

⌧
max

=
F (3 + 2⌫)

2⇡a2(1 + ⌫)
. (17.30)

The elementary Mechanics of Materials solution gives

⌧⇤
max

=
4F

3⇡a2

, (17.31)

which is exact for ⌫=0.5 and 12% lower than the exact value for ⌫=0.

17.4.2 The rectangular bar

As a second example, we consider the rectangular bar whose cross-section is
bounded by the lines x=±a, y=±b loaded by a force Fy =F in the negative
y-direction acting through the origin. As in the corresponding torsion problem
of §16.4, we cannot obtain a closed form solution to this problem. The strategy
is to seek a simple solution that satisfies the boundary conditions on the two
longer edges in the strong sense and then superpose a series of harmonic
functions that leaves this condition unchanged, whilst providing extra degrees
of freedom to satisfy the condition on the remaining edges.

For the rectangular section, we have

Ix =
4ab3

3
; Iy =

4a3b

3
; Ixy = 0 (17.32)

and hence
A = 0 ; B =

3F

4ab3

, (17.33)

from (17.6). The boundary condition (17.12) then requires that

@'

@x
(x,±b) = �Bb2

2
= � 3F

8ab
;
@'

@y
(±a, y) = 0 . (17.34)

The governing equation (17.10) is satisfied by a third degree polynomial
and the most general such function with the required symmetry is

' = C
1

x3 + C
2

xy2 + C
3

x . (17.35)
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Substitution in (17.10) shows that

6C
1

+ 2C
2

= � 3F⌫

4ab3(1 + ⌫)
(17.36)

and on the boundaries of the rectangle we have

@'

@x
(x,±b) = 3C

1

x2 + C
2

b2 + C
3

;
@'

@y
(±a, y) = ±C

2

ay . (17.37)

This solution permits us to satisfy the conditions (17.34) in the strong sense
on any two opposite edges, but not on all four edges. In the interests of con-
vergence of the final series solution, it is preferable to use the strong boundary
conditions on the long edges at this stage. For example, if b>a, we satisfy the
condition on x=±a by requiring

C
2

= 0 (17.38)

and hence
C

1

= � F⌫

8ab3(1 + ⌫)
, (17.39)

from (17.36). The remaining boundary conditions are satisfied in the weak
sense

Z a

�a

✓

3C
1

x2 + C
2

b2 + C
3

+
3F

8ab

◆

dx = 0 (17.40)

from which
C

3

=
F⌫a

8b3(1 + ⌫)
� 3F

8ab
. (17.41)

To complete the solution, we superpose a series of harmonic functions
'n chosen to satisfy the condition 'n = 0 on x = ±a. In this way, the gov-
erning equation and the boundary conditions on x =±a are una↵ected and
the remaining constants can be chosen to satisfy the boundary conditions on
y =±b in the strong sense. This is exactly the same procedure as was used
for the torsion problem in §16.4. Here we need odd functions of x satisfying
'n(±a, y)=0, leading to the solution

' = � F⌫x3

8ab3(1 + ⌫)
+

F⌫ax

8b3(1 + ⌫)
� 3Fx

8ab
+

1
X

n=1

Dn sin
⇣n⇡x

a

⌘

cosh
⇣n⇡y

a

⌘

,

(17.42)
where Dn is a set of arbitrary constants. This function satisfies the first of
(17.34) if

1
X

n=1

n⇡Dn

a
cos
⇣n⇡x

a

⌘

cosh
✓

n⇡b

a

◆

=
F⌫(3x2 � a2)
8ab3(1 + ⌫)

; �a < x < a .

(17.43)
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Multiplying both sides of this equation by cos(m⇡x/a) and integrating over
the range �a<x<a, we then obtain

m⇡Dm cosh
✓

m⇡b

a

◆

=
F⌫

8ab3(1 + ⌫)

Z a

�a

(3x2 � a2) cos
⇣m⇡x

a

⌘

dx

=
3(�1)mF⌫a2

2⇡2m2b3(1 + ⌫)
(17.44)

and hence
Dm =

3(�1)mF⌫a2

2⇡3m3b3(1 + ⌫)

�

cosh
✓

m⇡b

a

◆

. (17.45)

The complete stress field is therefore

�zx =
3F⌫a

2⇡2b3(1 + ⌫)

1
X

n=1

(�1)n

n2

sin
⇣n⇡x

a

⌘

sinh
⇣n⇡y

a

⌘

�

cosh
✓

n⇡b

a

◆

(17.46)

�zy =
3F (b2 � y2)

8ab3

+
F⌫(3x2 � a2)
8ab3(1 + ⌫)

� 3F⌫a

2⇡2b3(1 + ⌫)

1
X

n=1

(�1)n

n2

cos
⇣n⇡x

a

⌘

cosh
⇣n⇡y

a

⌘

�

cosh
✓

n⇡b

a

◆

, (17.47)

from (17.8, 17.33, 17.42, 17.45)
The maximum shear stress occurs at the points (±a, 0) and is

⌧
max

=
3F

8ab
+

F⌫a

4b3(1 + ⌫)

(

1� 6
⇡2

1
X

n=1

1
�

n2 cosh
✓

n⇡b

a

◆

)

. (17.48)

The first term in this expression is that given by the elementary Mechanics of
Materials theory. The error of the elementary theory (in the range 0<ab) is
greatest when ⌫=0.5 and a=b, for which the approximation underestimates
the exact value by 18%. However, the greater part of this correction is asso-
ciated with the second (closed form) term in (17.47). If this term is included,
but the series is omitted, the error in ⌧

max

is only about 1%.
This solution can be used for all values of the ratio a/b, but the series

terms would make a more significant contribution in the range b>a. For this
case, it is better to use the constants in (17.35) to satisfy strong conditions
on y=±b and weak conditions on x=±a (see Problem 17.5).

PROBLEMS

1. Find an expression for the local twist per unit length of the bar, defined as

�(x, y) =
@!z

@z
,



Problems 267

where !z is the rotation defined in equation (1.47). Hence show that the
average twist per unit length for a general unsymmetrical section will be zero
if C =0 in equation (17.10).

2. A bar of elliptical cross-section defined by the boundary

x2

a2

+
y2

b2

� 1 = 0

is loaded by a shear force Fx = F acting along the negative x-axis. Find
expressions for the shear stresses �zx,�zy on the cross-section.

3. A bar of equilateral triangular cross-section defined by the boundaries

y =
p

3x ; y = �
p

3x ; y =
p

3a

2
is loaded by a shear force Fy = F acting along the negative y-axis. Find
expressions for the shear stresses �zx,�zy on the cross-section for the special
case where ⌫ = 0.5. Note: You will need to move the origin to the centroid of
the section (0, a/

p
3), since equation (17.3) is based on this choice of origin.

4. A bar of equilateral triangular cross-section defined by the boundaries

y =
p

3x ; y = �
p

3x ; y =
p

3a

2
is loaded by a shear force Fx = F . Find expressions for the shear stresses
�zx,�zy on the cross-section for the special case where ⌫ = 0.5, assuming the
constant C = 0 in equation (17.10). You will need to move the origin to the
centroid of the section (0, a/

p
3), since equation (17.3) is based on this choice

of origin. Show that the resultant force F acts through the centroid.

5. Solve the problem of the rectangular bar of §17.4.2 for the case where a>b.
You will need to satisfy the boundary conditions in the strong sense on y=±b
and in the weak sense on x=±a. Compare the solution you get at this stage
with the predictions of the elementary Mechanics of Materials theory. Then
superpose an appropriate series of harmonic functions (sinusoidal in y and
hyperbolic in x) to obtain an exact solution. In what range of the ratio a/b
is it necessary to include the series to obtain 1% accuracy in the maximum
shear stress?

6. Find the distribution of shear stress in a hollow cylindrical bar of inner
radius b and outer radius a loaded by a shear force Fy =F acting through the
origin. You will need to supplement the polynomial solution by the singular
harmonic functions x/(x2 +y2) and (x3�3xy2)/(x2 +y2)3 with appropriate
multipliers4.
4 These functions are Cartesian versions of the functions r�1 cos ✓ and r�3 cos 3✓

respectively.
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7. A bar has the cross-section of a sector 0 < r < a,�↵< ✓ < ↵, where ↵ is
not small compared with unity. The bar is loaded by a shear force F in the
direction ✓=0.

(i) Find a closed form solution for the shear stresses in the bar, using the
strong boundary conditions on the straight edges ✓ = ±↵ and a weak
boundary condition on the curved edge r=a.

(ii) Superpose a series of harmonic functions 'n of the form r� sin(�✓) where
� is chosen to satisfy 'n =0 on ✓=±↵.

(iii) Choose the coe�cients on these terms so as to satisfy the boundary
condition on the curved edge r=a and hence obtain an expression for the
maximum shear stress.

8. Solve Problem 17.7 for the case where the force F acts in the direction
✓=⇡/2. Assume that the line of action of F is such as to make the constant
C in (17.10) be zero.



Part IV

COMPLEX VARIABLE FORMULATION
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In Parts II and III we have shown how to reduce the in-plane and an-
tiplane problems to boundary value problems for an appropriate function of
the coördinates (x, y). An alternative and arguably more elegant formula-
tion can be obtained by combining x, y in the form of the complex variable
⇣ = x + ıy and expressing the stresses and displacements as functions of ⇣
and its complex conjugate ⇣̄. A significant advantage of this method is that it
enables a connection to be made between harmonic boundary-value problems
and the theory of Cauchy contour integrals. In certain cases (notably domains
bounded by a circle or a straight line), this permits the stresses in the interior
of the body to be written down in terms of integrals of the boundary tractions
or displacements, thus removing the ‘inspired guesswork’ that is sometimes
needed in the real stress function approach. Furthermore, the scope of this
powerful method can be extended to other geometries using the technique of
conformal mapping.

In view of these obvious advantages, the reader might reasonably ask why
one should not dispense with the whole real stress function approach of Chap-
ters 4 to 15 and instead rely solely on the complex variable formulation for
two-dimensional problems in elasticity. An obvious practical reason is that
the latter requires some familiarity with the niceties of complex algebra and
the notation tends to reduce the ‘transparency’ of the physical meaning of the
resulting expressions. Also, although we might be able to write down the solu-
tion as a definite integral, which is certainly a very satisfactory mathematical
outcome, evaluation of the resulting integral can be challenging. Indeed, the
cases where the integral is easy to evaluate are usually precisely those where
the real stress function solution also permits a very straightforward solution.
One final point to bear in mind in this connection is that although Mathe-
matica and Maple have the capacity to handle complex algebra, they do not
generally perform well, at least at the present time of writing.

On the positive side, the complex variable approach extends the scope of
exact solutions to a broader class of geometries and boundary conditions and
it o↵ers significant advantages of elegance and compactness, which as we shall
see later can also be used to simplify some three-dimensional problems. It can
be said with some confidence that the development of this theory was the
single most significant contribution to the theory of linear elasticity during
the twentieth century and no-one with serious pretensions as an elastician
can a↵ord to be ignorant of it.

In the next two chapters we shall give merely a brief introduction to the
complex variable formulation. In Chapter 18, we introduce the notation and
establish some essential mathematical results, notably concerning the integrals
of functions of the complex variable around closed contours and the technique
known as conformal mapping. We then apply these results to both in-plane
and antiplane elasticity problems in Chapter 19. We shall endeavour to demon-
strate connections to the corresponding real stress function results wherever
possible, since the two methods can often be used in combination. Readers
who wish to obtain a deeper understanding of the subject are referred to
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the several classical works on the subject5. More approachable treatments for
the engineering reader are given by A.H.England, Complex Variable Methods

in Elasticity, John Wiley, London, 1971, S.P.Timoshenko and J.N.Goodier,
loc. cit. Chapter 6 and D.S.Dugdale and C.Ruiz, Elasticity for Engineers,
McGraw-Hill, London, 1971, Chapter 2.

5 N.I.Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elas-
ticity, P.Noordho↵, Groningen, 1963, A.C.Stevenson, Some boundary prob-
lems of two-dimensional elasticity, Philosophical Magazine, Vol. 34 (1943),
pp.766–793, A.C.Stevenson, Complex potentials in two-dimensional elasticity,
Proceedings of the Royal Society of London, Vol. A184 (1945), pp.129–179,
A.E.Green and W.Zerna, Theoretical Elasticity, Clarendon Press, Oxford, 1954,
I.S.Sokolniko↵, Mathematical Theory of Elasticity, 2nd.ed., McGraw-Hill, New
York, 1956. L.M.Milne-Thomson, Antiplane Elastic Systems, Springer, Berlin,
1962, L.M.Milne-Thomson, Plane Elastic Systems, 2nd edn, Springer, Berlin,
1968.
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PRELIMINARY MATHEMATICAL
RESULTS

The position of a point in the plane is defined by the two independent
coördinates (x, y) which we here combine to form the complex variable ⇣
and its conjugate ⇣̄, defined as

⇣ = x + ıy ; ⇣̄ = x� ıy . (18.1)

We can recover the Cartesian coördinates by the relations x=<(⇣), y==(⇣),
but a more convenient algebraic relationship between the real and complex
formulations is obtained by solving equations (18.1) to give

x =
1
2
(⇣ + ⇣̄) ; y = � ı

2
(⇣ � ⇣̄) . (18.2)

At first sight, this seems a little paradoxical, since if we know ⇣, we already
know its real and imaginary parts x and y and hence ⇣̄. However, for the
purpose of the complex analysis, we regard ⇣ as the indissoluble combination
of x+ıy, and hence ⇣ and ⇣̄ act as two independent variables defining position.

¯
function that has fairly general dependence on position in the plane.

In polar coördinates (r, ✓), we have the alternative expressions

⇣ = r exp(ı✓) ; ⇣̄ = r exp(�ı✓) (18.3)

for the complex variable, with solution

r =
�

⇣⇣̄
�

1/2 ; ✓ =
ı

2
ln
✓

⇣̄

⇣

◆

. (18.4)

Any real or complex function of x, y can be expressed as a function of ⇣, ⇣̄
using (18.2). For example

x2 + y2 =
1
4
(⇣+ ⇣̄)2� 1

4
(⇣� ⇣̄)2 = ⇣⇣̄ ; xy = � ı

4
(⇣+ ⇣̄)(⇣� ⇣̄) =

ı

4
(⇣̄2� ⇣2) .

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 273

In this chapter, we shall always make this explicit by writing f(⇣, ⇣) for a

DOI 10.1007/978-90-481-3809-8_18, © Springer Science+Business Media B.V. 2010 
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The derivative of a function f(⇣, ⇣̄) with respect to ⇣ can be related to its
derivatives with respect to x and y by

@f

@⇣
=
@f

@x

@x

@⇣
+
@f

@y

@y

@⇣
=

1
2

✓

@f

@x
� ı

@f

@y

◆

(18.5)

and by a similar argument

@f

@⇣̄
=

1
2

✓

@f

@x
+ ı

@f

@y

◆

. (18.6)

Substituting (18.1) into (18.5, 18.6), we find that

@⇣̄

@⇣
=
@⇣

@⇣̄
= 0 , (18.7)

showing that (⇣, ⇣̄) represent an orthogonal coördinate set.

18.1 Holomorphic functions

If a function f depends only on ⇣, so that @f/@⇣̄=0, and if it is also infinitely
di↵erentiable at all points in some domain ⌦, it is referred to as a holomorphic

function of ⇣ in ⌦. The complex conjugate f of a holomorphic function f can
be obtained by replacing ⇣ by ⇣̄ and replacing any complex constants by their
conjugates. Thus, f is a di↵erentiable function of ⇣̄ only and will also be
described as holomorphic. We shall see in the next section that holomorphic
functions always satisfy the Laplace equation and hence are harmonic.

If f(⇣)=fx + ıfy is a holomorphic function of ⇣ whose real and imaginary
parts are fx, fy respectively, we can write

@f

@⇣̄
=

1
2

✓

@fx

@x
+ ı

@fx

@y
+ ı

@fy

@x
� @fy

@y

◆

= 0 ,

using (18.6). For this to be satisfied, both real and imaginary parts must be
separately zero, giving the Cauchy-Riemann relations

@fx

@x
=
@fy

@y
;

@fx

@y
= �@fy

@x
. (18.8)

Since a holomorphic function f(⇣) is infinitely di↵erentiable in ⌦, it can
be replaced by its Taylor series

f(⇣) =
1
X

n=0

Cn(⇣ � ⇣
0

)n (18.9)

in the neighbourhood of any point ⇣
0

in ⌦, where Cn is a set of complex
constants.
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18.2 Harmonic functions

It follows from (18.5, 18.6) that

4
@2f

@⇣@⇣̄
=
@2f

@x2

+
@2f

@y2

= r2f (18.10)

and hence the Laplace equation (r2�=0) in two dimensions can be written

@2�

@⇣@⇣̄
= 0 . (18.11)

The most general solution of (18.11) can be written

� = f
1

+ f
2

, (18.12)

where f
1

, f
2

are arbitrary holomorphic functions of ⇣ and ⇣̄, respectively. No-
tice that instead of making the argument explicit as in f

2

(⇣̄), we can identify
a holomorphic function of ⇣̄ by the condensed notation f

2

.

The function defined by equation (18.12) will generally be complex, but its
real and imaginary parts must separately satisfy (18.10) and hence a general
real harmonic function can be written

� = < �f
1

+ f
2

�

. (18.13)

As in equation (18.2), it is convenient to avoid the necessity of extracting real
and imaginary parts by recognizing that the sum of a function and its complex
conjugate will always be real. Thus the function

� = g + g (18.14)

represents the most general real solution of the Laplace equation, where g is
an arbitrary holomorphic function of ⇣ only and g is its complex conjugate.

18.3 Biharmonic functions

It follows from (18.10) that the biharmonic equation r4�=0 reduces to

@4�

@⇣2@⇣̄
2

= 0 (18.15)

and has the general complex solution

� = f
1

+ f
2

+ ⇣̄f
3

+ ⇣f
4

, (18.16)

where f
1

, f
3

are arbitrary holomorphic functions of ⇣ and f
2

, f
4

are arbitrary
holomorphic functions of ⇣̄.

The most general real solution of the biharmonic equation can be expressed
in the form

� = g
1

+ g
1

+ ⇣̄g
2

+ ⇣g
2

, (18.17)
where g

1

, g
2

are arbitrary holomorphic functions of ⇣ and g
1

, g
2

are their
complex conjugates.
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Example

As an example, we can generate a real biharmonic polynomial function of
degree n by taking g

1

(⇣)=(A+ ıB)⇣n, g
2

(⇣)=(C + ıD)⇣n�1, where A,B, C, D
are real arbitrary constants. Equation (18.17) then gives

� = (A + ıB)⇣n + (A� ıB)⇣̄n + (C + ıD)⇣̄⇣n�1 + (C � ıD)⇣⇣̄n�1

. (18.18)

This expression can be used in place of the procedure of §5.1 to develop the
most general biharmonic polynomial in x, y of degree n. For example, for the
special case n=5 we have

� = (A + ıB)(x + ıy)5 + (A� ıB)(x� ıy)5 + (C + ıD)(x� ıy)(x + ıy)4

+(C � ıD)(x + ıy)(x� ıy)4 . (18.19)

Expanding and simplifying the resulting expressions, we obtain

� = 2A
�

x5 � 10x3y2 + 5xy4

�� 2B
�

5x4y � 10x2y3 + y5

�

+2C
�

x5 � 2x3y2 � 3xy4

�� 2D
�

3x4y + 2x2y3 � y5

�

, (18.20)

which can be converted to the form (5.13) by choosing

A = � (2A
0

+ A
2

)
16

; B =
(3A

3

� 2A
1

)
80

; C =
(10A

0

+ A
2

)
16

D = � (2A
1

+ A
3

)
16

. (18.21)

Alternatively, using the polar coördinate expressions (18.3) in (18.18) we
have

� = (A+ıB)rn exp(ın✓) + (A�ıB)rn exp(�ın✓) + (C+ıD)rn exp(ı(n�2)✓)
+(C�ıD)rn exp(�ı(n�2)✓) , (18.22)

which expands to

� = 2Arn cos(n✓)� 2Brn sin(n✓) + 2Crn cos((n�2)✓)� 2Drn sin((n�2)✓) .
(18.23)

This is of course identical to the general form of the Michell solution for a
given leading power rn, as shown for example by comparison with equation
(11.3) with n replaced by (n�2).

18.4 Expressing real harmonic and biharmonic functions
in complex form

Suppose we are given a real harmonic function f(x, y) and wish to find the
holomorphic function g such that
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g + g = f(x, y) . (18.24)

All we need to do is to use (18.2) to eliminate x, y in f(x, y). If f is
harmonic and real, the resulting function of ⇣, ⇣̄ must reduce to the sum of
a holomorphic function of ⇣ and its conjugate and these functions can then
often be identified by inspection. Alternatively, starting from the form

g + g = f(⇣, ⇣̄) , (18.25)

we di↵erentiate with respect to ⇣, obtaining

g0 =
@f

@⇣
, (18.26)

since @g/@⇣=0. The right-hand side of (18.26) must be a function of ⇣ only
and hence g can be recovered by integration. This operation is performed by
the Mathematica and Maple files ‘rtoch’.

Example

Consider the function

f(x, y) =
x ln

�

x2 + y2

�

2
� y arctan

⇣y

x

⌘

,

which is easily shown to be harmonic by substitution into the Laplace equa-
tion. Using (18.2, 18.4) we have

x2 + y2 = r2 = ⇣⇣̄ ; arctan
⇣y

x

⌘

= ✓ =
ı

2
ln
✓

⇣̄

⇣

◆

and hence

g + g =
(⇣̄ + ⇣) ln(⇣⇣̄)

4
+

(⇣̄ � ⇣)
4

ln
✓

⇣̄

⇣

◆

=
1
2
�

⇣ ln(⇣) + ⇣̄ ln(⇣̄)
�

We conclude by inspection that

g =
⇣ ln(⇣)

2
.

18.4.1 Biharmonic functions

The same procedure can also be used to express real biharmonic functions in
the form (18.17). We first use (18.2) to express the given real function as a
function of ⇣, ⇣̄. Equation (18.17) can then be written

g
1

+ g
1

+ ⇣̄g
2

+ ⇣g
2

= f(⇣, ⇣̄) , (18.27)
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where f(⇣, ⇣̄) is a known function. Di↵erentiating with respect to ⇣ and ⇣̄, we
obtain

g
0

2

+ g
0
2

=
@2f

@⇣@⇣̄
(18.28)

and the function g
0

2

and hence g
2

can then be obtained using the above pro-
cedure for harmonic functions. Once g

2

is known, it can be substituted into
(18.27) and the resulting equation solved for the harmonic function g

1

using
the same procedure. The Maple and Mathematica files ‘rtocb’ perform this
operation for any biharmonic function specified in Cartesian coördinates.

18.5 Line integrals

Suppose that S is a closed contour and that f(⇣) is holomorphic on S and at
all points in the region enclosed by S. It can then be shown that the contour
integral

I

S

f(⇣)d⇣ = 0 . (18.29)

To prove this result1 we write f(⇣) = fx + ıfy, d⇣ = dx + ıdy, separate real
and imaginary parts and use Green’s theorem to convert the resulting real
contour integrals into integrals over the area enclosed by S. The integrand of
each of these area integrals will then be found to be identically zero because
of the Cauchy-Riemann relations (18.8).

Figure 18.1: Path of the integral in equation (18.30).

As in §2.2.1, we can use (18.29) to show that the line integral

Z B

A

f(⇣)d⇣ =
Z ⇣B

⇣A

f(⇣)d⇣ (18.30)

along the line S in Figure 18.1 is not changed by making any infinitesimal
change in the path S as long as this does not pass outside the region within
which f(⇣) is holomorphic. It follows that (18.30) is path-independent if S
lies wholly within a simply connected region ⌦ in which f(⇣) is holomorphic.
1 See for example E.T.Copson, An Introduction to the Theory of Functions of a

Complex Variable, Clarendon Press, Oxford, 1935, §4.21, G.F.Carrier, M.Krook
and C.E.Pearson, Functions of a Complex Variable, McGraw-Hill, New York,
1966, §2.2.
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18.5.1 The residue theorem

Next suppose that the function f(⇣) is holomorphic everywhere in a simply
connected domain ⌦ except at a point P , where it is singular. As before, we
can use (18.29) to show that the value of the contour integral is not changed
by making any infinitesimal deviation in the path S. It follows that all contour
integrals whose paths pass around P once and only once must have the same
value.

Suppose that P is defined by ⇣=⇣
0

and that the singularity has the form

f(⇣) =
f
1

(⇣)
(⇣ � ⇣

0

)n
+ f

2

(⇣) , (18.31)

where f
1

(⇣), f
2

(⇣) are holomorphic throughout the domain enclosed by S (in-
cluding at P ) and n is an integer. The function f(⇣) is then said to have a
pole of order n at ⇣ = ⇣

0

. Since the contour integral is the same for all con-
tours enclosing P , we can evaluate it around an infinitesimal circle of radius
✏ centred on ⇣=⇣

0

. For the special case n=1, f(⇣) has a pole of order unity
(also known as a simple pole) at ⇣ = ⇣

0

and if ✏ is su�ciently small, we can
replace the continuous function f

1

(⇣) by f
1

(⇣
0

) giving

I

S

f(⇣)d⇣ = f
1

(⇣
0

)
I

S

d⇣

(⇣ � ⇣
0

)
= f

1

(⇣
0

) ln(⇣ � ⇣
0

)
�

�

�

�

⇣0+✏ exp(ı(✓1+2⇡))

⇣0+✏ exp(ı✓1)

= 2⇡ıf
1

(⇣
0

) , (18.32)

where ✓
1

is defined such that ⇣=⇣
0

+✏ exp(ı✓
1

) is any point on the path S and
the integral is evaluated in the anticlockwise direction (increasing ✓). Notice
that the second term in (18.31) makes no contribution to the integral, because
of (18.29). The quantity

f
1

(⇣
0

) = lim
⇣!⇣0

f(⇣)(⇣ � ⇣
0

) ⌘ Res(⇣
0

) (18.33)

is known as the residue at the simple pole P . It then follows from (18.32) that
I

S

f(⇣)d⇣ = 2⇡ı Res(⇣
0

) . (18.34)

For higher order poles n> 1, the limit (18.33) does not exist, but we can
extract the residue by successive partial integrations. We obtain

I

f
1

(⇣)d⇣
(⇣ � ⇣

0

)n
= � f

1

(⇣)
(n�1)(⇣ � ⇣

0

)(n�1)

�

�

�

�

✏ exp(ı(✓1+2⇡))

✏ exp(ı✓1)

+
I

f 0
1

(⇣)d⇣
(n�1)(⇣ � ⇣

0

)(n�1)

,

(18.35)
where we have used the same circular path of radius ✏. The first term is zero
for n 6=1, so
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I

f
1

(⇣)d⇣
(⇣ � ⇣

0

)n
=
I

f 0
1

(⇣)d⇣
(n� 1)(⇣ � ⇣

0

)(n�1)

. (18.36)

Repeating this procedure until the final integral has only a simple pole, we
obtain

I

f
1

(⇣)d⇣
(⇣ � ⇣

0

)n
=
I

f [n�1]

1

(⇣)d⇣
(n� 1)!(⇣ � ⇣

0

)
, (18.37)

where

f [n�1]

1

(⇣) ⌘ d(n�1)f
1

(⇣)
d⇣(n�1)

. (18.38)

The residue at a pole of order n is therefore

Res(⇣
0

) =
f [n�1]

1

(⇣
0

)
(n� 1)!

, (18.39)

where f [n�1]

1

is defined through equations (18.38, 18.31).

Figure 18.2: Integral path around three poles at P
1

, P
2

, P
3

..

Suppose now that the function f(⇣) posesses several poles and we wish to
determine the value of the contour integral along a path enclosing those at
the points ⇣

1

, ⇣
2

, ..., ⇣k. One such path enclosing three poles at P
1

, P
2

, P
3

is
shown in Figure 18.2. It is clear that the contributions from the straight line
segments will be self-cancelling, so the integral is simply the sum of those for
the circular paths around each separate pole. Thus, the resulting integral will
have the value

I

f(⇣)d⇣ = 2⇡ı
k
X

j=1

Res(⇣j) . (18.40)

This result is extremely useful as a technique for determining the values of
complex line integrals. Similar considerations apply to the evaluation of con-
tour integrals around one or more holes in a multiply connected body.

P1
●

P3
●●

P2

●
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Example

As a special case, we shall determine the value of the contour integral
I

S

d⇣

⇣n(⇣ � a)
,

where the integration path S encloses the points ⇣ =0, a. The integrand has
a simple pole at ⇣=a and a pole of order n at ⇣=0. For the simple pole, we
have

Res(a) =
1
an

,

from (18.33). For the pole at ⇣=0, we have

f
1

(⇣) =
1

(⇣ � a)
and f [n�1]

1

(⇣) =
(�1)(n�1)(n� 1)!

(⇣ � a)n
,

so

f [n�1]

1

(0) =
(�1)(n�1)(n� 1)!

(�a)n
and Res(0) =

(�1)(n�1)

(�a)n
= � 1

an
,

(18.41)
from (18.39). Using (18.40), we then have

I

S

d⇣

⇣n(⇣ � a)
= 2⇡ı

✓

1
an
� 1

an

◆

= 0 ; n � 1 (18.42)

= 2⇡ı ; n = 0 , (18.43)

since if n=0 we have only the simple pole at ⇣=a.

18.5.2 The Cauchy integral theorem

Changing the symbols in equation (18.32), we have

f(⇣
0

) =
1

2⇡ı

I

S

f(s)ds

(s� ⇣
0

)
, (18.44)

where the path of the integral, S, encloses the point s= ⇣
0

. If S is chosen to
coincide with the boundary of a simply connected region ⌦ within which f
is holomorphic, this provides an expression for f at a general point in ⌦ in
terms of its boundary values. We shall refer to this as the interior problem,
since the region ⌦ is interior to the contour. Notice that equation (18.32) and
hence (18.44) is based on the assumption that the contour S is traversed in the
anticlockwise direction. Changing the direction would lead to a sign change
in the result. An equivalent statement of this requirement is that the contour
is traversed in a direction such that the enclosed simply connected region ⌦
always lies on the left of the path S.
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A related result can be obtained for the exterior problem in which f is
holomorphic in the multiply connected region ⌦ exterior to the closed contour
S and extending to and including the point at infinity. In this case, a general
holomorphic function f can be expressed as a Laurent series

f = C
0

+
1
X

k=1

Ck

⇣k
, (18.45)

where the origin lies within the hole excluded by S. For the exterior problem
to be well posed, we must specify the value of f at all points on S and also
at infinity ⇣!1. We shall restrict attention to the case where f(1)=0 and
hence C

0

=0, since the more general case is most easily handled by first solving
a problem for the entire plane (with no hole) and then defining a corrective
problem for the conditions at the inner boundary S.

Figure 18.3: Contour for the region exterior to a hole S.

To invoke the Cauchy integral theorem, we need to construct a contour
that encloses a simply connected region including the general point ⇣=⇣

0

. A
suitable contour is illustrated in Figure 18.3, where the path S corresponds
to the boundary of the hole and S

1

is a circle of su�ciently large radius to
include the point ⇣=⇣

0

. Notice that the theorem requires that the contour be
traversed in an anticlockwise direction as shown.

Equation (18.44) now gives

f(⇣
0

) =
1

2⇡ı

I

S+S1+S2+S3

f(s)ds

(s� ⇣
0

)
. (18.46)

In this integral, the contributions from the line segments S
2

, S
3

clearly cancel,
leaving

f(⇣
0

) = � 1
2⇡ı

I

S

f(s)ds

(s� ⇣
0

)
+

1
2⇡ı

I

S1

f(s)ds

(s� ⇣
0

)
. (18.47)

S

1S

2S

3S

0ζ = ζ
●



18.6 Solution of harmonic boundary value problems 283

The remaining terms are two separate contour integrals around S and S
1

re-
spectively in Figure 18.3. Notice that we have changed the sign in the integral
around S, since S is now a closed contour and the convention demands that it
be evaluated in the anticlockwise direction, which is opposite to the direction
implied in (18.46) and Figure 18.3.

Using (18.45) and recalling that C
0

= 0, we have

I

S1

f(s)ds

(s� ⇣
0

)
=

1
X

k=1

I

S1

Ckds

sk(s� ⇣
0

)
= 0 ,

from (18.42). Thus, the second term in (18.47) is zero and we have

f(⇣
0

) = � 1
2⇡ı

I

S

f(s)ds

(s� ⇣
0

)
, (18.48)

which determines the value of the function f at a point in the region exterior
to the contour S in terms of the values on this contour.

18.6 Solution of harmonic boundary value problems

At first sight, equations (18.44, 18.48) appear to provide a direct method for
finding the value of a harmonic function from given boundary data. However,
if the required harmonic function is real, we meet a di�culty, since we know
only the real part of the boundary data.

We could write a general real harmonic function as

� = f + f , (18.49)

in which case we know the boundary values of the function �, but not of
the separate functions f, f . However, we shall show in the next section that a
direct solution can be developed for both the interior and exterior problems in
the special case where the boundary S is circular. Furthermore, this solution
can be extended to more general geometries using the technique of conformal
mapping.

18.6.1 Direct method for the interior problem for a circle

We consider the simply connected region interior to the circle r = a. The
boundary of this circle, S, is defined by

s = a exp(ı✓) ; s = a exp(�ı✓) (18.50)

and hence
ss = a2 ; s =

a2

s
; s 2 S . (18.51)
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Consider the problem of determining a real harmonic function �(x, y) from
real boundary data on r=a. We choose to write � as the sum of a holomorphic
function f and its conjugate as in (18.49). We then expand f inside the circle
as a Taylor series

f(⇣) = C
0

+
1
X

k=1

Ck⇣
k (18.52)

in which case

f(s) = C
0

+
1
X

k=1

Cka2k

sk
; s 2 S , (18.53)

using (18.51).
We now apply the Cauchy operator to the boundary data, obtaining

1
2⇡ı

I

�(s)ds

(s� ⇣)
=

1
2⇡ı

I

f(s)ds

(s� ⇣)
+

1
2⇡ı

I

f(s)ds

(s� ⇣)

=
1

2⇡ı

I

f(s)ds

(s� ⇣)
+

C
0

2⇡ı

I

ds

(s� ⇣)
+

1
2⇡ı

1
X

k=1

Ck

I

a2kds

sk(s� ⇣)

= f(⇣) + C
0

, (18.54)

using (18.44) for the first two integrals and noting that every integral in the
third term summation is zero in view of (18.42). Thus, we have

f(⇣) = �C
0

+
1

2⇡ı

I

�(s)ds

(s� ⇣)
, (18.55)

after which the real harmonic function � can be recovered from (18.49) except
for the unknown complex constant C

0

. To determine this constant, we equate
(18.55) to the Taylor series (18.52) and evaluate it at ⇣=0, obtaining

C
0

= �C
0

+
1

2⇡ı

I

�(s)ds

s
,

or
C

0

+ C
0

=
1

2⇡ı

I

�(s)ds

s
. (18.56)

Alternatively, writing
s = aeı✓ ; ds = aıeı✓d✓

from (18.50), we have

C
0

+ C
0

=
1
2⇡

Z

2⇡

0

�(a, ✓)d✓ . (18.57)

Thus, the real part of the constant C
0

can be determined, but not its
imaginary part and this is reasonable since if we add an arbitrary imaginary
constant into f it will make no contribution to � in (18.49).
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Example

Suppose that �(a, ✓)=�
2

cos(2✓), where �
2

is a real constant and we wish to
find the corresponding harmonic function �(r, ✓) inside the circle of radius a.
Using (18.50), we can write

�
2

cos(2✓) =
�

2

(e2ı✓ + e�2ı✓)
2

=
�

2

2

✓

s2

a2

+
a2

s2

◆

and it follows that

1
2⇡ı

I

�(s)ds

(s� ⇣)
=

�
2

4⇡a2ı

I

s2ds

(s� ⇣)
+
�

2

a2

4⇡ı

I

ds

s2(s� ⇣)
=
�

2

⇣2

2a2

,

where we have used (18.44) for the first integral and the second integral is
zero in view of (18.42).

Using (18.55), we then have

f =
�

2

⇣2

2a2

� C
0

; f =
�

2

⇣̄
2

2a2

� C
0

and

� = f + f =
�

2

(⇣2 + ⇣̄
2)

2a2

� C
0

� C
0

.

Evaluating the integral in (18.57), we obtain

C
0

+ C
0

=
�

2

2⇡

Z

2⇡

0

cos(2✓)d✓ = 0 ,

and hence the required harmonic function is

� =
�

2

(⇣2 + ⇣̄
2)

2a2

=
�

2

r2 cos(2✓)
a2

,

using (18.3). Of course, this result could also have been obtained by writing
a general harmonic function as the Fourier series

� =
1
X

n=0

Anrn cos(n✓) +
1
X

n=1

Bnrn sin(n✓)

and equating coe�cients on the boundary r = a, but the present method,
though longer, is considerably more direct.

18.6.2 Direct method for the exterior problem for a circle

For the exterior problem, we again define � as in (18.49) and apply the Cauchy
integral operator to the boundary data, obtaining
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1
2⇡ı

I

�(s)ds

(s� ⇣)
=

1
2⇡ı

I

f(s)ds

(s� ⇣)
+

1
2⇡ı

I

f(s)ds

(s� ⇣)
, (18.58)

where points on the contour are defined by (18.50). We assume that the func-
tion � is required to satisfy the condition � ! 0, r ! 1, in which case the
function f , which is holomorphic exterior to the circle, can be written as the
Laurent expansion

f(⇣) =
1
X

k=1

Ck

⇣k
and hence f(s) =

1
X

k=1

Cksk

a2k
,

using (18.51). It follows that the second integral on the right-hand side of
(18.58) is

1
2⇡ı

I

f(s)ds

(s� ⇣)
=

1
2⇡ı

1
X

k=1

Ck

a2k

I

skds

(s� ⇣)

and this is zero since ⇣ lies outside the circle and hence the integrand defines
a holomorphic function in the region interior to the circle. Using this result
and (18.48) in (18.58), we obtain

f(⇣) = � 1
2⇡ı

I

�(s)ds

(s� ⇣)
, (18.59)

after which � is recovered from (18.49).
The reader might reasonably ask why the method of §§18.6.1, 18.6.2 works

for circular contours, but not for more general problems. The answer lies in
the relation (18.51) which enables us to define the conjugate s in terms of s
and the constant radius a. For a more general contour, this relation would also
involve the coordinate r in s=r exp(ı✓) and this varies around the contour if
the latter is non-circular.

18.6.3 The half plane

If the radius of the circle is allowed to grow without limit and we move the
origin to a point on the boundary, we recover the problem of the half plane,
which can conveniently be defined as the region y >0 whose boundary is the
infinite line �1<x<1, y =0. The contour for the integral theorem (18.55)
then comprises a circle of infinite radius which lies entirely at infinity except
for the line segment �1<x<1, y=0 and we obtain

f(⇣) = �C
0

+
1

2⇡ı

Z 1

�1

�(x)dx

(x� ⇣)
. (18.60)

In some cases, an even more direct method can be used to solve the
boundary-value problem. We first note that the holomorphic (and hence har-
monic) function f(⇣) reduces to f(x) on y=0. Thus, if we simply replace x by
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⇣ in the boundary function �(x), we shall obtain a function of ⇣ that reduces
to �(x) on the boundary y=0.

Unfortunately, the resulting function �(⇣) will often not be holomorphic,
either because the boundary function �(x) is not continuously di↵erentiable,
or because �(⇣) contains one or more poles in the half plane y > 0. In these
cases, the integral theorem (18.60) will always yield the correct solution. To
illustrate this procedure, we shall give two examples.

Example 1

Consider the boundary-value problem

�(x, 0) = 1 ; �a < x < a

= 0 ; |x| > a . (18.61)

Since the function is discontinuous, we must use the integral theorem (18.60),
which here yields

f(⇣) = �C
0

+
1

2⇡ı

Z a

�a

dx

(x� ⇣)
= �C

0

+
1

2⇡ı
ln
✓

⇣ � a

⇣ + a

◆

.

The corresponding real function � is then obtained from (18.49) and after
using (18.1) and simplifying, we obtain

�(x, y) =
1
⇡



arctan
✓

y

x� a

◆

� arctan
✓

y

x + a

◆�

,

where the real constant C
0

+C
0

can be determined to be zero by equating
�(x, y) to its value at any convenient point on the boundary.

Example 2

Consider now the case where

�(x, 0) =
1

(1 + x2)
.

This function is continuous and di↵erentiable, so a first guess would be to
propose the function

� = < (f
1

(⇣)) where f
1

(⇣) =
1

(1 + ⇣2)
,

which certainly tends to the correct value on y = 0. However, f
1

has poles
at ⇣=±ı, i.e. at the points (0, 1), (0,�1), the former of which lies in the half
plane y > 0. Thus f

1

(⇣) is not holomorphic throughout the half plane and its
real part is therefore not harmonic at (0, 1).
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As in the previous example, we can resolve the di�culty by using the
integral theorem. However, the fact that the boundary function is continuous
permits us to evaluate the integral using the residue theorem. We therefore
write

f(⇣) = �C
0

+
1

2⇡ı

I

S

ds

(1 + s2)(s� ⇣)
= �C

0

+
1

2⇡ı

I

S

ds

(s + ı)(s� ı)(s� ⇣)
,

where the contour S is the circle of infinite radius which completely encloses
the half plane y > 0. The integrand has simple poles at s = ı,�ı, ⇣, but only
the first and third of these lie within the contour. We therefore obtain

1
2⇡ı

I

S

ds

(s + ı)(s� ı)(s� ⇣)
=

1
(⇣ + ı)(⇣ � ı)

+
1

2ı(ı� ⇣)
=

ı

2(⇣ + ı)

and the real harmonic function � is then recovered as

�(⇣, ⇣̄) = f + f � C
0

� C
0

=
ı

2(⇣ + ı)
� ı

2(⇣̄ � ı)
� C

0

� C
0

.

The constants can be determined by evaluating this expression at the origin
⇣ = 0 and equating it to �(0, 0), giving

1
2

+
1
2
� C

0

� C
0

= 1 or C
0

+ C
0

= 0 .

We then use (18.1) to express �(⇣, ⇣̄) in terms of (x, y), obtaining

�(x, y) =
(1 + y)

x2 + (1 + y)2
.

This function can be verified to be harmonic and it clearly tends to the re-
quired function �(x, 0) on y=0.

18.7 Conformal mapping

In §18.6, we showed that the value of a real harmonic function in the region
interior or exterior to a circle or in the half plane can be written down as
an explicit integral of the boundary data, using the Cauchy integral theorem.
The usefulness of this result is greatly enhanced by the technique of conformal
mapping, which permits us to ‘map’ a holomorphic function in the circular
domain or the half plane to one in a more general domain, usually but not
necessarily with the same connectivity.

Suppose that !(⇣) is a holomorphic function of ⇣ in a domain ⌦, whose
boundary S is the unit circle |⇣|=1. Each point (x, y) in ⌦ corresponds to a
unique value

! = ⇠ + ı⌘,
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whose real and imaginary parts (⇠, ⌘) can be used as Cartesian coördinates
to define a point in a new domain ⌦⇤ with boundary S⇤. Thus the function
!(⇣) can be used to map the points in ⌦ into the more general domain ⌦⇤

and points on the boundary S into S⇤. Since ⇣2⌦ and !2⌦⇤, we shall refer
to ⌦,⌦⇤ as the ⇣-plane and the !-plane respectively.

Next suppose that f(!) is a holomorphic function of ! in ⌦⇤, implying
that both the real and imaginary parts of f are harmonic functions of (⇠, ⌘),
from (18.11). Since ! is a holomorphic function of ⇣, it follows that

f⇣ ⌘ f(!(⇣))

is a holomorphic function of ⇣ in ⌦ and hence that its real and imaginary
parts are also harmonic functons of (x, y). Thus, the mapping function !(⇣)
maps holomorphic functions in ⌦⇤ into holomorphic functions in ⌦. It follows
that a harmonic boundary-value problem for the domain S⇤ can be mapped
into an equivalent boundary-value problem for the unit circle, which in turn
can be solved using the direct method of §18.6.1 or §18.6.2.

Example: The elliptical hole

A simple illustration is provided by the mapping function

! ⌘ ⇠ + ı⌘ = c

✓

⇣ +
m

⇣

◆

, (18.62)

where c,m are real constants and m<1. Substituting ⇣=r exp(ı✓) into (18.62)
and separating real and imaginary parts, we find

⇠ = c
⇣

r +
m

r

⌘

cos ✓ ; ⌘ = c
⇣

r � m

r

⌘

sin ✓ . (18.63)

Eliminating ✓ between these equations, we then obtain

⇠2

↵2

+
⌘2

�2

= 1 , (18.64)

where
↵ = c

⇣

r +
m

r

⌘

; � = c
⇣

r � m

r

⌘

. (18.65)

Equation (18.64) with (18.65) shows that the set of concentric circles (lines of
constant r) in the ⇣-plane maps into a set of confocal ellipses in the !-plane.
In particular, the unit circle r=1 maps into the ellipse with semi-axes

a = c(1 + m) ; b = c(1�m) . (18.66)

If f(!) is a holomorphic function in the region interior to the ellipse, the
mapped function f⇣ will generally be unbounded both at ⇣=0 and at ⇣!1.
This mapping cannot therefore be used for the interior problem for the ellipse.
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It can however be used for the exterior problem, since in this case, f(!) must
posess a Laurent series, every term of which maps into a bounded term in f⇣ .

Equation (18.62) can be solved to give ⇣ as a function of !. We obtain the
two solutions

⇣ =
! ±p!2 � 4mc2

2c
. (18.67)

The positive square root maps points outside the unit circle into points outside
the ellipse, whereas the negative root maps points inside the unit circle into
points outside the ellipse. Either mapping can be used when combined with
the appropriate solution of the boundary-value problem. Thus we can use
§18.6.1 and the negative root in (18.67), or §18.6.2 and the positive root.

The present author favours the exterior-to-exterior mapping implied by
the positive root, since this preserves the topology of the original problem
and hence tends to a more physically intuitive procedure. We then have

⇣ =
! +

p
!2 � 4mc2

2c
. (18.68)

and it is clear that circles of radius r > 1 in the ⇣-plane map to increasingly
circular contours in the !-plane as r!1. To solve a given problem, we map
the boundary conditions to the unit circle in the ⇣-plane using (18.62), solve
for the required holomorphic function of ⇣ using §18.6.2 and then map this
function back into the !-plane using (18.68).

PROBLEMS

1. By writing
⇣n = en ln(⇣) ,

show that
@m

@nm
(⇣n) = ⇣n lnm(⇣) .

Using equations (18.3), find the real and imaginary parts of the function
⇣n ln2(⇣) in polar coordinates r, ✓ and verify that they are both harmonic.

2. Verify that the real stress function �=r2✓ satisfies the biharmonic equation
(8.16). Then express it in the complex form (18.27).

3. Express the real biharmonic function �= r✓ sin ✓ (from equation (8.59) or
Table 8.1) in the complex form (18.27).

4. Find the imaginary part of the holomorphic function whose real part is the
harmonic function ln(r).

5. Use the residue theorem to evaluate the contour integral
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I

S

⇣nd⇣

(⇣2 � a2)
,

where n is a positive integer and the contour S is the circle |⇣| = 2a.

6. Find the real and imaginary parts of the function sin(⇣) and hence find the
points in the x, y-plane at which sin(⇣) = 0.

Use the residue theorem to evaluate the integral
I

S

d⇣

sin(⇣)

for a contour S that encloses only the pole at ⇣ = 0. By choosing S as a
rectangle two of whose sides are the lines x =±⇡/2, �1< y <1, use your
result to evaluate the real integral

Z 1

�1

dy

cosh y
.

7. Show that on the unit circle,

⇣ +
1
⇣

= cos ✓ ; ⇣n +
1
⇣n = cos(n✓) .

Use this result and the notation ! = eı� to express the real integral (12.35) in
terms of an integral around the contour shown in Figure 18.4. Use the residue
theorem to evaluate this integral and hence prove equation (12.35). Explain
in particular how you determine the contribution from the small semi-circular
paths around the poles ⇣ = !, ⇣ = 1/!.

Figure 18.4.

8. Find the real harmonic function �(r, ✓) defined inside the circle 0 r < a
whose boundary values are

�(a, ✓) = 1 ; �↵ < ✓ < ↵

= 0 ; ↵ < |✓| < ⇡ .

●     1 ω
S

●     1/ω

●     

0
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9. Find the real harmonic function �(r, ✓) defined in the external region r>a
satisfying the boundary conditions

�(a, ✓) = �
3

sin(3✓) ; �(r, ✓)! 0 ; r !1 ,

where �
3

is a real constant.

10. Find the real harmonic function �(x, y) in the half plane y � 0 satisfying
the boundary conditions

�(x, 0) =
1

(1 + x2)2
; �(x, y)! 0 ;

p

x2 + y2 !1 .

11. Use the mapping function (18.62) to find the holomorphic function f(!)
such that the real harmonic function

� = f + f

satisfies the boundary condition �=A⇠ on the ellipse

⇠2

a2

+
⌘2

b2

= 1

and f ! 0 as |!|!1, where A is a real constant. Do not attempt to express
� as an explicit real function of ⇠, ⌘.

12. Show that the function
!(⇣) = ⇣1/2

maps the quarter plane ⇠ � 0, ⌘ � 0 into the half plane y>0. Use this result
and appropriate results from the example in §18.6.3 to find the real harmonic
function �(⇠, ⌘) in the quarter plane with boundary values

�(⇠, 0) =
1

1 + ⇠4
; ⇠ > 0 , �(0, ⌘) =

1
1 + ⌘4

; ⌘ > 0 .
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APPLICATION TO ELASTICITY
PROBLEMS

19.1 Representation of vectors

From a mathematical perspective, both two-dimensional vectors and complex
numbers can be characterized as ordered pairs of real numbers. It is therefore

by the
real and imaginary parts of a complex function. In other words,

V ⌘ iVx + jVy (19.1)

is represented by the complex function

V = Vx + ıVy . (19.2)

In the same way, the vector operator

r ⌘ i
@

@x
+ j

@

@y
=

@

@x
+ ı

@

@y
= 2

@

@⇣̄
, (19.3)

from equation (18.6).
If two vectors f , g are represented in the form

f = fx + ıfy ; g = gx + ıgy (19.4)

the product

fg+fg = (fx�ıfy)(gx+ıgy)+(fx+ıfy)(gx�ıgy) = 2 (fxgx + fygy) . (19.5)

It follows that the scalar (dot) product

f · g =
1
2
�

fg + fg
�

. (19.6)

This result can be used to evaluate the divergence of a vector field V as

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 293

a natural step to represent the two components of a vector function V
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div V ⌘r·V =
@V

@⇣
+
@V

@⇣̄
, (19.7)

using (19.3, 19.6).
We also record the complex variable expression for the vector (cross) prod-

uct of two in-plane vectors f , g, which is

f ⇥ g = (fxgy � fygx)k =
ı

2
�

fg � fg
�

k , (19.8)

where k is the unit vector in the out-of-plane direction z. It then follows that

curl V ⌘r⇥V = ı

✓

@V

@⇣̄
� @V

@⇣

◆

k , (19.9)

from (19.3, 19.8). Also, the moment of a force F =Fx + ıFy about the origin
is

M = r ⇥ F =
ı

2
�

⇣F � ⇣̄F
�

k , (19.10)

where ⇣=x + ıy represents a position vector defining any point on the line of
action of F .

19.1.1 Transformation of coördinates

If a vector V =Vx + ıVy is transformed into a new coördinate system (x0, y0)
rotated anticlockwise through an angle ↵ with respect to x, y, the transformed
components can be combined into the complex quantity

V↵ = V 0
x + ıV 0

y , (19.11)

where

V 0
x = Vx cos↵+ Vy sin↵ ; V 0

y = Vy cos↵� Vx sin↵ , (19.12)

from (1.14). Substituting these expressions into (19.11), we obtain

V↵ = (cos↵� ı sin↵)Vx + (sin↵+ ı cos↵)Vy = e�ı↵V . (19.13)

In describing the tractions on a surface defined by a contour S, it is some-
times helpful to define the unit vector

t̂ =
�s

|�s| (19.14)

in the direction of the local tangent. If the contour is traversed in the con-
ventional anticlockwise direction, the outward normal from the enclosed area
n̂ is then represented by a unit vector rotated through ⇡/2 clockwise from t̂
and hence

n̂ = t̂e�ı⇡/2 = �ıt̂ . (19.15)
For the special case where s represents the circle s=a exp(ı✓), we have

t̂ =
aı exp(ı✓)�✓

a�✓
= ı exp(ı✓) and n̂ = exp(ı✓) .
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19.2 The antiplane problem

To introduce the application of complex variable methods to elasticity, we first
consider the simpler antiplane problem of Chapter 15 and restrict attention to
the case where there is no body force (pz =0). The only non-zero displacement
component is uz, which is constant in direction and hence a scalar function
in the xy-plane. From equations (15.1, 15.6), we also deduce that uz is a real
harmonic function, and we can satisfy this condition by writing

2µuz = h + h , (19.16)

where h is a holomorphic function of ⇣ and h is its conjugate. The non-zero
stress components �zx,�zy can be combined into a vector which we denote as

 ⌘ �zx + ı�zy = µ

✓

@uz

@x
+ ı

@uz

@y

◆

= 2µ
@uz

@⇣̄
, (19.17)

from (15.5, 18.6). Substituting (19.16) into (19.17) and noting that h is inde-
pendent of ⇣̄, we then obtain

 = h0 . (19.18)

We can write the complex function

h = hx + ıhy , (19.19)

where hx, hy are real harmonic functions representing the real and imaginary
parts of h. Equation (19.18) can then be expanded as

 =
1
2

✓

@

@x
+ ı

@

@y

◆

(hx � ıhy) =
1
2

✓

@hx

@x
+
@hy

@y
+ ı

@hx

@y
� ı

@hy

@x

◆

(19.20)

and hence

�zx =
1
2

✓

@hx

@x
+
@hy

@y

◆

; �zy =
1
2

✓

@hx

@y
� @hy

@x

◆

. (19.21)

However, the Cauchy-Riemann relations (18.8) show that

@hx

@x
=
@hy

@y
;

@hx

@y
= �@hy

@x
(19.22)

so these expressions can be simplified as

�zx =
@hx

@x
=
@hy

@y
; �zy =

@hx

@y
= �@hy

@x
. (19.23)

Comparison with equations (16.8) then shows that hy is identical with the
real Prandtl stress function ' — i.e.
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hy ⌘ =(h) =
h� h

2ı
= ' . (19.24)

It follows as in equation (16.9) that the boundary traction

�zn =
@hy

@t
, (19.25)

where t is a real coordinate measuring distance around the boundary in the
anticlockwise direction. Also, from (19.16), we have

hx =
h + h

2
= µuz = µf(x, y) , (19.26)

where f(x, y) is the function introduced in equation (15.1). Thus,

h = hx + ıhy = µf + ı' , (19.27)

showing that the real functions µf and ' from Chapters 15,16 can be com-
bined as the real and imaginary parts of the same holomorphic function, for
antiplane problems without body force.

19.2.1 Solution of antiplane boundary-value problems

If the displacement uz is prescribed throughout the boundary, equation (19.16)
reduces the problem to the search for a holomorphic function h such that h+h
takes specified values on the boundary. If instead the traction �zn is specified
everywhere on the boundary, we must first integrate equation (19.25) to obtain
the boundary values of hy and the problem then reduces to the search for a
holomorphic function h such that h�h takes specified values on the boundary.
This is essentially the same boundary-value problem, since we can define a
new holomorphic function g through the equations

hy = g + g with g = � ıh

2
. (19.28)

Example

As an example, we consider Problem 15.3 in which a uniform antiplane stress
field �zx =S is perturbed by the presence of a traction-free hole of radius a.
As in §8.3.2, §8.4.1, we start with the unperturbed solution in which �zx =S
everywhere. From (19.17, 19.18),

 = h0 = S

and hence a particular solution (omitting a constant of integration which
corresponds merely to a rigid-body displacement) is
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h = S⇣̄ ; h = S⇣ ,

where we note that S is a real constant, so S =S. In particular,

hy = =(h) = Sy = Sr sin ✓ .

To make the boundary of the hole traction-free, we require hy to be constant
around the hole and this constant can be taken to be zero without loss of
generality. Thus, the corrective solution must satisfy

hy(a, ✓) = �Sa sin ✓ .

It is possible to ‘guess’ the form of the solution, following arguments analogous
to those used for the in-plane problem in §8.3.2, but here we shall illustrate
the direct method by using equation (18.59). On the boundary r=a, we have

s = a exp(ı✓) ; sin ✓ =
(eı✓ � e�ı✓)

2ı
=

1
2ı

⇣ s

a
� a

s

⌘

. (19.29)

Since this is an exterior problem, we use (18.59) with (19.28, 19.29) to obtain

� ıh

2
=

1
2⇡ı

Sa

2ı

I

⇣ s

a
� a

s

⌘ ds

(s� ⇣)
, (19.30)

or
h =

S

2⇡ı

I

✓

s� a2

s

◆

ds

(s� ⇣)
. (19.31)

We can use the residue theorem (18.40) to compute the contour integral.
Since ⇣ is outside the contour, only the pole a2/s at s=0 makes a contribution
and we obtain

Res(0) =
Sa2

2⇡ı⇣
giving h =

Sa2

⇣
. (19.32)

The complete stress function (unperturbed + corrective solution) is then

h = S⇣ +
Sa2

⇣

and the stress field is obtained from (19.18) as

 = h0 = S � Sa2

⇣̄
2

.

As a check on this result, we note that on ⇣ = s,

h = Ss +
Sa2

s
= S(s + s) ,

using a2 =ss from (18.51). Thus, on the boundary, h is the sum of a complex
quantity and its conjugate which is real, confirming that the imaginary part
hy =0 as required.
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19.3 In-plane deformations

We next turn our attention to the problem of in-plane deformation, which was
treated using the Airy stress function in Chapters 4–13. Our strategy will be
to express the in-plane displacement

u = ux + ıuy (19.33)

in terms of complex displacement functions, much as the stresses in Chapter
4 were expressed in terms of the real Airy function �. By choosing to repre-
sent the displacements rather than the stresses, we automatically satisfy the
compatibility conditions, as explained in §2.2, but the stresses must then sat-
isfy the equilibrium equations and this will place restrictions on our choice of
displacement functions.

In vector notation, the equilibrium equations in terms of displacements
require that

rdiv u + (1� 2⌫)r2u +
(1� 2⌫)p

µ
= 0 , (19.34)

from (2.17). Using (19.33, 19.3, 19.7, 18.10), we can express the two in-plane
components of this condition in the complex-variable form

2
@

@⇣̄

✓

@u

@⇣
+
@u

@⇣̄

◆

+ 4(1� 2⌫)
@2u

@⇣@⇣̄
+

(1� 2⌫)p
µ

= 0 , (19.35)

where the in-plane body force

p = px + ıpy . (19.36)

Integrating (19.35) with respect to ⇣̄, we obtain

(3� 4⌫)
@u

@⇣
+
@u

@⇣̄
= f � (1� 2⌫)

2µ

Z

pd⇣̄ , (19.37)

where f is an arbitrary holomorphic function of ⇣. This complex equation
really comprises two separate equations, one for the real part and one for
the imaginary part, both of which must be satisfied by u. It follows that the
conjugate equation

(3� 4⌫)
@u

@⇣̄
+
@u

@⇣
= f � (1� 2⌫)

2µ

Z

pd⇣ (19.38)

must also be satisfied. We can then eliminate @u/@⇣̄ between (19.37, 19.38)
to obtain

8(1� 2⌫)(1� ⌫)
@u

@⇣
= (3� 4⌫)f � f +

(1� 2⌫)
2µ



Z

pd⇣ � (3� 4⌫)
Z

pd⇣̄

�

,

(19.39)
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with solution

8(1� 2⌫)(1� ⌫)u = (3� 4⌫)
Z

fd⇣ � ⇣ f + g

+
(1� 2⌫)

2µ

Z



Z

pd⇣ � (3� 4⌫)
Z

pd⇣̄

�

d⇣ , (19.40)

where g is an arbitrary function of ⇣̄.
The functions f , g are arbitrary and, in particular,

R

fd⇣ is simply a new
arbitrary function of ⇣. We can therefore write a more compact form of (19.40)
by defining di↵erent arbitrary functions through the relations

Z

fd⇣ =
4(1� ⌫)(1� 2⌫)�

µ
; g = �4(1� ⌫)(1� 2⌫)✓

µ
, (19.41)

where �, ✓ are holomorphic functions of ⇣ and ⇣̄ only respectively. We then
have

f =
4(1� ⌫)(1� 2⌫)�0

µ
, (19.42)

where �0 represents the derivative of � (which is a function of ⇣̄ only) with
respect to ⇣̄.

With this notation, equation (19.40) takes the form

2µu = (3�4⌫)��⇣ �0�✓+
1

8(1� ⌫)

Z



Z

pd⇣ � (3� 4⌫)
Z

pd⇣̄

�

d⇣ . (19.43)

From this point on, we shall restrict attention to the simpler case where
the body forces are zero (p=p=0), in which case

2µu = (3� 4⌫)�� ⇣ �0 � ✓ . (19.44)

It is a simple matter to reintroduce body force terms in the subsequent deriva-
tions if required.

19.3.1 Expressions for stresses

The tractions on the x and y-planes are

⌧x = �xx + ı�xy ; ⌧y = �yx + ı�yy (19.45)

and these can be combined to form the functions

� ⌘ ⌧x + ı⌧y = �xx + 2ı�xy � �yy (19.46)
⇥ ⌘ ⌧x � ı⌧y = �xx + �yy . (19.47)

We note that ⇥ is a real function and is invariant with respect to coördinate
transformation, whilst � transforms according to the rule
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�↵ ⌘ �0xx + 2ı�0xy � �0yy = e�2ı↵� , (19.48)

where �↵ and the stress components �0 are defined in a coördinate system x0, y0

rotated anticlockwise through an angle ↵ with respect to x, y. This result is
easily established using the stress transformation equations (1.15–1.17).

Substituting (19.44) into (19.7) and recalling that the state is one of plane
strain so uz =0, we find

2µdiv u = 2(1� 2⌫)
�

�0 + �0
�

(19.49)

and hence, using the stress-strain relations (1.71)

⇥ = 2(�+ µ)div u

= 2(�0 + �0) (19.50)

� = 2µ

⇢

@ux

@x
� @uy

@y
+ ı

✓

@ux

@y
+
@uy

@x

◆�

= 4µ
@u

@⇣̄
= �2(⇣ �00 + ✓0) . (19.51)

These expressions can also be written in terms of the single complex func-
tion

 (⇣, ⇣̄) = �+ ⇣�0 + ✓ . (19.52)

We then have
@ 

@⇣
= �0 + �0 ;

@ 

@⇣̄
= ⇣ �00 + ✓0 (19.53)

and hence
⇥ = 2

@ 

@⇣
; � = �2

@ 

@⇣̄
. (19.54)

Notice however that  depends on both ⇣ and ⇣̄ and is therefore not
holomorphic.

19.3.2 Rigid-body displacement

Equations (19.54) show that all the stress components will be zero everywhere
if and only if  (⇣, ⇣̄) is a constant. Expanding the holomorphic functions �, ✓
as Taylor series

� = A
0

+ A
1

⇣ + A
2

⇣2 + ... ; ✓ = B
0

+ B
1

⇣ + B
2

⇣2 + ... (19.55)

and substituting into (19.52), we obtain

 = A
0

+ B̄
0

+ (A
1

+ Ā
1

)⇣ + B
1

⇣̄ + A
2

⇣2 + 2Ā
2

⇣̄⇣ + B̄
2

⇣̄
2 + ... . (19.56)

This will be constant if and only if (A
1

+ Ā
1

)=0 and all the other coe�cients
are zero except A

0

, B̄
0

. The condition (A
1

+ Ā
1

)= 0 implies that A
1

is pure
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imaginary, which can be enforced by writing A
1

= ıC
1

, where C
1

is a real
constant. Substituting these values into (19.44), we then obtain

2µu = (3� 4⌫)A
0

� B̄
0

+ 4(1� ⌫)ıC
1

⇣ . (19.57)

The first two terms correspond to an arbitrary rigid-body translation and the
third to a rigid-body rotation. In fact, either of the complex constants A

0

, B̄
0

has su�cient degrees of freedom to define an arbitrary rigid-body translation,
so one of them can be set to zero without loss of generality. In the following
derivations, we shall therefore generally set B

0

=B̄
0

=0, implying that ✓(0)=0.

19.4 Relation between the Airy stress function and the
complex potentials

Before considering methods for solving boundary-value problems in complex-
variable notation, it is of interest to establish some relationships with the Airy
stress function formulation of Chapters 4–13. In particular, we shall show that
it is always possible to find complex potentials �, ✓ corresponding to a given
Airy function �. This has the incidental advantage that the resulting complex
potentials can then be used to determine the displacement components, so
this procedure provides a method for generating the displacements due to
a given Airy stress function, which, as we saw in Chapter 9, is not always
straightforward in the real stress function formulation.

We start by using the procedure of §18.4.1 to express the real biharmonic
function � in terms of two holomorphic functions g

1

, g
2

, as in equation (18.27).
The stress components are given in terms of � as

�xx =
@2�

@y2

; �xy = � @2�

@x@y
; �yy =

@2�

@x2

, (19.58)

from equations (4.6). It follows that

⇥ = r2� = 4
@2�

@⇣@⇣̄
(19.59)

and

� =
@2�

@y2

� 2ı
@2�

@x@y
� @2�

@x2

= �
✓

@

@x
+ ı

@

@y

◆

2

= �4
@2�

@⇣̄
2

, (19.60)

using (18.10, 18.6).
Substituting for � from (18.27) into (19.59), we then have

⇥ = r2� = 4
⇣

g0
2

+ g0
2

⌘

(19.61)

and comparison with (19.50) shows that
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� = 2g
2

. (19.62)

Similarly, from (18.27, 19.60) we have

� = �4
⇣

g00
1

+ ⇣ g00
2

⌘

= �2
⇣

⇣ �00 + 2g00
1

⌘

, (19.63)

using (19.62). Comparison with (19.51) then shows that

✓ = 2g0
1

. (19.64)

Example

As an example, we consider the problem of §5.2.1 in which the rectangular
beam x>0,�b<y<b is loaded by a shear force F at the end x=0. The real
stress function for this case is given by (5.35) as

� =
F (xy3 � 3b2xy)

4b3

.

Using (18.2), we have

xy = � ı

4

⇣

⇣2 � ⇣̄
2

⌘

and xy3 =
ı

16

⇣

⇣2 � ⇣̄
2

⌘

�

⇣ � ⇣̄
�

2

,

from which

� =
ıF

64b3

⇣

⇣4 � 2⇣3⇣̄ + 2⇣⇣̄3 � ⇣̄
4 + 12b2⇣2 � 12b2⇣̄

2

⌘

Comparison with (18.27) shows that

g
1

=
ıF

64b3

�

⇣4 + 12b2⇣2

�

; g
2

= � ıF ⇣3

32b3

.

We then have

� = � ıF ⇣3

16b3

; ✓ =
ıF

8b3

�

⇣3 + 6b2⇣
�

, (19.65)

from (19.62, 19.64) and hence

2µu = 2µ(ux + ıuy) = (3� 4⌫)�� ⇣ �0 � ✓

=
ıF

16b3

⇣

�(3� 4⌫)⇣3 � 3⇣⇣̄2 + 2⇣̄3 + 12b2⇣̄
⌘

=
F

4b3

�⇥

3(1�⌫)x2y�(2�⌫)y3+3b2y
⇤

+ı
⇥

3b2x�3⌫xy2�(1�⌫)x3

⇤�

,

agreeing with the plane-strain equivalents of (9.14, 9.15) apart from an arbi-
trary rigid-body displacement.
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19.5 Boundary tractions

We denote the boundary traction (i.e. the force per unit length along the
boundary S) as T (s), where s is a real coördinate defining position around S.
The traction is a vector which can be expressed in the usual complex form as

T (s) ⌘ iTx + jTy = Tx + ıTy ⌘ T . (19.66)

Following the conventions of Chapter 18, the coördinate s increases as we tra-
verse the boundary in the anticlockwise direction as shown in Figure 19.1(a),
which also shows the traction components Tx, Ty.

(a) (b)

Figure 19.1: (a) The boundary tractions Tx, Ty and (b) equilibrium of a
small element at the boundary.

Figure 19.1(b) shows the forces acting on a small triangular element chosen
such that x, y, s all increase as we move up the inclined edge1. We recall the
convention that the material lies always on the left of the boundary as s
increases.

Equilibrium of this element then requires that

Txds = �xxdy � �yxdx ; Tyds = �xydy � �yydx (19.67)

and hence

Tds = (�xx + ı�xy)dy � (�yx + ı�yy)dx = ⌧xdy � ⌧ydx , (19.68)

using the notation of equation (19.45).
We can solve (19.46, 19.47) for ⌧x, ⌧y, obtaining

⌧x =
1
2
(⇥ + �) ; ⌧y =

ı

2
(⇥ � �) (19.69)

and hence
1 If any other orientation were chosen, one or more of the increments dx, dy, ds

would be negative resulting in a change in direction of the corresponding forces,
but the same final result would be obtained.

s
xT

Ty

dyxxσ

yxσ dx

yyσ dx

xyσ dy

xT ds

Tyds
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Tds =
1
2

(⇥(dy � ıdx) + �(dy + ıdx)) =
ı

2
�

�d⇣̄ �⇥d⇣
�

. (19.70)

Using (19.54), we then have

Tds = ı

✓

�@ 
@⇣̄

d⇣̄ � @ 

@⇣
d⇣

◆

= �ıd . (19.71)

In other words,

T = �ı
d 

ds
= �ı

d

ds

�

�+ ⇣ �0 + ✓
�

or
d 

ds
= ıT . (19.72)

Thus, if the tractions are known functions of s, equation (19.72) can be inte-
grated to yield the values of  at all points on the boundary. We also note
that  must be constant in any part of the boundary that is traction-free.

Example

To illustrate these results, we revisit the example in §19.4 in which the rect-
angular bar �b < y < b, x > 0 is loaded by a transverse force F on the end
x=0, the edges y =±b being traction-free. The complex potentials are given
in (19.65). Substituting them into (19.52), we find

 = � ıF

16b3

�

(⇣ � ⇣̄)3 + 3⇣̄
⇥

(⇣ � ⇣̄)2 + 4b2

⇤ 

. (19.73)

In complex coördinates, the boundaries y=±b correspond to the lines

⇣ � ⇣̄ = ±2ıb ,

from (18.2) and it follows that the second term in the braces in (19.73) is zero
on each boundary, whilst the first term takes the value

⌥8ıb3 , corresponding to  = ⌥F

2
.

This confirms that  is constant along each of the two traction-free boundaries.
We also note that as we go down the left end of the bar (thereby preserving
the anticlockwise direction for s),  increases by F , so

F =
Z ⇣=�ıb

⇣=ıb

d 

ds
ds =

Z ⇣=�ıb

⇣=ıb

ıTds ,

using (19.72). It follows that the resultant force on the end is
Z ⇣=�ıb

⇣=ıb

Tds = �ıF ,

which corresponds to a force F in the negative y-direction, which of course
agrees with Figure 5.2 and equation (5.25).
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19.5.1 Equilibrium considerations

The in-plane problem is well posed if and only if the applied loads are self-
equilibrated and since we are assuming that there are no body forces, this
implies that the resultant force and moment of the boundary tractions must
be zero.

The force resultant can be found by integrating the complex traction T
around the boundary S, using (19.72). We obtain

Fx + ıFy =
I

S

Tds = �ı

I

S

d 

ds
ds = 0 , (19.74)

which implies that  must be single-valued. This condition applies regardless
of the shape of the boundary, assuming the body is simply connected.

The contribution to the resultant moment from the traction Tds on an
element of boundary ds can be written

dM =
ı

2
�

sTds� sTds
�

= �1
2
�

sd + sd 
�

= �< (sd ) , (19.75)

using (19.10) and (19.71). The resultant moment can then be written

M =
I

S

dM = �<
I

S

s
@ 

@s
ds (19.76)

and integrating by parts, we have
I

S

s
@ 

@s
ds = s |S �

I

S

 ds = �
I

S

 ds ,

since s is single-valued in view of (19.74). Thus, the condition that the
resultant moment be zero reduces to

M = <
✓

I

S

 ds

◆

= 0 . (19.77)

19.6 Boundary-value problems

Two quantities must be specified at every point on the boundary S. In the
displacement boundary-value problem, both components of displacement are
prescribed and hence we know the value of the complex function

2µu(s) = �� ⇣ �0 � ✓ ; s 2 S , (19.78)

where we recall that =(3�4⌫). In the traction boundary-value problem, both
components of traction T (s) are prescribed and we can integrate equation
(19.72) to obtain
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 (s) = ı

Z

T (s)ds + C , (19.79)

where C is an arbitrary constant of integration. The complex potentials must
then be chosen to satisfy the boundary condition

�(s) + s �0(s) + ✓(s) =  (s) ; s 2 S . (19.80)

Notice that the variable of integration s in (19.79) is a real curvilinear
cöordinate measuring the distance traversed around the boundary S, but since
we shall later want to apply the Cauchy integral theorem, it is necessary to
express the resulting function  as a function of the complex cöordinate s
defining a general point on S.

The displacement and traction problems both have the same form and can
be combined as

��(s) + s �0(s) + ✓(s) = f(s) ; s 2 S , (19.81)

where �=�, f(s)=�2µu(s) for the displacement problem and �=1, f(s)=
 (s) for the traction problem.

One significant di↵erence between the displacement and traction problems
is that the former is completely defined for all continuous values of the bound-
ary data, whereas the solution of traction problem is indeterminate to within
an arbitrary rigid-body displacement as defined in §19.3.2. Also, the permissi-
ble traction distributions are restricted by the equilibrium conditions (19.74,
19.76). Notice incidentally that the constant C in (19.79) can be wrapped into
the arbitrary rigid-body translation A

0

in (19.57), since a particular solution
of the problem  (⇣, ⇣̄)=C on S is  =C (constant) throughout ⌦.

19.6.1 Solution of the interior problem for the circle

As in §18.6.1, we can use the Cauchy integral theorem to obtain the solution
of the in-plane problem for the region ⌦ bounded by the circle r = a with
prescribed boundary tractions or displacements.

Applying the Cauchy integral operator to both sides of equation (19.81),
we obtain

�

2⇡ı

I

�(s)ds

(s� ⇣)
+

1
2⇡ı

I

s �0(s)ds

(s� ⇣)
+

1
2⇡ı

I

✓(s)ds

(s� ⇣)
=

1
2⇡ı

I

f(s)ds

(s� ⇣)
. (19.82)

Since � is a holomorphic function of ⇣ in ⌦, equation (18.44) gives

1
2⇡ı

I

�(s)ds

(s� ⇣)
= �(⇣) .

Also, writing

� =
1
X

n=0

An⇣
n ; �0 =

1
X

n=1

nĀn⇣̄
n�1

, (19.83)
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and noting that s=a2/s on the boundary S, we have

s �0(s) =
1
X

n=1

nĀna2n�2

sn�2

.

Using the residue theorem, the second term in (19.82) can then be evaluated
as

1
2⇡ı

I

s �0(s)ds

(s� ⇣)
=

1
X

n=1

nĀna2n�2

2⇡ı

I

ds

sn�2(s� ⇣)
= Ā

1

⇣ + 2Ā
2

a2 ,

since all the remaining terms in the series integrate to zero as in (18.42).
A similar argument can be applied to the third integral in (19.82). Ex-

panding

✓(⇣) =
1
X

k=0

Bk⇣
k ,

we obtain
1

2⇡ı

I

✓(s)ds

(s� ⇣)
= B̄

0

,

and we note from §19.3.2 that this can be set to zero without loss of generality.
Assembling these results, we conclude that

��(⇣) =
1

2⇡ı

I

f(s)ds

(s� ⇣)
� Ā

1

⇣ � 2Ā
2

a2 . (19.84)

To determine the constants Ā
1

, Ā
2

, we first replace � in (19.84) by its Taylor
series (19.83) giving

1
2⇡ı

I

f(s)ds

(s� ⇣)
= Ā

1

⇣ + 2Ā
2

a2 + �A
0

+ �A
1

⇣ + �A
2

⇣2 + ... . (19.85)

Di↵erentiating twice with respect to ⇣, we obtain

� 1
2⇡ı

I

f(s)ds

(s� ⇣)2
= Ā

1

+ �A
1

+ 2�A
2

⇣ + ... .

1
⇡ı

I

f(s)ds

(s� ⇣)3
= 2�A

2

+ 6�A
3

⇣ + ... (19.86)

and evaluating these last two expressions at ⇣ = 0,

�A
2

=
1

2⇡ı

I

f(s)ds

s3

; Ā
1

+ �A
1

= � 1
2⇡ı

I

f(s)ds

s2

. (19.87)

Equations (19.87) are su�cient to determine the required constants for
the displacement problem (� = ), but a degeneracy occurs for the traction
problem where �=1 and the second equation reduces to
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Ā
1

+ A
1

= � 1
2⇡ı

I

 (s)ds

s2

. (19.88)

This implies that the right-hand-side must evaluate to a real constant, which
(i) places a restriction on the permissible values of  (s) and (ii) leaves the
imaginary part of A

1

indeterminate. We saw already in §19.3.2 that the imagi-
nary part of A

1

corresponds to an arbitrary rigid-body rotation. The condition
that the right-hand side of (19.88) be real is exactly equivalent to the condi-
tion (19.77) enforcing moment equilibrium. To establish the connection, we
note that for the circular boundary

s =
a2

s
so that ds = �a2ds

s2

.

Using this result in (19.77), we obtain

<
✓

I

S

 ds

◆

= �<
✓

a2

I

S

 (s)ds

s2

◆

= 0 ,

showing that the integral is pure imaginary and hence that the right-hand
side of (19.88) is real.

Once � is determined, we can apply a similar method to determine ✓. We
first write the conjugate of equation (19.81) as

✓(s) = f(s)� ��(s)� s�0(s) ; s 2 S , (19.89)

and apply the Cauchy integral theorem, obtaining

✓(⇣) =
1

2⇡ı

I

✓(s)ds

(s� ⇣)
=

1
2⇡ı

I

f(s)ds

(s� ⇣)
� �

2⇡ı

I

�(s)ds

(s� ⇣)
� 1

2⇡ı

I

s�0(s)ds

(s� ⇣)
.

(19.90)
The last two integrals on the right-hand side can be evaluated using (19.83)
and the residue theorem leading to

✓(⇣) =
1

2⇡ı

I

f(s)ds

(s� ⇣)
� �Ā

0

� a2 (�0(⇣)� �0(0))
⇣

. (19.91)

Once this expression has been evaluated, the remaining constant Ā
0

can be
chosen to satisfy the condition ✓(0)=0 as discussed in §19.57. However, there
is no essential need to do this, since this constant corresponds merely to a
rigid-body displacement and makes no contribution to the stress components.

19.6.2 Solution of the exterior problem for the circle

For the exterior problem, we again apply the Cauchy integral operator, leading
to (19.82), which we repeat here for clarity
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�

2⇡ı

I

�(s)ds

(s� ⇣)
+

1
2⇡ı

I

s �0(s)ds

(s� ⇣)
+

1
2⇡ı

I

✓(s)ds

(s� ⇣)
=

1
2⇡ı

I

f(s)ds

(s� ⇣)
. (19.92)

In this equation, the first term
�

2⇡ı

I

�(s)ds

(s� ⇣)
= ���(⇣) ,

from (18.48). For the third term, we note that ✓(⇣) is holomorphic in the
exterior region and hence permits a Laurent expansion

✓(⇣) =
B

1

⇣
+

B
2

⇣2

+ ...

so
✓(s) =

B̄
1

s
+

B̄
2

s2

+ ... =
B̄

1

s

a2

+
B̄

2

s2

a4

+ ... .

This can be regarded as the surface value of a function that is holomorphic
in the interior region and hence, since ⇣ is outside the contour S,

1
2⇡ı

I

✓(s)ds

(s� ⇣)
= 0 . (19.93)

For the second term in (19.92), we write

�(⇣) =
A

1

⇣
+

A
2

⇣2

+
A

3

⇣3

+ ... (19.94)

so

�0 = � Ā
1

⇣̄
2

� 2Ā
2

⇣̄
3

� 3Ā
3

⇣̄
4

+ ... ; s �0(s) = � Ā
1

s3

a4

� 2Ā
2

s4

a6

� 3Ā
3

s5

a8

+ ...

and as before, we conclude that

1
2⇡ı

I

s�0(s)ds

(s� ⇣)
= 0 ,

so
��(⇣) = � 1

2⇡ı

I

f(s)ds

(s� ⇣)
. (19.95)

To determine ✓, the conjugate equation (19.89) and (18.48) lead to

✓(⇣) = � 1
2⇡ı

I

✓(s)ds

(s� ⇣)
= � 1

2⇡ı

I

f(s)ds

(s� ⇣)
+

�

2⇡ı

I

�(s)ds

(s� ⇣)
+

1
2⇡ı

I

s�0(s)ds

(s� ⇣)
,

and the second integral on the right-hand side is clearly of the same form as
(19.93) and is therefore zero. For the third integral, we have

1
2⇡ı

I

s�0(s)ds

(s� ⇣)
=

1
2⇡ı

I

a2�0(s)ds

s(s� ⇣)
= �a2�0(⇣)

⇣
,

using (18.48). We conclude that

✓(⇣) = � 1
2⇡ı

I

f(s)ds

(s� ⇣)
� a2�0(⇣)

⇣
. (19.96)
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Example

To illustrate the procedure, we consider the problem shown in Figure 19.2 in
which a circular hole of radius a is loaded by equal and opposite compressive
forces F on the diameter.

Figure 19.2: Hole in a large body loaded by equal and opposite forces F .

In this case, we have

T =
F �(✓)

a
� F �(✓ � ⇡)

a

and a suitable integral of (19.72) yields

 (s) = � ıF

2
sgn(✓) so  (s) =

ıF

2
sgn(✓) , (19.97)

where sgn(✓)=+1 in 0<✓<⇡ and �1 in �⇡<✓<0. Notice that in performing
this integral, it is necessary to traverse the contour in the direction that keeps
the material of the body on the left, as explained in §19.5. Substituting in
equation (19.95) with �=1, f(s)= (s), we obtain

�(⇣) = � 1
2⇡ı

I

 (s)ds

(s� ⇣)
= � F

4⇡

✓

ln(s� ⇣)
�

�

�

s=a

s=�a
� ln(s� ⇣)

�

�

�

s=�a

s=a

◆

=
F

2⇡
ln
✓

⇣ + a

⇣ � a

◆

,

from which
�0(⇣) = � Fa

⇡(⇣2 � a2)
.

The integral term in (19.96) is evaluated in the same way as

1
2⇡ı

I

 (s)ds

(s� ⇣)
=

F

2⇡
ln
✓

⇣ + a

⇣ � a

◆

and it follows that

✓(⇣) = � F

2⇡
ln
✓

⇣ + a

⇣ � a

◆

+
Fa3

⇡⇣(⇣2 � a2)
.

FF
a
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Finally, the complex stresses can be recovered by substitution into (19.61,
19.63), giving

⇥ = 2
�

�0 + �0
�

= �Fa

⇡

 

1
(⇣2 � a2)

+
1

(⇣̄2 � a2)

!

� = �2
⇣

⇣ �00 + ✓
0⌘

=
2Fa

⇡

 

2(a2 � ⇣⇣̄)

(⇣̄2 � a2)2
� 1

⇣̄
2

!

.

This problem could have been solved using the real stress function approach
of Chapter 13 (for example by superposing the solution of Problem 13.2 for
two forces at ✓=0,⇡), but the present method is considerably more direct.

19.7 Conformal mapping for in-plane problems

The technique of conformal mapping introduced in §18.7 can be applied to
in-plane problems, but requires some modification because of the presence of
the derivative term �0 in the boundary condition (19.81). Suppose that the
problem is defined in the domain ⌦⇤ and that we can identify a mapping
function !(⇣) that maps each point ! 2 ⌦⇤ into a point ⇣ 2 ⌦, where ⌦
represents the domain either interior or exterior to the unit circle |⇣|=1.

The boundary condition (19.81) requires that

��(!) + ! �0(!) + ✓(!) = f(!) ; ! 2 S⇤ , (19.98)

where S⇤ is the boundary of ⌦⇤. If we substitute !=!(⇣), the functions �, ✓
will become functions of ⇣, but to avoid confusion, we shall adopt the notation

�⇣ (⇣) = �(!(⇣)) ; ✓⇣ (⇣) = ✓(!(⇣)) ; f⇣ (⇣) = f(!(⇣))

for the corresponding functions in the ⇣-plane. We then have

�0(!) ⌘ d�

d!
=

d�⇣
d⇣

d⇣

d!
=
�0⇣
!0

.

Using the conjugate of this result in (19.98), we obtain

��⇣ (s) +
!(s)
!0(s)

�0⇣ (s) + ✓⇣ (s) = f⇣ (s) ; s 2 S , (19.99)

where S is the unit circle. This defines the boundary-value problem in the
⇣-plane.

The mathematical arguments used in §§19.6.1, 19.6.2 can be applied to
this equation and will yield identical results except in regard to the second
term. To fix ideas, suppose ⌦⇤ is the region exterior to a non-circular hole
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and !(⇣) maps into the region exterior to the unit circle S. Then, the second
term in equation (19.92) must be replaced by

1
2⇡ı

I

S

!(s)�0⇣ (s)ds

!0(s)(s� ⇣)
(19.100)

and after evaluating the remaining terms as in §19.6.2, we obtain

��⇣ (⇣) = � 1
2⇡ı

I

S

f⇣ (s)ds

(s� ⇣)
� 1

2⇡ı

I

S

!(s)�0⇣ (s)ds

!0(s)(s� ⇣)
. (19.101)

The integral (19.100) will be zero if the integrand has no poles inside the
contour and can be evaluated using the residue theorem if it has a finite
number of poles. As in §19.6.2, we can represent �⇣ by its Laurent series
(19.94) and hence write

�0⇣ (s) = �Ā
1

s2 � 2Ā
2

s3 � 3Ā
3

s4 + ..., (19.102)

since on the unit circle ss = 1. Equation (19.102) can be regarded as the
surface values of a holomorphic function that has no poles within the circle,
but the mapping function ! must be holomorphic in the region ⌦ exterior to
the circle S, and this generally implies that it will have poles in the interior
region.

Since both ⌦,⌦⇤ extend to infinity, it is reasonable to choose a mapping
function !(⇣) such that concentric circles in the ⇣-plane map into increasingly
circular contours as we go further away from the hole. This is achieved by the
function

!(⇣) = c⇣ +
B

1

⇣
+

B
2

⇣2

+
B

3

⇣3

+ ... , (19.103)

since at large ⇣, only the first term remains, which represents simply a lin-
ear scaling. The series in (19.103) may be infinite or finite, but in either case
!(⇣) clearly posesses poles at the origin. If the series is finite, the integrand
in (19.100) will have at most a finite number of poles and the integral can
be evaluated using the residue theorem. It follows from (18.39) that the re-
sulting expression will contain unknowns representing the derivatives of �⇣
evaluated at the origin, which in view of (19.102) comprises a finite number
of the unknown coe�cients Ā

1

, Ā
2

, .... However, a su�cient number of linear
equations for these coe�cients can be obtained by constructing the conjugate
�⇣ from (19.101) and equating it or its derivatives to the corresponding values
at the origin. This is of course precisely the same procedure that was used to
determine the constants A

1

, A
2

in §19.6.1.
This procedure can be generalized to allow ! to be a rational function

!(⇣) =
C

1

⇣ + C
2

⇣2 + ... + Cn⇣
n

D
1

⇣ + D
2

⇣2 + ... + Dm⇣
m ,
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which will posess simple poles at each of the m zeros of the finite polynomial
representing the denominator. In this case, the unknowns appearing in the
integral (19.100) will be the values of �⇣ at each of these poles and a set of
equations for determining them is obtained by evaluating (19.101) at each
such pole2.

Once �⇣ has been determined, ✓⇣ can be obtained exactly as in §19.6.2.
We take the conjugate of (19.99) and apply the Cauchy integral operator
obtaining

�

2⇡ı

I �⇣ (s)ds

(s� ⇣)
+

1
2⇡ı

I !(s)�0⇣ (s)ds

!0(s)(s� ⇣)
+

1
2⇡ı

I ✓⇣ (s)ds

(s� ⇣)
=

1
2⇡ı

I f⇣ (s)ds

(s� ⇣)

The first integral is zero, as in §19.6.2 and applying (18.48) to the third term,
we obtain

✓⇣ (⇣) = � 1
2⇡ı

I f⇣ (s)ds

(s� ⇣)
+

1
2⇡ı

I !(s)�0⇣ (s)ds

!0(s)(s� ⇣)
. (19.104)

At this stage, all the quantities on the right-hand side of (19.104) are known
and the integrals can generally be evaluated using the residue theorem.

19.7.1 The elliptical hole

A particularly simple case concerns the elliptical hole for which

! = c

✓

⇣ +
m

⇣

◆

, (19.105)

from (18.62), where c,m are real constants. We then have

!0(s) = c
⇣

1� m

s2

⌘

= c
�

1�ms2

�

and
!(s)
!0(s)

=
1
s

✓

s2 + m

1�ms2

◆

.

This expression has a simple pole at the origin, but when introduced into
(19.100) this is cancelled by the factor s2 in (19.102). The simple poles at
s=±p1/m lie outside S, since m<1. It follows that the integral (19.100) is
zero and

��⇣ (⇣) = � 1
2⇡ı

I

S

f⇣ (s)ds

(s� ⇣)
, (19.106)

from (19.101). Using (19.105), in (19.104), we obtain
2 For more details of this procedure, the reader is referred to A.H.England, loc.cit,
§5.3, I.S.Sokolniko↵, loc.cit, §84.
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✓⇣ (⇣) = � 1
2⇡ı

I f⇣ (s)ds

(s� ⇣)
+

1
2⇡ı

I s(1 + ms2)�0⇣ (s)ds

(s2 �m)(s� ⇣)

and since the integrand in the second term has no poles in the region exterior
to the unit circle (except for the Cauchy term (s � ⇣)), we can evaluate it
using the Cauchy integral theorem (18.48), obtaining

✓⇣ (⇣) = � 1
2⇡ı

I f⇣ (s)ds

(s� ⇣)
�
⇣(1 + m⇣2)�0⇣ (⇣)

(⇣2 �m)
. (19.107)

Example

The ellipse corresponding to the mapping function (19.105) has semi-axes

a = c(1 + m) ; b = c(1�m) ,

from equation (18.65), so with m = 1, we have a = 2c, b = 0. This defines
an ellipse with zero minor axis, which therefore degenerates to a plane crack
occupying the line �a<⇠<a, ⌘=0. Equation (19.105) then takes the special
form

! =
a

2

✓

⇣ +
1
⇣

◆

; ! =
a

2

✓

⇣̄ +
1
⇣̄

◆

. (19.108)

We shall use this and the results of §19.7.1 to determine the complete stress
field in a cracked body opened by a far-field uniaxial tensile stress �⌘⌘ = S.
This problem was solved using a distribution of dislocations in §13.3.2.

As usual, we start by considering the unperturbed solution, which is a
state of uniform uniaxial tension �⇠⇠ =�⇠⌘ =0,�⌘⌘ =S and hence

⇥ = S ; � = �S ,

from (19.47, 19.46) respectively. It is clear from equations (19.50, 19.51) that
a particular solution can be obtained in which the unperturbed potentials
�

0

, ✓
0

are linear functions of !. Elementary operations show that the required
potentials are

�
0

=
S!

4
; ✓

0

=
S!

2
and hence  

0

=
S!

2
+

S!

2
,

from (19.52).
For the complete (perturbed) solution, we want the crack S⇤ to be traction-

free and hence  (!)⌘ 
0

(!) + 
1

(!)=0 for !2S⇤, where  
1

is the perturba-
tion due to the crack. Using (19.108) to map the perturbation into the ⇣-plane
and then setting ⇣ = s, ⇣̄ = 1/s, corresponding to the unit circle |⇣|= 1, we
have

 ⇣ (s) = �Sa

2

✓

s +
1
s

◆

.
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Substituting this result into (19.106) with �=1, f⇣ = ⇣ , we obtain

�⇣ (⇣) =
1

2⇡ı

I

Sa

2

✓

s +
1
s

◆

ds

(s� ⇣)
. (19.109)

Since this is an exterior problem, ⇣ is outside the unit circle and the only pole
in the integrand is that at s=0. The residue theorem therefore gives

�⇣ (⇣) =
Sa

2
1

(�⇣) = �Sa

2⇣
. (19.110)

Substituting into (19.107) and noting that

 ⇣ (s) = �Sa

2

✓

1
s

+ s

◆

; �0⇣ =
Sa

2⇣2

,

we then obtain

✓⇣ (⇣) =
1

2⇡ı

I

Sa

2

✓

1
s

+ s

◆

ds

(s� ⇣)
� Sa(⇣2 + 1)

2⇣(⇣2 � 1)
.

The contour integral is identical with that in (19.109) and after routine cal-
culations we find

✓⇣ (⇣) = � Sa⇣

(⇣2 � 1)
. (19.111)

To move back to the !-plane, we use (18.68), which with m = 1, c = a/2
takes the form

⇣ =
! +

p
!2 � a2

a
.

Substituting this result into (19.110, 19.111), adding in the unperturbed so-
lution �

0

, ✓
0

and using the identity

1
! +

p
!2 � a2

=
! �p!2 � a2

!2 � (!2 � a2)
=
! �p!2 � a2

a2

,

we obtain the complete solution to the crack problem as

�(!) = �S!

4
+

S
p
!2 � a2

2
; ✓(!) =

S!

2
� Sa2

2
p
!2 � a2

.

Finally, the complex stresses are recovered from (19.47, 19.46) as

⇥ = 2
�

�0 + �0
�

= �S +
S!p
!2 � a2

+
S!

p

!2 � a2

� = �2
�

!�00 + ✓0
�

= �S +
Sa2(! � !)

2(!2 � a2)3/2

.

Notice that these expressions define the stress field throughout the cracked
body; not just the tractions on the plane y = 0 as in the solution in §13.3.2.
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PROBLEMS

1. A state of uniform antiplane shear �xz =S,�yz =0 in a large block of mate-
rial is perturbed by the presence of a rigid circular inclusion whose boundary
is defined by the equation r = a in cylindrical polar coordinates r, ✓, z. The
inclusion is perfectly bonded to the elastic material and is prevented from
moving, so that uz =0 at r=a. Use the complex-variable formulation to find
the complete stress field in the block and hence determine the appropriate
stress concentration factor.

2. Show that the function (18.62) maps the surfaces of the crack �a < ⇠ <
a, ⌘=0 onto the unit circle if m=1, c=a/2. Use this result and the complex-
variable formulation to solve the antiplane problem of a uniform stress field
�⌘z = S perturbed by a traction-free crack. In particular, find the mode III
stress intensity factor KIII .

3. Show that the function !(⇣)= ⇣� maps the wedge-shaped region 0<#<↵
in polar coördinates (⇢,#) into the half-plane y>0 if �=↵/⇡.

Use this mapping to solve the antiplane problem of the wedge of subtended
angle ↵ loaded only by a concentrated out-of-plane force F at the point ⇢=
a,#=0.

4. Use the stress transformation equations (1.15–1.17) to prove the relation
(19.48).

5. Express the plane strain equilibrium equations (2.2, 2.3 with �xz =�yz =0)
in terms of ⇥,�, p and ⇣, ⇣̄.

6. By analogy with equations (19.46, 19.47), we can define the complex strains
e, " as

e = exx + eyy ; " = exx + 2ıexy � eyy ,

where we note that e = div u is the dilatation in plane strain. Express the
elastic constitutive law (1.71) as a relation between e, " and ⇥,�.

7. Express the compatibility equation (2.8) in terms of the complex strains
e, " defined in Problem 6 and ⇣, ⇣̄.

8. Use (19.9) and (1.46) to obtain a complex-variable expression for the in-
plane rotation !z. Then apply your result to equation (19.57) to verify that
the term involving C

1

is consistent with a rigid-body rotation.

9. Use the method of §19.4 to determine the displacements due to the Airy
stress function �=r2✓. Express the results in terms of the components ur, u✓,
using the transformation equation (19.13).
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10. Substitute the Laurent expansion (19.94) into the contour integral
I

S

s�0(s)ds

(s� ⇣)
,

where ⇣ is a point outside the circular contour S of radius a. Use the residue
theorem to evaluate each term in the resulting series and hence verify that

1
2⇡ı

I

s�0(s)ds

(s� ⇣)
= �a2�0(⇣)

⇣
.

11. Use the method of §19.6.1 to find the complex stresses ⇥,� for Problem
12.1, where a disk of radius a is compressed by equal and opposite forces F
acting at the points ⇣=±a.

12. A state of uniform uniaxial stress, �xx =S is perturbed by the presence of
a traction-free circular hole of radius a. Use the method of §19.6.2 to find the
complex stresses ⇥,�. [Note: the Airy stress function solution of this problem
is given in §8.4.1.]

13. A state of uniform shear stress, �xy =S is perturbed by the presence of a
bonded rigid circular inclusion of radius a. Use the method of §19.6.2 to find
the complex stresses ⇥,�.

14. A state of uniform uniaxial stress, �yy = S is perturbed by the presence
of a traction-free elliptical hole of semi-axes a, b. Find the complex potentials
�, ✓ as functions of ! and hence determine the stress concentration factor as
a function of the ratio b/a. Verify that it tends to the value 3 when b=a.

15. Use the method of §19.7.1 to find the complete stress field for Problem
13.4 in which a state of uniform shear stress �xy = S is perturbed by the
presence of a crack occupying the region �a<x<a, y=0.
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THREE DIMENSIONAL PROBLEMS
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DISPLACEMENT FUNCTION SOLUTIONS

In Part II, we chose a representation for stress which satisfied the equilibrium
equations identically, in which case the compatibility condition leads to a
governing equation for the potential function. In three-dimensional elasticity,
it is more usual to use the opposite approach — i.e. to define a potential
function representation for displacement (which therefore identically satisfies
the compatibility condition) and allow the equilibrium condition to define the
governing equation.

A major reason for this change of method is simplicity. Stress function for-
mulations of three-dimensional problems are generally more cumbersome than
their displacement function counterparts, because of the greater complexity
of the three-dimensional compatibility conditions. It is also worth noting that

dimensional problems when displacement boundary conditions are involved
— particularly those associated with multiply connected bodies (see §2.2.1).

20.1 The strain potential

The simplest displacement function representation is that in which the dis-
placement is set equal to the gradient of a scalar function — i.e.

2µu = r� . (20.1)

The displacement u must satisfy the equilibrium equation (2.17), which
in the absence of body force reduces to

rdiv u + (1� 2⌫)r2u = 0 . (20.2)

We therefore obtain
rr2� = 0 , (20.3)

and hence

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 321

displacement formulations have a natural advantage in both two and three-
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r2� = C , (20.4)

where C is an arbitrary constant. The displacement function � is generally
referred to as the strain or displacement potential.

The general solution of equation (20.4) is conveniently considered as the
sum of a (harmonic) complementary function and a particular integral, and for
the latter, we can take an arbitrary second-order polynomial corresponding to
a state of uniform stress. Thus, the representation (20.1) can be decomposed
into a uniform state of stress superposed on a solution for which � is harmonic.

It is easy to see that this representation is not su�ciently general to rep-
resent all possible displacement fields in an elastic body, since, for example,
the rotation

!z =
✓

@uy

@x
� @ux

@y

◆

=
@2�

@x@y
� @2�

@y@x
⌘ 0 . (20.5)

In other words, the strain potential can only be used to describe irrotational
deformation fields1. It is associated with the name of Lamé (whose name also
attaches to the Lamé constants �, µ), who used it to solve the problems of an
elastic cylinder and sphere under axisymmetric loading. In the following work
it will chiefly be useful as one term in a more general representation.

20.2 The Galerkin vector

The representation of the previous section is insu�ciently general to describe
all possible states of deformation of an elastic body and in seeking a more
general form it is natural to examine representations in which the displacement
is built up from second rather than first derivatives of a potential function.
Using the index notation of §1.1.2, the second derivative term

@2F

@xi@xj
,

where F is a scalar, will represent a Cartesian tensor if the indices i, j are
distinct. Alternatively if we make i and j the same, we obtain

@2F

@xi@xi
⌘ @2F

@x
1

@x
1

+
@2F

@x
2

@x
2

+
@2F

@x
3

@x
3

= r2F , (20.6)

which defines the Laplace operator and returns a scalar. What we want to
obtain is a vector, which has one free index, and this can only be done if
F also has an index (and hence represents a vector). Then we have a choice
of pairing the index on F with one of the derivatives or leaving it free and
pairing the two derivatives. The most general form is a linear combination of
the two — i.e.
1 We encountered the same lack of generality with the body force potential of

Chapter 7 (see §7.1.1).
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2µui = C
@2Fi

@xj@xj
� @2Fj

@xi@xj
, (20.7)

where C is an arbitrary constant which we shall later assign so as to simplify
the representation. The function Fi must be chosen to satisfy the equilibrium
equation (20.2), which in index notation takes the form

@2uk

@xi@xk
+ (1� 2⌫)

@2ui

@xk@xk
= 0 , (20.8)

from (2.14).
Substituting (20.7) into (20.8), and cancelling non-zero factors, we obtain

C
@4Fk

@xj@xj@xi@xk
� @4Fj

@xk@xj@xi@xk
+ C(1� 2⌫)

@4Fi

@xj@xj@xk@xk

�(1� 2⌫)
@4Fj

@xi@xj@xk@xk
= 0 . (20.9)

Each term in this equation contains one free index i, all the other indices
being paired o↵ in an implied sum. In the first, second and fourth term, the
index on F is paired with one of the derivatives and the free index appears in
one of the derivatives. After expanding the implied summations, these terms
are therefore all identical and the representation can be simplified by making
them sum to zero. This is achieved by choosing

C � 1� (1� 2⌫) = 0 or C = 2(1� ⌫) ,

after which the representation (20.7) takes the form

2µui = 2(1� ⌫)
@2Fi

@xj@xj
� @2Fj

@xi@xj
, (20.10)

or in vector notation

2µu = 2(1� ⌫)r2F �rdiv F . (20.11)

With this choice, the equilibrium equation reduces to

@4Fi

@xj@xj@xk@xk
= 0 or r4F = 0 (20.12)

and the vector function F is biharmonic.
This solution is due to Galerkin and the function F is known as the

Galerkin vector. A more detailed derivation is given by Westergaard2, who
gives expressions for the stress components in terms of F and who uses this
2 H.M.Westergaard, Theory of Elasticity and Plasticity, Dover, New York, 1964,
§66.
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representation to solve a number of classical three-dimensional problems, no-
tably those involving concentrated forces in the infinite or semi-infinite body.
We also note that the Galerkin solution was to some extent foreshadowed by
Love3, who introduced a displacement function appropriate for an axisym-
metric state of stress in a body of revolution. Love’s displacement function is
in fact one component of the Galerkin vector F .

20.3 The Papkovich-Neuber solution

A closely related solution is that developed independently by Papkovich and
Neuber in terms of harmonic functions. In general, solutions in terms of har-
monic functions are easier to use than those involving biharmonic functions,
because the properties of harmonic functions have been extensively studied in
the context of other physical theories such as electrostatics, gravitation, heat
conduction and fluid mechanics.

We define the vector function

 = �1
2
r2F (20.13)

and since the function F is biharmonic,  must be harmonic.
We also note that

r2(r ·  ) = r2(x x + y y + z z)

= 2
@ x

@x
+ 2

@ y

@y
+ 2

@ z

@z

= 2 div  . (20.14)

Substituting for  from equation (20.13) into the right-hand side of
(20.14), we obtain

r2(r ·  ) = �div r2F = �r2div F (20.15)

and hence
�div F = r ·  + � , (20.16)

where � is an arbitrary harmonic function.
Finally, we substitute (20.13, 20.16) into the Galerkin vector representation

(20.11) obtaining

2µu = �4(1� ⌫) + r(r ·  + �) , (20.17)

where  and � are both harmonic functions — i.e.
3 A.E.H.Love, A Treatise on the Mathematical Theory of Elasticity, 4th.edn., Dover,

New York, 1944, §188.
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r2 = 0; r2� = 0 , (20.18)

but notice that  is a vector function, whilst � is a scalar. This is known as
the Papkovich-Neuber solution and it is widely used in modern treatments of
three-dimensional elasticity problems. We note that the scalar function � is
the harmonic strain potential introduced in §20.1 above.

20.3.1 Change of coördinate system

One disadvantage of the Papkovich-Neuber solution is that the term r ·  
introduces a dependence on the origin of coördinates, so that the potentials
corresponding to a given displacement field will generally change if the origin
is changed. Suppose that a given displacement field is characterized by the
potentials  

1

,�
1

, so that

2µu = �4(1� ⌫) 
1

+ r(r
1

· 
1

+ �
1

) , (20.19)

where r
1

is a position vector defining the distance from an origin O
1

. We
wish to determine the appropriate potentials in a new coördinate system with
origin O

2

. If the coordinates of O
1

relative to O
2

are defined by a vector s,
the position vector r

2

in the new coördinate system is

r
2

= s + r
1

. (20.20)

Solving (20.20) for r
1

and substituting in (20.19), we have

2µu = �4(1� ⌫) 
1

+ r[(r
2

� s)· 
1

+ �
1

] ,

or
2µu = �4(1� ⌫) 

2

+ r(r
2

· 
2

+ �
2

) ,

where
 

2

=  
1

; �
2

= �
1

� s ·  
1

. (20.21)

Thus, the vector potential  is una↵ected by the change of origin, but there
is a change in the scalar potential �. By contrast, the Galerkin vector F is
independent of the choice of origin.

20.4 Completeness and uniqueness

It is a fairly easy matter to prove that the representations (20.10, 20.17) are
complete — i.e. that they are capable of describing all possible elastic displace-
ment fields in a three dimensional body4. The related problem of uniqueness
4 See for example, H.M.Westergaard, loc. cit. §69 and R.D.Mindlin, Note on the

Galerkin and Papcovich stress functions, Bulletin of the American Mathematical
Society, Vol. 42 (1936), pp.373-376.
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presents greater di�culties. Both representations are redundant, in the sense
that there are infinitely many combinations of functions which correspond to
a given displacement field. In a non-rigorous sense, this is clear from the fact
that a typical elasticity problem will be reduced to a boundary-value prob-
lem with three conditions at each point of the boundary (three tractions or
three displacements or some combination of the two). We should normally
expect such conditions to be su�cient to determine three harmonic poten-
tial functions in the interior, but (20.17) essentially contains four independent
functions (three components of  and �).

Neuber gave a ‘proof’ that one of these four functions can always be set
equal to zero, but it has since been found that his argument only applies
under certain restrictions on the shape of the body. A related ‘proof’ for the
Galerkin representation is given by Westergaard in his §70. We shall give a
summary of one such argument and show why it breaks down if the shape of
the body does not meet certain conditions.

We suppose that a solution to a certain problem is known and that it
involves all the three components  x, y, z of  and �. We wish to find
another representation of the same field in which one of the components is
everywhere zero. We could achieve this if we could construct a ‘null’ field —
i.e. one which corresponds to zero displacement and stress at all points — for
which the appropriate component is the same as in the original solution. The
di↵erence between the two solutions would then give the same displacements
as the original solution (since we have subtracted a null field only) and the
appropriate component will have been reduced to zero.

Equation (20.17) shows that  , � will define a null field if

r(r ·  + �)� 4(1� ⌫) = 0 . (20.22)

Taking the curl of this equation, we obtain

curl r(r ·  + �)� 4(1� ⌫)curl  = 0 (20.23)

and hence
curl  = 0 , (20.24)

since curl r of any function is identically zero.
We also note that by applying the operator div to equation (20.22), we

obtain
r2(r ·  + �)� 4(1� ⌫)div  = 0 (20.25)

and hence, substituting from equation (20.14) for the first term,

2div  � 4(1� ⌫)div  = �2(1� 2⌫)div  = 0 . (20.26)

Now equation (20.24) is precisely the condition which must be satisfied for
the function  to be expressible as the gradient of a scalar function5. Hence,
we conclude that there exists a function H such that
5 See §7.1.1.
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 = rH . (20.27)

Furthermore, substituting (20.27) into (20.26), we see that H must be a
harmonic function.

In order to dispense with one of the components (say  z) of  in the given
solution, we need to be able to construct a harmonic function H to satisfy the
equation

@H

@z
=  z . (20.28)

If we can do this, it is easily verified that the appropriate null field can be
found, since on substituting into equation (20.22) we get

r(r·rH + �� 4(1� ⌫)H) = 0 , (20.29)

which can be satisfied by choosing � so that

� = 4(1� ⌫)H � r·rH . (20.30)

Noting that

r2(r·rH) = r2

✓

x
@H

@x
+ y

@H

@y
+ z

@H

@z

◆

= 2r2H , (20.31)

we see that � will then be harmonic, as required, since H is harmonic.

20.4.1 Methods of partial integration

We therefore consider the problem of integrating equation (20.28) subject to
the constraint that the integral be a harmonic function. We shall examine two
methods of doing this which give some insight into the problem.

The given solution and hence the function  z is only defined in the finite
region occupied by the elastic body which we denote by ⌦. We also denote
the boundary of ⌦ (not necessarily connected) by � .

One candidate for the required function H is obtained from the integral

H
1

=
Z z

z�

 zdz , (20.32)

where the integral is performed from a point on � to a point in the body along
a line in the z-direction. This function is readily constructed and it clearly
satisfies equation (20.28), but it will not in general be harmonic. However,

@

@z
r2H

1

= r2

@H
1

@z
= 0 (20.33)

and hence
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r2H
1

= f(x, y) . (20.34)

Now a harmonic function H satisfying equation (20.28) can be constructed
as

H = H
1

+ H
2

, (20.35)

where H
2

is any function of x, y only that satisfies the equation

r2H
2

= �f(x, y) . (20.36)

A suitable choice for H
2

is the logarithmic potential due to the source
distribution f(x, y), which can be explicitly constructed as a convolution in-
tegral on the logarithmic (two-dimensional) point source solution. Notice that
H

2

is not uniquely determined by (20.36), but we are looking for a particular
integral only, not a general solution. Indeed, this freedom of choice of solu-
tion could prove useful in extending the range of conditions under which the
integration of (20.28) can be performed.

At first sight, the procedure described above seems to give a general
method of constructing the required function H, but a di�culty is encoun-
tered with the definition of the lower limit z� in the integral (20.32). The path
of integration is along a straight line in the z-direction from � to the general
point (x, y, z). There may exist points for which such a line cuts the surface
� at more than two points — i.e. for which z� is multivalued. Such a case is
illustrated as the point P (x, y, z) in Figure 20.1. The integrand is undefined
outside ⌦ and hence we can only give a meaning to the definition (20.32) if we
choose the point A as the lower limit. However, by the same token, we must
choose the point C as the lower limit in the integral for the point Q(x, y, z0).

Figure 20.1: Path of integration for equation (20.32).

It follows that the function f(x, y) is not truly a function of x, y only, since
it has di↵erent values at the points P,Q, which have the same coördinates
(x, y). The f(x, y) appropriate to the region above the line TT 0 will generally

● Q(x,y,z’)

● P(x,y,z)

A

B

T T’
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have a discontinuity across the line TR, where T is the point of tangency of �
to lines in the z-direction (see Figure 20.1). Notice, however that the freedom
of choice of the integral of equation (20.36) may in certain circumstances
permit us to eliminate this discontinuity.

Another way of developing the function H
1

is as follows:- We first find
that distribution of sources which when placed on the surface � in an infinite
space would give the required potential  z in ⌦. This distribution is unique
and gives a form of continuation of  z into the rest of the infinite space which
is everywhere harmonic except on the surface � . We then write �1 for the
lower limit in equation (20.32).

The function defined by equation (20.32) will now be harmonic except
when the path of integration passes through � , in which case r2H

1

will con-
tain a term proportional to the strength of the singularity at the appropriate
point(s) of intersection. As these points will be the same for any given value
of (x, y), the resulting function will satisfy equation (20.33), but we note that
again there will be di↵erent values for the function f(x, y) if the appropriate
path of integration cuts � in more than two points. Furthermore, this method
of construction shows that the di↵erence between the two values is propor-
tional to the strength of the singularities on the extra two intersections with
� (i.e. at points B,C in Figure 20.1). One of the consequences is that f(x, y)
in the upper region will then show a square root singular discontinuity to the
left of the line TR, assuming that � has no sharp corners. This question is
still a matter of active interest in elasticity6.

20.5 Body forces

So far we have concentrated on the development of solutions to the equation of
equilibrium (20.2) without body forces. As in Chapter 7, problems involving
body forces are conveniently treated by first seeking a particular solution
satisfying the equilibrium equation (2.17)

rdiv u + (1� 2⌫)r2u +
(1� 2⌫)p

µ
= 0 (20.37)

and then superposing appropriate homogeneous solutions — i.e. solutions
without body force — to satisfy the boundary conditions.
6 For further discussion of the question, see R.A.Eubanks and E.Sternberg, On the

completeness of the Boussinesq-Papcovich stress functions, Journal of Rational
Mechanics and Analysis, Vol. 5 (1956), pp.735–746., P.M.Naghdi and C.S.Hsu,
On a representation of displacements in linear elasticity in terms of three stress
functions, Journal of Mathematics and Mechanics, Vol. 10 (1961), pp.233–246,
T.Tran Cong and G.P.Steven, On the respresentation of elastic displacement fields
in terms of three harmonic functions, Journal of Elasticity, Vol. 9 (1979), pp.325–
333.
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20.5.1 Conservative body force fields

If the body force p is conservative, we can write

p = �rV (20.38)

and a particular solution can always be found using the strain potential (20.1).
Substituting (20.1, 20.38) into (20.37) we obtain

(1� ⌫)rr2�� (1� 2⌫)rV = 0 , (20.39)

which is satisfied if
r2� =

(1� 2⌫)V
(1� ⌫)

. (20.40)

Solutions of this equation can be found for all functions V . The corresponding
stress components can then be obtained from the stress-strain and strain-
displacement relations. For example, we have

�xx = �div u + 2µ
@ux

@x
=

�

2µ
r2�+

@2�

@x2

=
⌫V

(1� ⌫)
+
@2�

@x2

, (20.41)

using (1.68–1.70, 20.40). For the shear stresses, we have for example

�xy = 2µexy = µ

✓

@uy

@x
+
@ux

@y

◆

=
@2�

@x@y
. (20.42)

20.5.2 Non-conservative body force fields

If the body force p is non-conservative, a particular solution can always be
obtained using the Galerkin vector representation of equation (20.11). Sub-
stituting into (2.16), we obtain

@4Fi

@xj@xj@xk@xk
= � pi

(1� ⌫)
, (20.43)

or
r4F = � p

(1� ⌫)
. (20.44)

This constitutes three uncoupled equations relating each component of the
Galerkin vector to the corresponding component of the body force. Particular
solutions can be found for all functions p.
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PROBLEMS

1. Show that the function

 = y
@�

@x
� x

@�

@y

will be harmonic (r2 =0) if � is harmonic. Show also that  will be bihar-
monic if � is biharmonic.

2. Find the most general solution of equation (20.4) that is spherically sym-
metric — i.e. depends only on the distance R=

p

x2+y2+z2 from the origin.
Use your solution to find the stress and displacement field in a hollow spher-
ical container of inner radius b and outer radius a, loaded only by internal
pressure p

0

at R=b. Note: Strain-displacement relations and expressions for
the gradient and Laplacian operator in spherical polar coördinates are given
in §21.4.2 below.

3. By expressing the vector operators in index notation, show that

rdiv rdiv V ⌘ r2rdiv V ⌘rdiv r2V ,

where V is any vector field.

4. Starting from equation (20.10), use (1.51, 1.71, 1.69) to develop general
expressions for the stress components �ij in the Galerkin formulation, in terms
of Fi and the elastic constants µ, ⌫.

5. Verify that the function  =1/
p

x2+y2+z2 is harmonic everywhere except
at the origin, where it is singular. This function can therefore be used as a
Papkovich-Neuber displacement function for a body that does not contain the
origin, such as the infinite body with a spherical hole centred on the origin.
Show by partial integration that it is impossible to find a function H such
that

@H

@z
=  

and r2H =0, except possibly at the origin.

6. Repeat the derivation of §20.3 using equation (20.44) in place of (20.12)
in order to generalize the Papkovich-Neuber solution to include a body force
field p. In particular, find the governing equations for the functions  ,�.

7. Find a particular solution for the Galerkin vector F for the non-conservative
body force field

px =�⇢⌦̇y ; py =⇢⌦̇x ; pz =0 .
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8. Prove the result (used in deriving (20.24)) that

curl r� = 0 ,

for any scalar function �.

9. (i) Verify that the Galerkin vector

F = Cx3yk

satisfies the governing equation (20.12) and determine the corresponding dis-
placement vector u.

(ii) Show that
F

0

=
�

(1� 2⌫)r2 + rdiv
�

f

defines a null Galerkin vector (i.e. the corresponding displacements are every-
where zero) if r4f =0.

(iii) Using this result or otherwise, find an alternative Galerkin vector for
the displacement field of part (i) that is confined to the xy-plane — i.e. such
that Fz =0.
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THE BOUSSINESQ POTENTIALS

The Galerkin and Papkovich-Neuber solutions have the advantage of pre-
senting a general solution to the problem of elasticity in a suitably compact
notation, but they are not always the most convenient starting point for the
solution of particular three-dimensional problems. If the problem has a plane
of symmetry or particularly simple boundary conditions, it is often possible to
develop a special solution of su�cient generality in one or two harmonic func-
tions, which may or may not be components or linear combinations of com-
ponents of the Papkovich-Neuber solution. For this reason, it is convenient to
record detailed expressions for the displacement and stress components aris-
ing from the several terms separately and from certain related displacement
potentials.

The first catalogue of solutions of this kind was compiled by Boussinesq1

and is reproduced by Green and Zerna2, whose terminology we use here.
Boussinesq identified three categories of harmonic potential, one being the
strain potential of §20.1, already introduced by Lamé and another compris-
ing a set of three scalar functions equivalent to the three components of the

particularly suited to torsional deformations about the three axes respectively.
In view of the completeness of the Papkovich-Neuber solution, it is clear that
these latter functions must be derivable from equation (20.17) and we shall
show how this can be done in §21.3 below3.
1 J.Boussinesq, Application des potentiels à l’étude de l’équilibre et du mouvement

des solides élastiques, Gauthier-Villars, Paris, 1885.
2 A.E.Green and W.Zerna, Theoretical Elasticity, 2nd.edn., Clarendon Press, Ox-

ford, 1968, pp.165-176.
3 Other relations between the Boussinesq potentials are demonstrated by

J.P.Bentham, Note on the Boussinesq-Papkovich stress functions, J.Elasticity,
Vol. 9 (1979), pp.201–206.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 333

Papkovich-Neuber vector,  . The third category comprises three solutions

DOI 10.1007/978-90-481-3809-8_21, © Springer Science+Business Media B.V. 2010 
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21.1 Solution A : The strain potential

Green and Zerna’s Solution A is identical with the strain potential defined in
§20.1 above (with the restriction that r2�=0) and with the scalar potential
� of the Papkovich-Neuber solution (equation (20.17)).

We define

2µux =
@�

@x
; 2µuy =

@�

@y
; 2µuz =

@�

@z
, (21.1)

and the dilatation
2µe = 2µdiv u = r2� = 0 . (21.2)

Substituting in the stress-strain relations, we have

�xx = �e + 2µexx =
@2�

@x2

(21.3)

and similarly

�yy =
@2�

@y2

; �zz =
@2�

@z2

. (21.4)

We also have

�xy = 2µexy =
@2�

@x@y
(21.5)

�yz =
@2�

@y@z
; �zx =

@2�

@z@x
. (21.6)

21.2 Solution B

Green and Zerna’s Solution B is obtained by setting to zero all the functions in
the Papkovich-Neuber solution except the z-component of  , which we shall
denote by !. In other words, in equation (20.17), we take

 = k! ; � = 0 . (21.7)

It follows that

2µux = z
@!

@x
; 2µuy = z

@!

@y
(21.8)

2µuz = z
@!

@z
� (3� 4⌫)! (21.9)

2µe = zr2! +
@!

@z
� (3� 4⌫)

@!

@z

= �2(1� 2⌫)
@!

@z
, (21.10)



21.3 Solution E : Rotational deformation 335

since r2!=0.
Substituting these expressions into the stress-strain relations and noting

that
� =

2µ⌫

(1� 2⌫)
, (21.11)

we find

�xx = �e + 2µexx = z
@2!

@x2

� 2⌫
@!

@z
(21.12)

�yy = z
@2!

@y2

� 2⌫
@!

@z
(21.13)

�zz = z
@2!

@z2

� 2(1� ⌫)
@!

@z
(21.14)

�xy = z
@2!

@x@y
(21.15)

�yz =
1
2

✓

@!

@y
+ z

@2!

@y@z
+ z

@2!

@y@z
� (3� 4⌫)

@!

@y

◆

= z
@2!

@y@z
� (1� 2⌫)

@!

@y
(21.16)

�zx = z
@2!

@z@x
� (1� 2⌫)

@!

@x
. (21.17)

This solution — if combined with solution A — gives a general solution for
the torsionless axisymmetric deformation of a body of revolution. The earliest
solution of this problem is due to Love4 and leads to a single biharmonic
function which is actually the component Fz of the Galerkin vector (§20.2).
Solution B is also particularly suitable for problems in which the plane surface
z=0 is a boundary, since the expressions for stresses and displacements take
simple forms on this surface.

It is clearly possible to write down similar solutions corresponding to
Papkovich-Neuber vectors in the x- and y-directions by permuting su�ces.
Green and Zerna refer to these as Solutions C and D.

21.3 Solution E : Rotational deformation

Green and Zerna’s Solution E can be derived (albeit somewhat indirectly)
from the Papkovich-Neuber solution by taking the vector function  to be
the curl of a vector field oriented in the z-direction — i.e.

 = curl k� . (21.18)

It follows that
4 A.E.H.Love, loc. cit.
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r ·  = x
@�

@y
� y

@�

@x
(21.19)

and hence
r2(r ·  ) = 2

@2�

@x@y
� 2

@2�

@y@x
= 0 , (21.20)

— i.e. r ·  is harmonic. We can therefore choose � such that

r ·  + � ⌘ 0 (21.21)

and hence
2µu = �4(1� ⌫)curl k� . (21.22)

To avoid unnecessary multiplying constants, it is convenient to write

 = �2(1� ⌫)� , (21.23)

in which case

2µux = 2
@ 

@y
; 2µuy = �2

@ 

@x
; 2µuz = 0 , (21.24)

giving
2µe = 0 . (21.25)

Substituting in the stress-strain relations, we find

�xx = 2
@2 

@x@y
; �yy = �2

@2 

@x@y
; �zz = 0 (21.26)

�xy =
✓

@2 

@y2

� @2 

@x2

◆

; �yz = � @2 

@x@z
; �zx =

@2 

@y@z
. (21.27)

As with Solution B, two additional solutions of this type can be constructed
by permuting su�ces.

21.4 Other coördinate systems

The above results have been developed in the Cartesian coördinates x, y, z,
but similar expressions are easily obtained in other coördinate systems.

21.4.1 Cylindrical polar coördinates

The cylindrical polar coördinate system r, ✓, z is related to the Cartesian sys-
tem through the equations

x = r cos ✓ ; y = r sin ✓ (21.28)
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as in the two-dimensional transformation (8.1). The gradient operator takes
the form

r ⌘ er
@

@r
+

e✓

r

@

@✓
+ k

@

@z
, (21.29)

where er, e✓ are unit vectors in the r and ✓ directions respectively, and the two-
dimensional Laplacian operator (8.15) aquires a z-derivative term, becoming

r2 ⌘ @2

@r2

+
1
r

@

@r
+

1
r2

@2

@✓2

+
@2

@z2

. (21.30)

The in-plane strain-displacement relations (8.22) need to be supplemented
by

erz =
1
2

✓

@ur

@z
+
@uz

@r

◆

; e✓z =
1
2

✓

@u✓

@z
+

1
r

@uz

@✓

◆

; ezz =
@uz

@z
.

(21.31)
Calculation of the stress and displacement components then proceeds as in

§§21.1–21.3. The corresponding expressions for both Cartesian and cylindrical
polar coördinates are tabulated in Table 21.1. Also, these expressions are listed
in the Maple and Mathematica files ‘ABExyz’ and ‘ABErtz’.

21.4.2 Spherical polar coördinates

The spherical polar coördinate system R, ✓,� is related to the cylindrical
system by the further change of variables

r = R sin� ; z = R cos� , (21.32)

where
R =

p

r2 + z2 =
p

x2 + y2 + z2 (21.33)

represents the distance from the origin and the two spherical angles ✓,� are
equivalent to measures of longitude and lattitude respectively, defining posi-
tion on a sphere of radius R. Notice however that it is conventional to measure
the angle of lattitude from the pole (the positive z-axis) rather than from the
equator. Thus, the two poles are defined by � = 0,⇡ and the equator by
�=⇡/2.

The gradient operator takes the form

r ⌘ eR
@

@R
+

e✓

R sin�
@

@✓
+

e�

R

@

@�
, (21.34)

where er, e✓, e� are unit vectors in the R, ✓ and � directions respectively.
Transformation of the Laplacian operator, the strain-displacement relations
and the expressions for displacement and stress components in Solutions A,B
and E is algebraically tedious but mathematically routine and only the prin-
cipal results are summarized here.
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Table 21.1. Green and Zerna’s Solutions A, B and E

Solution A Solution B Solution E

2µu

x

@�

@x

z

@!

@x

2

@ 

@y

2µu

y

@�

@y

z

@!

@y

�2

@ 

@x

2µu

z

@�

@z

z

@!

@z

� (3�4⌫)! 0

�

xx

@

2
�

@x

2 z

@

2
!

@x

2 � 2⌫

@!

@z

2

@

2
 

@x@y

�

xy

@

2
�

@x@y

z

@

2
!

@x@y

@

2
 

@y

2 � @

2
 

@x

2

�

yy

@

2
�

@y

2 z

@

2
!

@y

2 � 2⌫

@!

@z

�2

@

2
 

@x@y

�

xz

@

2
�

@x@z

z

@

2
!

@x@z

� (1�2⌫)

@!

@x

@

2
 

@y@z

�

yz

@

2
�

@y@z

z

@

2
!

@y@z

� (1�2⌫)

@!

@y

� @

2
 

@x@z

�

zz

@

2
�

@z

2 z

@

2
!

@z

2 � 2(1�⌫)@!
@z

0

2µu

r

@�

@r

z

@!

@r

2

r

@ 

@✓

2µu

✓

1

r

@�

@✓

z

r

@!

@✓

�2

@ 

@r

�

rr

@

2
�

@r

2 z

@

2
!

@r

2 � 2⌫

@!

@z

2

r

@

2
 

@r@✓

� 2

r

2
@ 

@✓

�

r✓

1

r

@

2
�

@r@✓

� 1

r

2
@�

@✓

z

r

@

2
!

@r@✓

� z

r

2
@!

@✓

1

r

@ 

@r

� @

2
 

@r

2 +

1

r

2
@

2
 

@✓

2

�

✓✓

1

r

@�

@r

+

1

r

2
@

2
�

@✓

2
z

r

@!

@r

+

z

r

2
@

2
!

@✓

2 � 2⌫

@!

@z

�2

r

@

2
 

@r@✓

+

2

r

2
@ 

@✓

�

rz

@

2
�

@r@z

z

@

2
!

@r@z

� (1�2⌫)

@!

@r

1

r

@

2
 

@✓@z

�

✓z

1

r

@

2
�

@✓@z

z

r

@

2
!

@✓@z

� 1�2⌫

r

@!

@✓

� @

2
 

@r@z

The Laplacian operator is

r2 ⌘ @2

@R2

+
2
R

@

@R
+

1
R2 sin2 �

@2

@✓2

+
1

R2

@2

@�2

+
cot�
R2

@

@�
(21.35)

and the strain-displacement relations5 are

eRR =
@uR

@R
; e✓✓ =

uR

R
+

u� cot�
R

+
1

R sin�
@u✓

@✓

5 See for example A.S.Saada, Elasticity, Pergamon Press, New York, 1973, §6.7.
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e�� =
uR

R
+

1
R

@u�

@�
; eR✓ =

1
2

✓

1
R sin�

@uR

@✓
+
@u✓

@R
� u✓

R

◆

e✓� =
1
2

✓

1
R

@u✓

@�
� u✓ cot�

R
+

1
R sin�

@u�

@✓

◆

e�R =
1
2

✓

1
R

@uR

@�
+
@u�

@R
� u�

R

◆

. (21.36)

The corresponding displacement and stress components in Solutions A,B
and E are given in Table 21.2 and are also listed in the Maple and Mathematica
files ‘ABErtb’.

21.5 Solutions obtained by superposition

The solutions obtained in the above sections can be superposed as required to
provide a solution appropriate to the particular problem at hand. A case of
particular interest is that in which the plane z=0 is one of the boundaries of
the body — for example the semi-infinite solid or half-space z>0. We consider
here two special cases.

21.5.1 Solution F : Frictionless isothermal contact problems

If the half-space is indented by a frictionless punch, so that the surface z =0
is subjected to normal tractions only, a simple formulation can be obtained
by combining solutions A and B and defining a relationship between � and !
in order to satisfy identically the condition �zx =�zy =0 on z=0.

We write
� = (1� 2⌫)' ; ! =

@'

@z
(21.37)

in solutions A, B respectively, obtaining

�zx = z
@3'

@x@z2

; �zy = z
@3'

@y@z2

, (21.38)

which vanish as required on the plane z = 0. The remaining stress and dis-
placement components are listed in Table 21.3 and at this stage we merely
note that the normal traction and normal displacement at the surface reduce
to the simple expressions

�zz = �@
2'

@z2

; 2µuz = �2(1� ⌫)
@'

@z
. (21.39)

It follows that indentation problems for the half-space can be reduced
to classical boundary-value problems in the harmonic potential function '.
Various examples are considered by Green and Zerna6, who also show that
symmetric problems of the plane crack in an isotropic body can be treated in
the same way. These problems are considered in Chapters 29–32 below.
6 A.E.Green and W.Zerna, loc. cit. §§5.8-5.10.
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Table 21.2. Solutions A, B and E in spherical polar coördinates

Solution A Solution B Solution E

2µu

R

@�

@R

R cos�

@!

@R

�(3�4⌫)! cos �

2

R

@ 

@✓

2µu

✓

1

R sin�

@�

@✓
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@!

@✓

�2

@ 

@R

sin�� 2 cos�

R

@ 

@�

2µu

�
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@�
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@ 

@✓

�
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@
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cos �
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21.5.2 Solution G: The surface free of normal traction

The counterpart of the preceding solution is that obtained by combining Solu-
tions A,B and requiring that the normal tractions vanish on the surface z=0.
We shall find this solution useful in problems involving a plane interface be-
tween two dissimilar materials (Chapter 32) and also in certain axisymmetric
crack and contact problems.

The normal traction on the plane z=0 is

�zz =
@2�

@z2

� 2(1� ⌫)
@!

@z
, (21.40)
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Table 21.3. Solutions F and G

Solution F Solution G
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from Table 21.1 and hence it can be made to vanish by writing

� = 2(1� ⌫)� ; ! =
@�

@z
, (21.41)

where � is a new harmonic potential function.
The resulting stress and displacement components are given as Solution

G in Table 21.3.

21.6 A three-dimensional complex variable solution

We saw in Part IV that the complex variable notation provides an elegant
and powerful way to represent two-dimensional stress fields and it is natural
to ask whether any similar techniques could be extended to three-dimensional
problems. Green7 used a solution of this kind in the development of higher
order solutions for elastic plates and we shall see in Chapter 28 that similar
techniques can be used for the prismatic bar with general loading on the
lateral surfaces.

We shall combine the displacement and stress components in the same way
as in Chapter 19 by defining

u = ux + ıuy ; ⇥ = �xx + �yy ; � = �xx + 2ı�xy � �yy ;  = �zx + ı�zy .
(21.42)

Following the convention of §19.1 and §21.2, we write the components of
the Papkovich-Neuber vector potential as

 =  x + ı y ; ! =  z (21.43)

and hence
r ·  = ⇣ + ⇣̄ + z! , (21.44)

from (19.6). Using these results and (19.3) in (20.17), we obtain the in-plane
displacements as

2µu = 2
@�

@⇣̄
� (3� 4⌫) + ⇣

@ 

@⇣̄
+ ⇣̄

@ 

@⇣̄
+ 2z

@!

@⇣̄
. (21.45)

and the antiplane displacement as

2µuz =
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@z
+

1
2

✓
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@z
+ ⇣
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@z

◆

+ z
@!

@z
� (3� 4⌫)! . (21.46)

Once the displacements are defined, the stress components can be found from
the constitutive law as in §§21.1,21.2. Combining these as in (21.42), we obtain
7 A.E.Green, The elastic equilibrium of isotropic plates and cylinders, Proceedings

of the Royal Society of London, Vol. A195 (1949), pp.533–552.
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where �(⇣, ⇣̄, z),!(⇣, ⇣̄, z) are real three-dimensional harmonic functions and
 (⇣, ⇣̄, z) is a complex three-dimensional harmonic function. Notice that we
can write the three-dimensional Laplace equation in the form

@2�

@z2

+ 4
@2�

@⇣@⇣̄
= 0 ;

@2!

@z2

+ 4
@2 

@⇣@⇣̄
= 0 ;

@2 

@z2

+ 4
@2 

@⇣@⇣̄
= 0 , (21.51)

using (18.9). Thus, if the functions �, depend on z, they will not generally
be holomorphic with regard to ⇣ or ⇣̄. We shall explore categories of complex-
variable solution of equation (21.51) in §24.8. below.

PROBLEMS

1. Use solution E to solve the elementary torsion problem for a cylindrical
bar of radius b transmitting a torque T , the surface r=b being traction-free.
You will need to find a suitable harmonic potential function — it will be an
axisymmetric polynomial.

2. Find a way of taking a combination of solutions A,B,E so as to satisfy
identically the global conditions

�zy = �zz = 0 ; all x, y, z = 0

Thus, �zx should be the only non-zero traction component on the surface.

3. An important class of frictional contact problems involves the steady sliding
of an indenter in the x-direction across the surface of the half-space z > 0.
Assuming Coulomb’s friction law to apply with coe�cient of friction f , the
appropriate boundary conditions are
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�xz = �f�zz ; �zy = 0 , (21.52)

in the contact area, the rest of the surface z=0 being traction-free.
Show that (21.52) are actually global conditions for this problem and find

a way of combining Solutions A,B,E so as to satisfy them identically.

4. A large number of thin fibres are bonded to the surface z=0 of the elastic
half space z>0, with orientation in the x-direction. The fibres are su�ciently
rigid to prevent axial displacement ux, but su�ciently thin to o↵er no restraint
to lateral motion uy, uz.

This composite block is now indented by a frictionless rigid punch. Find a
linear combination of Solutions A, B and E that satisfies the global conditions
of the problem and in particular find expressions for the surface values of the
normal displacement uz and the normal traction �zz in terms of the one
remaining harmonic potential function.

5. Show that if �,! are taken to be independent of x, a linear combination
of Solutions A and B defines a state of plane strain in the yz-plane (i.e.
ux =0,�xy =�xz =0 and all the remaining stress and displacement components
are independent of x).

An infinite layer 0<z <h rests on a frictionless rigid foundation at z =0,
whilst the surface z=h is loaded by the normal traction

�zz = �p
0

+ p
1

cos(my) ,

where p
1

<p
0

. Find the distribution of contact pressure at z=0.

6. A massive asteroid passes close to the surface of the Earth causing gravita-
tional forces that can be described by a known harmonic body force potential
V (x, y, z). Assuming that the a↵ected region of the Earth can be approximated
as the traction-free half space z>0, find a representation of the resulting stress
and displacement fields in terms of a single harmonic potential function. An
appropriate strategy is:-

(i) Using the particular solution of §20.5.1, show that the potential � must
be biharmonic.

(ii) Show that this condition can be satisfied by writing �=z�, where � is a
harmonic function, and find the relation between � and V .

(iii) Find the tractions on the surface of the half space in terms of derivatives
of �.

(iv) Superpose appropriate combinations of Solutions A and/or B so as to
render this surface traction free for all functions �.

Find the resulting stress field for the special case of a spherical asteroid of
radius a, for which

V = � 4⇡�⇢⇢
0

a3

3
p

x2 + y2 + (z + h)2
,
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where � is the universal gravitational constant, ⇢, ⇢
0

are the densities of the
asteroid and the Earth respectively, and the centre of the sphere is at the
point (0, 0,�h), a height h>a above the Earth’s surface.

If the Earth and the asteroid have the same density (⇢
0

=⇢) and the self-
weight of the Earth is assumed to cause hydrostatic compression of magnitude
⇢gz, where g is the acceleration due to gravity, is it possible for the passage
of the asteroid to cause tensile stresses anywhere in the Earth’s crust. If so,
where?



22

THERMOELASTIC DISPLACEMENT
POTENTIALS

As in the two-dimensional case (Chapter 14), three-dimensional problems of
thermoelasticity are conveniently treated by finding a particular solution —
i.e. a solution which satisfies the field equations without regard to bound-

appropriate representation for the general isothermal problem, such as the
Papkovich-Neuber solution.

In this section, we shall show that a particular solution can always be
obtained in the form of a strain potential — i.e. by writing

2µu = r� . (22.1)

The thermoelastic stress-strain relations (14.3, 14.4) can be solved to give

�xx = �e + 2µexx � (3�+ 2µ)↵T (22.2)
�xy = 2µexy , (22.3)

etc.
Using the strain-displacement relations and substituting for u from (22.1),

we then find

2µe = r2� (22.4)

�xx =
�

2µ
r2�+

@2�

@x2

� (3�+ 2µ)↵T (22.5)

�xy =
@2�

@x@y
, (22.6)

etc. and hence the equilibrium equation (2.2) requires that

@

@x

✓

�

2µ
r2�+r2�� (3�+ 2µ)↵T

◆

= 0 . (22.7)

Two similar equations are obtained from (2.3, 2.4) and, since we are only
looking for a particular solution, we can satisfy them by choosing

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 347

ary conditions — and completing the general solution by superposition of an
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r2� =
2µ(3�+ 2µ)↵T

(�+ 2µ)
=

2µ(1 + ⌫)↵T

(1� ⌫)
. (22.8)

Equation (22.8) defines the potential � due to a source distribution pro-
portional to the given temperature, T . Such a function can be found for all T
in any geometric domain1 and hence a particular solution of the thermoelastic
problem in the form (22.1) can always be found.

Substituting for T from equation (22.8) back into the stress equation
(22.5), we obtain

�xx =
✓

�

2µ
� (�+ 2µ)
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◆
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. (22.9)

The particular solution can therefore be summarized in the equations

r2� =
2µ(1 + ⌫)↵T

(1� ⌫)
(22.10)

2µu = r� (22.11)
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The equivalent expressions in cylindrical polar coördinates are
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where r2� is given by equation (21.30).
In spherical polar coördinates, we have
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where r2� is given by equation (21.35).
1 For example, as a convolution integral on the point source solution 1/R.
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22.1 Plane problems

If � and T are independent of z, the non-zero stress components reduce to

�xx = �@
2�

@y2

; �xy =
@2�

@x@y
; �yy = �@

2�

@x2

(22.15)

�zz = �@
2�

@x2

� @2�

@y2

(22.16)

and the solution corresponds to a state of plane strain. In fact, the relations
(22.15) are identical to the Airy function definitions, apart from a di↵erence
of sign, and similarly, (22.10) reduces to a particular integral of (14.7). How-
ever, an important di↵erence is that the present solution also gives explicit
relations for the displacements and can therefore be used for problems with
displacement boundary conditions, including those arising for multiply con-
nected bodies.

22.1.1 Axisymmetric problems for the cylinder

We consider the cylinder b<r<a in a state of plane strain with a prescribed
temperature distribution. The example in §14.1 and the treatment of isother-
mal problems in Chapters 8, 9 show that this problem could be solved for a
fairly general temperature distribution, but a case of particular importance is
that in which the temperature is an axisymmetric function T (r).

If � is also taken to depend upon r only, we can write (22.10) in the form

1
r

d

dr
r
d�

dr
=

2µ(1 + ⌫)↵T (r)
(1� ⌫)

, (22.17)

which has the particular integral

d�
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2µ(1 + ⌫)↵
(1� ⌫)r

Z r

b

rT (r)dr , (22.18)

where we have selected the inner radius b as the lower limit of integration,
since the required generality will be introduced later through the superposed
isothermal solution.

The corresponding displacement and stress components are then obtained
as
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(22.21)

�r✓ = 0 ; u✓ = 0 . (22.22)
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The general solution is now obtained by superposing those axisymmetric
terms2 from Tables 8.1, 9.1 that give single-valued displacements, with the
result

ur =
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(1� ⌫)r

Z r

b

rT (r)dr + A(1� 2⌫)r � B

r
(22.23)
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(22.25)

�r✓ = 0 ; u✓ = 0 . (22.26)

The constants A,B permit arbitrary axisymmetric boundary conditions
to be satisfied at r = a, b. The same equations can also be used for the solid
cylinder or disk (b=0), provided the constant B associated with the singular
term is set to zero.

A similar method can be used for the hollow or solid sphere with spherically
symmetric boundary conditions and whose temperature is a function of radius
only. The analysis is given by Timoshenko and Goodier, loc. cit., §152.

22.1.2 Steady-state plane problems

The definitions of the in-plane stress components in equation (22.15) are iden-
tical to those of the Airy stress function except for a di↵erence in sign. Fur-
thermore, if the temperature T is in a steady state, it must be harmonic and
hence � must be biharmonic, from (22.10). It follows that if we superpose a
homogeneous stress field derived from an equal Airy stress function '=�, the
resulting in-plane stress components will be everywhere zero. This provides
an alternative proof of the result in §14.3 that for steady-state plane prob-
lems in simply connected bodies, there will be no in-plane thermal stress if
the boundary tractions are zero.

The displacements of course will not be zero, as we know from §14.3.1.
Suppose we are given a temperature distribution T satisfying r2T = 0 and
are asked to determine the corresponding displacement field. If the body is
simply connected there are no in-plane stresses, so

exx =
@ux

@x
= ↵(1 + ⌫)T ; eyy =

@ux

@x
= ↵(1 + ⌫)T

exy =
1
2

✓

@uy

@x
+
@ux

@y

◆

= 0 , (22.27)

where we have used (14.1, 14.2) modified for plane strain by (14.8). It is
convenient to formulate this problem in the complex variable formalism of
Chapter 19. We then have
2 Notice that since this is the plane strain solution, we have used  = (3 � 4⌫) in

Table 9.1.
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,

from (18.6, 19.33). Comparing with (22.27), we see that both real and imagi-
nary parts of the right-hand side are identically zero, so

@u

@⇣̄
= 0 , (22.28)

implying that u is a holomorphic function of ⇣ only. We also have
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and we know the real part of this holomorphic function since
e

2
= ↵(1 + ⌫)T = ↵(1 + ⌫)

�

g(⇣) + ḡ(⇣̄)
�

, (22.30)

where the (harmonic) temperature is defined as

T = g(⇣) + ḡ(⇣̄) , (22.31)

as in equation (18.13). The most general holomorphic function of ⇣ satisfying
(22.29, 22.30) is

@u

@⇣
= 2↵(1 + ⌫)g(⇣) + ı!

0

, (22.32)

where !
0

is a real constant representing an arbitrary rigid body rotation
!z = !

0

. Thus, if we know the temperature and hence the function g(⇣) in
equation (22.31), we can determine the displacement field simply by integrat-
ing equation (22.32) with respect to ⇣. The translational rigid body terms will
arise as an arbitrary complex constant during this integration.

22.1.3 Heat flow perturbed by a circular hole

If the body is multiply connected, the function ' = � may correspond to
multiple-valued displacements and hence not represent a valid homogeneous
solution. In this case, additional biharmonic terms terms must be added as in
§13.1 and the resulting stress field will generally be non-zero.

Consider the case in which a uniform flow of heat qx =q
0

in a large body
is perturbed by the presence of an insulated circular hole of radius a. We can
write the temperature field in the form

T = T
0

+ T
1

,

where T
0

is the temperature that would be obtained if there were no hole and
T

1

is the perturbation in temperature due to the hole. Following the strategy
of §8.3.2, we first consider the unperturbed problem of uniform heat flow, in
order to determine the appropriate Fourier dependence of the terms describing
the perturbation.
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The unperturbed problem

In the absence of the hole, the body would be simply connected and we know
from the previous section that the in-plane stresses would be everywhere zero.
However, as in §8.3.2, an examination of the unperturbed problem enables us
to determine the appropriate Fourier dependence of the terms describing the
perturbation.

The heat flux will then be the same everywhere and we have

qx = �K
@T

0

@x
= q

0

; T
0

= �q
0

x

K
= �q

0

r cos ✓
K

, (22.33)

where we have chosen the zero of temperature to be that at the origin. This
expression varies with cos ✓ and we conclude that the perturbation in both T
and � will exhibit similar dependence on ✓.

The temperature perturbation

The temperature perturbation T
1

must be harmonic and decay as r!1 and
the only function with the required Fourier form satisfying these conditions
is cos ✓/r. We therefore write

T = T
0

+ T
1

= �q
0

r cos ✓
K

+
C

1

cos ✓
r

, (22.34)

where the constant C
1

must be determined from the condition that the radial
heat flux qr =0 at r=a. In other words,

�K
@T

@r
(a, ✓) = 0 . (22.35)

Substituting for T from (22.34) and solving for C
1

, we obtain

C
1

= �q
0

a2

K
and hence T

1

= �q
0

a2 cos ✓
Kr

. (22.36)

The thermoelastic particular solution

We can now obtain a particular thermoelastic solution �
1

for the perturbation
problem by substituting T

1

into (22.10), writing �
1

= f(r) cos ✓ and solving
for f(r). We obtain

�
1

= �µ(1 + ⌫)↵q
0

a2r ln(r) cos ✓
K(1� ⌫)

(22.37)

and the corresponding in-plane stress components are

�rr =
µ(1 + ⌫)↵q

0

a2 cos ✓
K(1� ⌫)r

; �r✓ =
µ(1 + ⌫)↵q

0

a2 sin ✓
K(1� ⌫)r

�✓✓ =
µ(1 + ⌫)↵q

0

a2 cos ✓
K(1� ⌫)r

, (22.38)

from (22.13).



22.1 Plane problems 353

The homogeneous solution

The surface of the hole must be traction-free — i.e.

�rr = �r✓ = 0 ; r = a (22.39)

and these conditions are clearly not satisfied by equations (22.38). We must
therefore superpose a homogeneous solution which we construct from the Airy
stress function terms

' = C
2

r✓ sin ✓ + C
3

r ln(r) cos ✓ +
C

4

cos ✓
r

, (22.40)

from Table 8.1. The choice of these terms is dictated by the Fourier dependence
of the required stress components and the condition that the perturbation
must decay as r ! 1. The corresponding in-plane stresses (including the
particular solution) are

�rr =
µ(1 + ⌫)↵q

0

a2 cos ✓
K(1� ⌫)r

+
2C

2

cos ✓
r

+
C

3

cos ✓
r

� 2C
4

cos ✓
r3

�r✓ =
µ(1 + ⌫)↵q

0

a2 sin ✓
K(1� ⌫)r

+
C

3

sin ✓
r

� 2C
4

sin ✓
r3

(22.41)

�✓✓ =
µ(1 + ⌫)↵q

0

a2 cos ✓
K(1� ⌫)r

+
C

3

cos ✓
r

+
2C

4

cos ✓
r3

and the boundary conditions (22.39) then require that

2C
2

a
+

C
3

a
� 2C

4

a3

= �µ(1 + ⌫)↵q
0

a

K(1� ⌫)
(22.42)

C
3

a
� 2C

4

a3

= �µ(1 + ⌫)↵q
0

a

K(1� ⌫)
. (22.43)

A third equation for the three constants C
2

, C
3

, C
4

is obtained from the re-
quirement that the displacements be single-valued, as in §13.1. This condition
is automatically satisfied by the particular solution, since it is derived from
a single-valued displacement function �

1

, so we simply record the potentially
multiple-valued terms arising from '. The first two terms in (22.40) are identi-
cal to (13.1) except that C

1

is replaced by C
2

and hence the required condition
is

C
2

(� 1) + C
3

(+ 1) = 0 , (22.44)

by comparison with (13.7). The use of the thermoelastic potential independent
of z implies plane strain conditions, so we set =3�4⌫ obtaining

2(1� 2⌫)C
2

+ 4(1� ⌫)C
3

= 0 . (22.45)

We can then solve (22.42, 22.43, 22.45) for C
2

, C
3

, C
4

, obtaining
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C
2

= C
3

= 0 ; C
4

=
µ↵(1 + ⌫)q

0

a4

2K(1� ⌫)
. (22.46)

The final stress field is then obtained as

�rr =
µ↵(1 + ⌫)q

0

a2(r2 � a2) cos ✓
K(1� ⌫)r3

�r✓ =
µ↵(1 + ⌫)q

0

a2(r2 � a2) sin ✓
K(1� ⌫)r3

(22.47)

�✓✓ =
µ↵(1 + ⌫)q

0

a2(r2 + a2) cos ✓
K(1� ⌫)r3

.

In particular, the maximum tensile stress is

�
max

= �✓✓(a, 0) =
2µ↵(1 + ⌫)q

0

a

K(1� ⌫)
. (22.48)

22.1.4 Plane stress

All the results in §22.1 have been obtained from the three dimensional repre-
sentation (22.1) under the restriction that � be independent of z and hence
uz = 0. They therefore define the plane strain solution. Corresponding plane
stress results can be obtained by making the substitutions

µ = µ0 ; ⌫ =
⌫0

(1 + ⌫0)
; ↵ =

↵0(1 + ⌫0)
(1 + 2⌫0)

(22.49)

and then removing the primes.

22.2 The method of strain suppression

An alternative approach for obtaining a particular solution for the thermoe-
lastic stress field is to reduce it to a body force problem using the method of

strain suppression. Suppose we were to constrain every particle of the body so
as to prevent it from moving — in other words, we constrain the displacement
to be everywhere zero. The strains will then be identically zero everywhere
and the constitutive equations (22.2, 22.3) reduce to

�xx = �yy = �zz = �(3�+2µ)↵T = �2µ(1+ ⌫)↵T

(1� 2⌫)
; �xy = �yz = �zx = 0 .

(22.50)
Of course, these stresses will not generally satisfy the equilibrium equations,
but we can always find a body force distribution that will restore equilibrium
— all we need to do is to substitute the non-equilibrated stresses (22.50)
into the equilibrium equation with body forces (2.5) and use the latter as a
definition of p, obtaining
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p =
2µ(1 + ⌫)
(1� 2⌫)

↵rT . (22.51)

It follows that (22.50) will define the stresses in the body for the specified
temperature distribution if (i) body forces (22.51) are applied and (ii) purely
normal tractions are applied at the boundaries given by

t = �2µ(1 + ⌫)
(1� 2⌫)

↵Tn , (22.52)

where T is the local temperature at the boundary and n is the local outward
normal unit vector.

To complete the solution, we must now remove the unwanted body forces
by superposing the solution of a problem with no thermal strains, but with
equal and opposite body forces and with surface tractions that combined with
(22.52) satisfy the traction boundary conditions of the original problem.

The resulting body force problem might be solved using the body force
potential of §20.5.1, since (22.51) defines a conservative vector field. However,
the boundary value problem would then be found to be identical with that
obtained by substituting the original temperature distribution into (22.8), so
this does not really constitute a new method. An alternative strategy might
be to represent the body force as a distribution of point forces as suggested
in §13.1.1, but using the three-dimensional Kelvin solution which we shall
develop in the next chapter.

22.3 Steady-state temperature : Solution T

If the temperature distribution is in a steady-state and there are no internal
heat sources, the temperature T is harmonic, from equation (14.16). It follows
from equation (22.10) that the potential function � is biharmonic and it can
conveniently be expressed in terms of a harmonic function � through the
relation

� = z� . (22.53)

We then have
r2� = 2

@�

@z
(22.54)

and hence
T =

(1� ⌫)
µ↵(1 + ⌫)

@�

@z
, (22.55)

from equation (22.10). Expressions for the displacements and stresses are eas-
ily obtained by substituting (22.53) into equations (22.11–22.12) and they are
tabulated as Solution T in Table 22.1 (for Cartesian and cylindrical polar
coördinates) and Table 22.2 (for spherical polar coördinates).

We also note that the heat flux q = �KrT and hence, for example,
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Table 22.1. Solutions T and P

Solution T Solution P

Williams’ solution Thermoelastic Plane Stress
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Table 22.2. Solution T in spherical polar coördinates

Solution T
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, (22.56)

where K is the thermal conductivity of the material. These expressions are
listed in the Maple and Mathematica files ‘Txyz’, ‘Trtz’ ‘Trtb’ for Cartesian,
cylindrical polar and spherical polar coördinates respectively.

The solution here described was first obtained by Williams3 and was used
by him for the solution of some thermoelastic crack problems.

22.3.1 Thermoelastic plane stress

An important thermoelastic solution is that appropriate to the steady-state
thermoelastic deformation of a traction-free half-space, which can be obtained
3 W. E. Williams, A solution of the steady-state thermoelastic equations, Zeitschrift

für angewandte Mathematik und Physik, Vol. 12 (1961), pp.452–455.
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by superposing solutions A,B,T and taking

� = 2(1� ⌫) ; ! = �� =
@ 

@z
. (22.57)

The resulting expressions are given in Table 22.1 as Solution P. A striking
result is that the three stress components �zx,�zy,�zz are zero, not merely on
the plane z=0, where we have forced them to zero by the relations (22.57), but
throughout the half-space. For this reason, the solution is also appropriate to
the problem of a thick plate a<z<b with traction free faces. Because of this
feature, the solution is henceforth referred to as thermoelastic plane stress.

Notice also the similarity of the expressions for the non-zero stresses
�xx,�xy,�yy to the corresponding expressions obtained from the Airy stress
function. However, the present solution is not two-dimensional — i.e. the
temperature and hence all the non-zero stress and displacement components
can be functions of all three coördinates — and it is exact, whereas the two-
dimensional plane stress solution is generally approximate.

Another result of interest is

@2uz

@x2

+
@2uz

@y2

= � (1� ⌫)
µ

✓

@3 

@x2@z
+

@3 

@y2@z

◆

=
(1� ⌫)

µ

@3 

@z3

(because  and hence @ /@z is harmonic)

=
↵(1 + ⌫)qz

K
= �qz , (22.58)

where � is the thermal distortivity (see §14.3.1).
In other words, the sum of the principal curvatures of any distorted z-plane

is proportional to the local heat flux across that plane4. The corresponding
two-dimensional result was proved in §14.3.1.

PROBLEMS

1. The temperature T (R) in a hollow sphere b < R < a depends only on
the radius R and the surfaces of the sphere are traction-free. Use a method
similar to that in §22.1.1 to obtain expressions for the stress and displacement
components for any function T (R).

Note: The most general spherically symmetrical isothermal state of stress
(i.e. the general homogeneous solution) can be written by superposing (i) the
function A/R in solution A of Table 21.2 and (ii) a uniform state of hydrostatic
stress. The identity
4 Further consequences of this result are discussed in J.R.Barber, Some implications

of Dundurs’ theorem for thermoelastic contact and crack problems, Journal of
Strain Analysis, Vol. 22 (1980), pp.229–232.



Problems 359

d2

dR2

+
2
R

d

dR
⌘ 1

R2

d

dR

✓

R2

d

dR

◆

may also prove useful.

2. The temperature field in the elastic half-space z>0 is defined by

T (x, y, z) = f(z) cos(mx) ,

where f(z) is a known function of z only. The surface z =0 of the half-space
is traction-free. Show that the normal surface displacement uz(x, y, 0) can be
written

uz(x, y, 0) = u
0

cos(mx) ,

where
u

0

= 2↵(1 + ⌫)
Z 1

0

e�msf(s)ds .

Important Note: This problem cannot be solved using Solutions T or P,
since the temperature field will only be harmonic for certain special functions
f(z). To solve the problem, assume a strain potential � of the form

� = g(z) cos(mx) ,

substitute into (22.10) and solve the resulting ordinary di↵erential equation
for g(z). You can then superpose appropriate potentials from solutions A and
B of Table 21.1 to satisfy the traction-free boundary condition.

3. During a test on an automotive disk brake, it was found that the temper-
ature T of the disk could be approximated by the expression

T =
5
4
(1� e�⌧ )� r2

2a2

(1� e�⌧ ) +
r4

8a4

⌧e�⌧ ,

where ⌧ = t/t
0

is a dimensionless time, a is the radius of the disk, r is the
distance from the axis, t is time and t

0

is a constant. The disk is continuous
at r=0 and all its surfaces can be assumed to be traction-free.

Derive expressions for the radial and circumferential thermal stresses as
functions of radius and time, and hence show that the maximum value of the
stress di↵erence (�✓✓��rr) at any given time always occurs at the outer edge
of the disk.

4. A heat exchanger tube consists of a long hollow cylinder of inner radius a
and outer radius b, maintained at temperatures Ta, Tb respectively. Find the
steady-state stress distribution in the tube if the curved surfaces are traction-
free and plane strain conditions can be assumed.

5. The steady-state temperature T (⇠, ⌘) in the quarter plane ⇠ � 0, ⌘ � 0 is
determined by the boundary conditions
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T (⇠, 0) = 0 ; ⇠ > 0
T (0, ⌘) = T

0

; 0 < ⌘ < a

= 0 ; ⌘ > a .

Use the function
!(⇣) = ⇣1/2

to map the problem into the half plane y>0 and solve for T using the method
of §18.6.3.

Then determine the displacement throughout the quarter plane, using
equation (22.32).

6. Use dimensional arguments and continuity of heat flux to show that the
two-dimensional steady-state temperature field in the half plane y>0 due to
a line heat source Q per unit length at the origin is

T (x, y) =
Q

K
ln(r) + C ,

where r=
p

x2 + y2 is the distance from the origin, K is the thermal conduc-
tivity and C is a constant.

Use this result and equation (22.32) to determine the displacement through-
out the half plane. Assume that C =0 and neglect rigid-body displacements.
In particular, determine the displacements at the surface y=0 and verify that
they satisfy Dundurs’ theorem (14.21).

7. A uniform heat flux qx = q
0

in a large body in a state of plane strain is
perturbed by the presence of a rigid non-conducting circular inclusion of radius
a. The inclusion is bonded to the matrix at r = a. Find the complete stress
field in the matrix and identify the location and magnitude of the maximum
tensile stress. Assume plane strain conditions.

8. A uniform heat flux qx = q
0

in a large body in a state of plane strain with
elastic and thermal properties µ

1

, ⌫
1

,↵
1

,K
1

is perturbed by the presence of
a circular inclusion of radius a with properties µ

2

, ⌫
2

,↵
2

,K
2

. The inclusion is
bonded to the matrix at r = a. Find the complete stress field in the matrix
and the inclusion and identify the location and magnitude of the maximum
tensile stress in each. Assume plane strain conditions. Note: You will find the
algebra for this problem formidable if you do not use Maple or Mathematica.

9. A rigid non-conducting body slides at velocity V in the positive x-direction
over the surface of the thermoelastic half-space z >0, causing frictional trac-
tions �zx and frictional heating qz given by

�zx = �f�zz ; �zy = 0 ; qz = V �zx ,

where f is the coe�cient of friction. Find a solution in terms of one potential
function that satisfies these global boundary conditions in the steady state.
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If the half-space remains in contact with the sliding body throughout the
plane z = 0, we have the additional global boundary condition uz = 0. Show
that a non-trivial steady-state solution to this problem can be obtained using
the harmonic function

Ce�mz cos(my) ,

where C is an arbitrary constant and m is a parameter which must be chosen
to satisfy the displacement boundary condition. Comment on the physical
significance of this solution.

10. The half-space z >0 is bonded to a rigid body at the surface z =0. Show
that in the steady state, the surface temperature T (x, y, 0) and the normal
stress �zz(x, y, 0) at the bond are related by the equation

�zz(x, y, 0) = �2µ↵(1 + ⌫)T (x, y, 0)
(3� 4⌫)

.

11. The traction-free surface of the half space z>0 is uniformly heated in the
annular region a<r<b and unheated elsewhere, so that

qz(r, ✓, 0) =
Q

⇡(b2 � a2)
; a < r < b

= 0 ; 0  r < a and r > b .

Use equation (22.58) to determine the slope of the surface

@uz

@r
(r, ✓, 0)

in the steady state. By taking the limit of this solution as a!b or otherwise,
find the surface displacement due to a heat input Q uniformly distributed
along a circle of radius b. Comment on the implications for steady-state ther-
moelastic contact problems.
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SINGULAR SOLUTIONS

Singular solutions have a special place in the historical development of poten-
tial theory in general and of Elasticity in particular. Many of the important
early solutions were obtained by appropriate superposition of singular po-
tentials, noting that any form of singularity is permitted provided that the
singular point is not a point of the body1.

The generalization of this technique to allow continuous distributions of
singularities in space (either at the boundary of the body or in a region of
space not occupied by it) is still one of the most widely used methods of
treating three-dimensional problems.

In this chapter, we shall consider some elementary forms of singular so-
lution and examine the problems that they solve when used in the various
displacement function representations of Chapter 21. The solutions will be

most straightforward and progressing to more complex forms. However, once
appropriate forms have been introduced, a systematic way of developing them
from first principles will be discussed in the next chapter.

23.1 The source solution

A convenient starting point is the most elementary singular harmonic function

� =
1
R

=
1

p

x2 + y2 + z2

, (23.1)

which is easily demonstrated to be harmonic (except at the origin) by substi-
tution into Laplace’s equation. We shall refer to this solution as the ‘source’
solution, since it describes the steady-state temperature in an infinite body
1 If it is a point of the body, certain restrictions must be imposed on the strength

of the singularity, as discussed in §11.2.1 and §33.8.1.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 363

developed in a rather ad hoc way, starting with those that are mathematically
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with a point heat source at the origin or alternatively the potential in an in-
finite space with a point electric charge at the origin. It is clearly spherically
symmetric — i.e. the potential depends only on the distance R from the ori-
gin — and it can be developed from first principles, starting with Laplace’s
equation in spherical polar coördinates (21.35) and imposing the condition
that � be a function of R only. The governing equation then reduces to

d2�

dR2

+
2
R

d�

dR
= 0 (23.2)

of which (23.1) is clearly the only singular solution.
We shall examine the stress fields corresponding to the use of the source

solution in Solutions A and B of Tables 21.1, 21.2.

23.1.1 The centre of dilatation

The strain potential solution (Solution A) is isotropic — i.e., the stress and
displacement definitions preserve the same form in any Cartesian coördinate
transformation — and hence the spherically symmetric function 1/R must
correspond to a spherically symmetric state of stress and displacement.

Substituting �=1/R into Table 21.2, we obtain

2µuR = � 1
R2

; 2µu✓ = 2µu� = 0 (23.3)

�RR =
2

R3

; �✓✓ = ��� = � 1
R3

; �✓� = ��R = �R✓ = 0 . (23.4)

Consider points on the spherical surface R = a, whose area is 4⇡a2. These
points move radially outwards through a distance uR(a) and hence the mate-
rial inside the imaginary sphere increases in volume by

�V = 4⇡a2uR(a) = �2⇡
µ

,

using (23.3). Notice that �V is independent of a, implying that the volume
of the imaginary hollow sphere b < R < a remains constant. In other words,
the volume change is all concentrated at the origin, and we can construct a
solution for a prescribed volume change �V through the potential

� = �µ�V

2⇡R
. (23.5)

This defines the singularity known as the centre of dilatation or centre of
compression2. Combined with a state of uniform hydrostatic stress, it can be
used to describe the stresses and displacements in a thick-walled spherical
2 S.P.Timoshenko and J.N.Goodier, loc. cit., §136.
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pressure vessel loaded by arbitrary uniform pressure at the inner and outer
surfaces. This solution was first obtained by Lamé.

The centre of dilatation is not admissable at an interior point of a continu-
ous body — it would correspond to an infinitesimal hole containing a fluid at
infinite pressure. However, a distribution of centres of dilatation can be used to
describe dilatational e↵ects such as those arising from thermal expansion. In
fact, the thermoelastic potential of equations (22.10–22.12) could be regarded
as being derived from Solution A by distributing sources of strength propor-
tional to ↵T throughout the space occupied by the body, to take account of
the thermal dilatation. A similar technique can be used for dilatation arising
from other sources, such as phase transformation.

23.1.2 The Kelvin solution

In Solution B, the stress components contain terms that are first derivatives of
the potential ! or second derivatives multiplied by z. Hence, if we substitute
!=1/R, we anticipate that the stresses will vary inversely with the square of
the distance from the origin and hence that the force resultant over a spherical
surface of radius a, with centre at the origin will be independent of a. In fact,
this potential corresponds to the three-dimensional Kelvin problem, in which
a concentrated force in the z-direction is applied at the origin in an infinite
elastic body.

We shall demonstrate this by evaluating the stress components �zz,�rz

and considering the equilibrium of the region �h<z <h, which includes the
origin.

Noting that

@

@z

✓

1
R

◆

= � z

R3

;
@

@r

✓

1
R

◆

= � r

R3

, (23.6)

we obtain

�zz = z
@2!

@z2

� 2(1� ⌫)
@!

@z
= z

✓

3z2

R5

� 1
R3

◆

+ 2(1� ⌫)
z

R3

= (1� 2⌫)
z

R3

+
3z3

R5

(23.7)

�rz = z
@2!

@r@z
� (1� 2⌫)

@!

@r

= (1� 2⌫)
r

R3

+
3rz2

R5

. (23.8)

We now consider the equilibrium of the cylinder r <a, �h<z <h, which
is shown in Figure 23.1.
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Figure 23.1: The Kelvin problem

The curved surfaces r = a of this cylinder experience a force in the z-
direction because of the stress �rz, but this force decays to zero as a!1,
since, although the area increases with a (being equal to 2⇡ah), the stress com-
ponent decreases with a2. We can therefore restrict attention to the surfaces
z=±h if a is su�ciently large.

The stress component �zz is odd in z and hence the forces transmitted
across the two surfaces are equal and have the total value

Fz = 2
Z 1

0

2⇡r

✓

(1� 2⌫)h
R3

+
3h3

R5

◆

dr

= 4⇡


� (1� 2⌫)h
R

� h3

R3

�r=1

r=0

= 8⇡(1� ⌫) , (23.9)

where we note that R= |z| when r=0.
It follows that there must be an equal and opposite force at the origin.

Hence, the function

! = � F

8⇡(1� ⌫)R
(23.10)

in Solution B corresponds to the problem of a force F acting in the z-direction
at the origin in the infinite elastic body. The complete stress field is easily
obtained by substituting (23.10) into the appropriate expressions from Table
21.1 or Table 21.2.

23.2 Dimensional considerations

In the last section, we developed the Kelvin solution ‘accidentally’ by exam-
ining the stress field due to the source potential in Solution B. However, a
more deductive development of the solution can be made from equilibrium
and dimensional considerations.
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We first note that the Kelvin problem is self-similar (see §12.1), since
there is no inherent length scale. It follows that the form of the variation of
the solution with ✓,� must be independent of the distance R from the origin
and hence that the solution can be expressed in the separated-variable form

f(R, ✓,�) = g(R)h(�, ✓) , (23.11)

where f is any field quantity such as a stress or displacement component.
Given this result, we can deduce from equilibrium considerations that the

function g(R) appropriate to the stress components must be R�2, since the
total resultant force across any one of a class of self-similar surfaces (i.e.
surfaces of the same shape but di↵erent size) must be the same, and the
surface area of such surfaces will be proportional to the square of their linear
dimensions. Thus, any stress component must decay with distance from the
origin according to R�2.

We now examine solutions A and B to see what type of singular function
would satisfy this condition. On dimensional grounds, we find that the poten-
tial would have to be of order R0 in Solution A and of order R�1 in Solution
B. We shall see in the next section that there are singular potentials of order
R0, but that they involve singularities not merely at the origin, but along at
least half of the z-axis. Thus, they cannot be used for a problem involving
the whole infinite body. We are therefore left with the function 1/R — which
we know to be harmonic — in Solution B, which can then be developed as in
§23.1.2.

23.2.1 The Boussinesq solution

We shall now apply similar arguments to solve the Boussinesq problem, in
which a point force F in the z-direction is applied at the origin R=0 on the
surface z=0 of the half-space z>0, as shown in Figure 23.2. In particular, it
is clear that this problem is also self-similar and equilibrium arguments again
demand that the stress components decay with distance from the origin with
R�2.

This problem is treated by Timoshenko and Goodier3 by superposing fur-
ther singular solutions on the Kelvin solution so as to make the surface z=0
free of tractions except at the origin. A more direct (and modern) approach
is to seek a special potential function solution which identically satisfies two
of the three boundary conditions at the surface.
3 loc. cit., §138.
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Figure 23.2: The Boussinesq problem

We note that the force is normal to the surface, so that there is no tan-

gential traction at any point on the surface4 — i.e.

�zx = �zy = 0 ; all x, y, z = 0 . (23.12)

Since this condition applies at all points of the surface z = 0, we shall
refer to it as a global boundary condition and it is appropriate to satisfy it
by constructing a potential function solution which satisfies it identically, this
being Solution F of Table 21.3. It then remains to find a suitable potential
function which when used in Solution F will yield stress components which
decay with R�2.

Examination of Solution F shows that 1/R will not be suitable in the
present instance, since the stresses are obtained by two di↵erentiations of the
stress function and hence we require ' to vary with R0. We therefore seek a
suitable partial integral of 1/R — to be dimensionless in R and singular at
the origin, but otherwise to be continuous and harmonic in z>0.

It is easily verified that the function

' =
Z

0

�1

d⇣
p

x2 + y2 + (z � ⇣)2
= ln(R + z) (23.13)

satisfies these requirements. Notice that this function is singular on the nega-
tive z-axis, where R=�z, but not on the positive z-axis, where R=z. In fact,
it can be regarded as the potential due to a uniform distribution of sources
on the negative z-axis (r=0, z<0).

Substituting into Solution F, we find

�zz = z
@3'

@z3

� @2'

@z2

=
3z3

R5

(23.14)

and hence the surface z=0 is free of traction except at the origin as required5.
4 The normal traction is zero everywhere except at the origin, where there is a delta

function loading, i.e. �
zz

=�F �(x)�(y).
5 The condition �

zr

=0 on the surface is guaranteed by the use of Solution F.
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The force applied at the origin is

F = �2⇡
Z 1

0

r�zz(r, h)dr

= �6⇡h3

Z 1

0

rdr

(r2 + h2)5/2

= �2⇡ (23.15)

and hence the stress field due to a force F in the z-direction applied at the
origin is obtained from the potential

' = � F

2⇡
ln(R + z) . (23.16)

The displacements at the surface z = 0 are of particular interest, in view
of the application to contact problems6. We have

2µur(r, 0) = (1� 2⌫)
@'

@r
= �F (1� 2⌫)

2⇡r
; z = 0 (23.17)

2µuz(r, 0) = �2(1� ⌫)
@'

@z
=

F (1� ⌫)
⇡r

; z = 0 . (23.18)

Thus, both displacements vary inversely with distance from the point of
application of the force F , as indeed we could have deduced from dimensional
considerations. The singularity in displacement at the origin is not serious,
since in any practical application, the force will be distributed over a finite
area. If the solution for such a distributed force is found by superposition
using the above result, the singularity will be integrated out.

We note that the displacements are bounded at infinity, in contrast to the
two-dimensional case (see Chapter 12). It is therefore possible to regard the
point at infinity as a reference for rigid-body displacements, if appropriate.

The radial surface displacement ur is negative, indicating that a force F
directed into the half-space — i.e. a compressive force — causes the surround-
ing surface to move towards the origin7. We can define a surface dilatation es

on the surface z=0, such that

es ⌘ @ux

@x
+
@uy

@y
=
@ur

@r
+

ur

r
+

1
r

@u✓

@✓
. (23.19)

Substituting for the displacement from equation (23.17), we obtain
6 cf. Chapter 12.
7 Most engineers would say that this is what they would intuitively expect, but the

validity of this intuition is suspect, since the corresponding result for a tensile
force — for which the radial displacement is directed away from the origin — is
counter-intuitive. Our expectation here is probably determined by the thought
that forces of either direction will stretch the surface and hence draw points
towards the origin, but this is a second order (non-linear) e↵ect and cannot be
admitted in the linear theory.
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es = �F (1� 2⌫)
4⇡µ

✓

� 1
r2

+
1
r2

◆

= 0 . (23.20)

In other words, the normal force F does not cause any dilatation of the
surface z = 0, except at the origin. However, if we draw a circle of radius a,
centre the origin on the surface, it is clear that the radius of this circle gets
smaller by the amount of the inward radial displacement and hence the area
of the circle A increases by

�A = 2⇡aur = �F (1� 2⌫)
2µ

. (23.21)

This result is independent of a — i.e. all circles reduce in area by the
same amount8 and all of this reduction must therefore be concentrated at
the origin, where in a sense a small amount of the surface is lost. We can
generalize this result by superposition to state that, if there is an arbitrary
distribution of purely normal (compressive) traction on the surface z = 0 of
the half-space, the area A enclosed by any closed curve will change by �A
of equation (23.21), where F is now to be interpreted as the resultant of the
tractions acting within the area A.

23.3 Other singular solutions

We have already shown how the singular solution ln(R+z) can be obtained
from 1/R by partial integration, which of course is a form of superposition.
A whole sequence of axially symmetric solutions can be obtained in the same
way. Defining

�
0

=
1
R

, (23.22)

we obtain

��1

= ln(R + z) ; ��2

= z ln(R + z)�R

��3

=
1
4
�

(2z2 � r2) ln(R + z)� 3Rz + r2

 

(23.23)

��4

=
1
36
�

3(2z3 � 3zr2) ln(R + z) + 9zr2 � 11z2R + 4r2R
 

; . . .

by the operation9

�n�1

(r, z) =
Z

0

�1
�n(r, (z � ⇣))d⇣ . (23.24)

8 as could be argued from the fact that the surface dilatation is zero.
9 Some care needs to be taken with the behaviour of the integral at the upper limit

to obtain bounded partial integrals by this method. A more systematic method
of developing this sequence will be introduced in §24.6 below.
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All of these functions are harmonic except at the origin and on the negative
z-axis, where R + z!0. A corresponding set of harmonic potentials singular
only on the positive z-axis can be obtained by setting z!�z in (23.23), which
is equivalent to reflecting the potentials about the plane z=0. It is convenient
to define the signs of these functions such that

��1

= � ln(R� z) ; ��2

= �z ln(R� z)�R

��3

= �1
4
�

(2z2 � r2) ln(R� z) + 3Rz + r2

 

(23.25)

��4

= � 1
36
�

3(2z3 � 3zr2) ln(R� z) + 9zr2 + 11z2R� 4r2R
 

; . . . ,

since with this convention, the recurrence relation between both sets of po-
tentials is defined by

�n =
@�n�1

@z
. (23.26)

The sequence can also be extended to functions with stronger singularities
by applying (23.26) to (23.22), obtaining

�
1

= � z

R3

; �
2

=
3z2

R5

� 1
R3

; �
3

= �15z3

R7

+
9z

R5

; . . . (23.27)

These functions are harmonic and bounded everywhere except at the origin.
We can also generate non-axisymmetric potential functions by di↵erenti-

ation with respect to x or y. For example, the function
@

@x

⇣

� z

R3

⌘

=
3xz

R5

=
3 sin(2�) cos ✓

2R3

(23.28)

in spherical coordinates, is a non-axisymmetric harmonic function. However,
these solutions can be obtained more systematically in terms of Legendre
polynomials, as will be shown in the next chapter.

The integrated solutions solutions defined by equation (23.24) can be gen-
eralized to permit an arbitrary distribution of sources along a line or surface.
For example, a fairly general axisymmetric harmonic potential can be written
in the form

�(r, z) =
Z b

a

g(⇣)dt
p

r2 + (z � ⇣)2
, (23.29)

which defines the potential due to a distribution of sources of strength g(z)
along the z-axis in the range a<z<b. Such a solution defines bounded stresses
and displacements in any body which does not include this line segment. When
the boundary conditions of the problem are expressed in terms of a represen-
tation such as (23.29), the problem is essentially reduced to the solution of
an integral equation or a set of integral equations. This technique has a long
history in the solution of axisymmetric flow problems around smooth bodies
and it can be used for the related elasticity problem in which a uniform tensile
stress is perturbed by an axisymmetric cavity. We shall also use an adaptation
of the same method for solving crack and contact problems for the half-space
in Chapters 30,31.



372 23 Singular solutions

23.4 Image methods

As in the two dimensional case, singular solutions for the half space can be
obtained by placing appropriate image singularities outside the body. We con-
sider the case in which the half space z > 0 with elastic constants µ

1

,
1

is
bonded to the half space z < 0 with constants µ

2

,
2

. Suppose that a singu-
larity such as a concentrated force exists somewhere in the half space z > 0
and that the same singularity in an infinite body can be defined in terms
of the complex Papkovich-Neuber solution of §21.6 through the potentials
�(0)(⇣, ⇣̄, z), (0)(⇣, ⇣̄, z),!(0)(⇣, ⇣̄, z). In other words these are the potentials
that would apply if the entire space had the same elastic constants µ

1

,
1

.
Aderogba10 shows that the stress field in the composite body can then be

obtained from the potentials
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(23.30)

for z > 0 and

�(2) = (A + 1)�(0) +
(A2

1

�B)�
2

Z

!(0)dz + (1 + D �A
1

)�L
⇢

Z

 (0)dz

�

+C�J
⇢

Z Z

 (0)dzdz

�

 (2) = �D� (0)

!(2) = �(B + 1)�(0) � (D� + B + 1)J
⇢

Z

 (0)dz

�

(23.31)

for z < 0, where

J { } =
@ 

@⇣
+
@ 

@⇣̄
; L{ } =

1
2
@

@z

�

⇣ + ⇣̄ 
�� zJ { } , (23.32)

and the composite material properties are defined as
10 K.Aderogba, On eigenstresses in dissimilar media, Philosophical Magazine, Vol.

35 (1977), pp.281–292.
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� =
µ

2

µ
1

; H =
(� � 1)
(� + 1)

; A =
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+ 1)
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1
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)

C =
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(
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+ 1)(
2

+ 1) .

The arbitrary functions implied by the partial integrals in equations (23.30,
23.31) must be chosen so as to ensure that the resulting terms are harmonic
and non-singular in the corresponding half space.

23.4.1 The traction-free half space

The special case of the traction-free half space is recovered by setting � =0.
We then have

A = B = H = �1 ; C =
(2 � 1)

2
and

� = �(0) + 
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(23.33)

Example

As an example, we consider the case of the traction-free half space with a
concentrated force F acting in the z-direction at the point (0, 0, a), a distance
a below the surface11. The unperturbed field for a concentrated force at the
origin is given in §23.1.2 by the potential

! = � F

8⇡(1� ⌫)R
= � F

8⇡(1� ⌫)
p

r2 + z2

; � =  = 0 . (23.34)

For an equal force at the point (0, 0, a) in the infinite body, we need to make
use of the results of §20.3.1 with s=ka,  =k! and z!(z � a). We obtain
11 This problem was first solved by R.D.Mindlin, Force at a point in the interior of

a semi-infinite solid, Physics, Vol.7 (1936), pp.195–202. A more compendious list
of solutions for various singularities in the interior of the half space was given by
R.D.Mindlin and D.H.Cheng, Nuclei of strain in the semi-infinite solid, Journal
of Applied Physics, Vol.21 (1950), pp.926–930.
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s ·  = a!

and hence, using equation (20.21),

!(0) = � F

8⇡(1� ⌫)
p

r2 + (z � a)2
; �(0) =

Fa

8⇡(1� ⌫)
p

r2 + (z � a)2
(23.35)

and  (0) = 0. In constructing the partial integral of !(0) for (23.33), we can
ensure that the resulting term is harmonic by using the results of §23.3, but
we must also ensure that the resulting potential has no singularities in the half
space z>0. We therefore modify the first of equations (23.25) by a change of
origin and write

Z

!(0)dz =
F

8⇡(1� ⌫)
ln
⇣

p

r2 + (z � a)2 � (z � a)
⌘

,

which after the substitution z!�z yields

F

8⇡(1� ⌫)
ln
⇣

p

r2 + (z + a)2 + z + a
⌘

.

This function is singular on the half line r = 0, z <�a, but this lies entirely
outside the half space z>0 as required. Using this result and (23.35) in (23.33)
and substituting =(3�4⌫), we obtain

� =
Fa

8⇡(1� ⌫)
p

r2 + (z � a)2
+

F (3� 4⌫)a
8⇡(1� ⌫)

p

r2 + (z + a)2

�F (1� 2⌫)
2⇡

ln
⇣

p

r2 + (z + a)2 + z + a
⌘

! = � F

8⇡(1� ⌫)
p

r2 + (z � a)2
� F (3� 4⌫)

8⇡(1� ⌫)
p

r2 + (z + a)2

� Fa(z + a)
4⇡(1� ⌫) (r2 + (z + a)2)3/2

.

The full stress field is then obtained by substitution into equations (21.45–
21.50) and it is easily verified in Maple or Mathematica that the traction
components �zr,�z✓,�zz go to zero on z=0.

In the limit a!0, we recover the Boussinesq solution of §23.2.1 in which
the force F is applied at the surface of the otherwise traction-free half space.
The potentials then reduce to

� = �F (1� 2⌫)
2⇡

ln (R + z) ; ! = � F

2⇡R
,

agreeing with (23.16) and (21.37).



Problems 375

PROBLEMS

1. Starting from the potential function solution of Problem 21.2, use dimen-
sional arguments to determine a suitable axisymmetric harmonic singular po-
tential to solve the problem of a concentrated tangential force F in the x-
direction, applied to the surface of the half-space at the origin.

2. Find the stresses and displacements12 corresponding to the use of  =1/R
in Solution E. Show that the surfaces of the cone, r = z tan� are free of
traction and hence use the solution to determine the stresses in a conical
shaft of semi-angle �

0

, transmitting a torque, T .
Find the maximum shear stress at the section z = c, and compare it with

the maximum shear stress in a cylindrical bar of radius a = c tan�
0

trans-
mitting the same torque. Note that (i) the maximum shear stress will not
generally be either �z✓ or �r✓, but must be found by appropriate coördinate
transformation, and (ii) it may not necessarily occur at the outer radius of
the cone, r=c tan�

0

.

3. An otherwise uniform cylindrical bar of radius b has a small spherical hole
of radius a on the axis.

Combine the function  =Az/R3 in solution E with the elementary torsion
solution for the bar without a hole (see, for example, Problem 21.1) and show
that, with a suitable choice of the arbitrary constant A, the surface of the
hole, R=a can be made traction-free. Hence deduce the stress field near the
hole for this problem.

Assume that b�a, so that the perturbation due to the hole has a negligible
influence on the stresses near the outer surface, r=b.

4. The area A on the surface of an elastic half-space is subjected to a purely
normal pressure p(x, y) corresponding to the total force, F . The loaded region
is now expanded in a self-similar manner by multiplying all its linear dimen-
sions by the same ratio, �. Each point in the new contact area is subjected to
a self-similar loading such that the pressure at the point (�x,�y) is Cp(x, y),
where the constant C is chosen to ensure that the total force F is independent
of �.

Show that the deflection at corresponding points (�x,�y,�z) will then be
proportional to F/�.

5. The surface of the half space z>0 is traction-free and a concentrated heat
source Q is applied at the origin. Determine the stress and displacement field
in the half space in the steady state.

The traction-free condition can be satisfied by using solution P of Table
22.1. You can then use dimensional arguments to determine the dependence
of the heat flux on R and hence to choose the appropriate singular potential.
12 This solution is known as the centre of rotation.



376 23 Singular solutions

6. Use Aderogba’s formula (23.33) to determine the potentials �, ,! defining
the stress and displacement fields in the traction-free half space z > 0, sub-
jected to a concentrated force in the x-direction acting at the point (0, 0, a).

7. Determine the potentials �, ,! defining the stress and displacement field
in the traction-free half space z > 0 due to a centre of dilatation of strength
�V located at the point (0, 0, a).
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SPHERICAL HARMONICS

The singular solutions introduced in the last chapter are particular cases of
a class of functions known as spherical harmonics. In this chapter, we shall
develop these functions and some related harmonic potential functions in a
more formal way. In particular, we shall identify:-

(i) Finite polynomial potentials expressible in the alternate forms Pn(x, y, z),
Pn(r, z) cos(m✓) or RnPn(cos�) cos(m✓), where Pn represents a polyno-
mial of degree n.

(ii) Potentials that are singular only at the origin.
(iii) Potentials including the factor ln(R+z) that are singular on the negative

z-axis (z < 0, r = 0).
(iv) Potentials including the factor ln{(R+z)/(R�z)} that are singular ev-

erywhere on the z-axis.
(v) Potentials including the factor ln(r) and/or negative powers of r that are

singular everywhere on the z-axis.

All of these potentials can be obtained in axisymmetric and non-axisymmetric
forms. When used in solutions A,B and E of Tables 21.1, 21.2, the bounded
potentials (i) provide a complete set of functions for the sphere, cylinder or
cone with prescribed surface tractions or displacements on the curved sur-
faces. These problems are three-dimensional counterparts of those considered
in Chapters 5, 8 and 11. Problems for the hollow cylinder and cone can be

respectively. Axisymmetric problems for the hollow sphere or the infinite body
with a spherical hole can be solved using potentials (i,ii), but these potentials
do not provide a complete solution to the non-axisymmetric problem1. Func-
tions (ii) and (iii) are useful for problems of the half space, including crack
and contact problems.
1 See §26.1.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 377

solved by supplementing the bounded potentials with potentials (v) and (iv)
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24.1 Fourier series solution

The Laplace equation in spherical polar coördinates takes the form

r2� ⌘ @2�

@R2

+
2
R

@�

@R
+

1
R2 sin2 �

@2�

@✓2

+
1

R2

@2�

@�2

+
cot�
R2

@�

@�
= 0 . (24.1)

We first perform a Fourier decomposition with respect to the variable ✓,
giving a series of terms involving sin(m✓), cos(m✓), m = 0, 1, 2, . . . ,1. For
the sake of brevity, we restrict attention to the cosine terms, since the sine
terms will be of the same form and can be reintroduced at the end of the
analysis. We therefore assume that a potential function � can be written

� =
1
X

m=0

fm(R,�) cos(m✓) . (24.2)

Substituting this series into (24.1), we find that the functions fm must
satisfy the equation

@2f

@R2

+
2
R

@f

@R
� m2f

R2 sin2 �
+

1
R2

@2f

@�2

+
cot�
R2

@f

@�
= 0 . (24.3)

24.2 Reduction to Legendre’s equation

We now cast equation (24.3) in terms of the new variable

x = cos� , (24.4)

for which we need the relations

@

@�
=

@

@x

@x

@�
= � sin�

@

@x
= �

p

1� x2

@

@x
(24.5)

@2

@�2

= �
p

1� x2

@

@x

✓

�
p

1� x2

@

@x

◆

= (1� x2)
@2

@x2

� x
@

@x
. (24.6)

Substituting into (24.3), we obtain

@2f

@R2

+
2
R

@f

@R
� m2f

R2(1� x2)
� 2x

R2

@f

@x
+

(1� x2)
R2

@2f

@x2

= 0 . (24.7)

Finally, noting that (24.7) is homogeneous in powers of R, we expand
fm(R, x) as a power series — i.e.

fm(R, x) =
1
X

n=�1
Rngmn(x) , (24.8)
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which on substitution into equation (24.7) requires that the functions gmn(x)
satisfy the ordinary di↵erential equation

(1� x2)
d2g

dx2

� 2x
dg

dx
+
✓

n(n + 1)� m2

(1� x2)

◆

g = 0 . (24.9)

This is the standard form of Legendre’s equation

2.

24.3 Axisymmetric potentials and Legendre polynomials

In the special case where m=0, the functions (24.2) will be independent of ✓
and hence define axisymmetric potentials. Equation (24.9) then reduces to

(1� x2)
d2g

dx2

� 2x
dg

dx
+ n(n + 1)g = 0 , (24.10)

which has a polynomial solution of degree n, known as a Legendre polynomial

Pn(x). It can readily be determined by writing g in polynomial form, substi-
tuting into equation (24.10) and equating coe�cients. The first few Legendre
polynomials are

P
0

(x) = 1
P

1

(x) = x = cos�

P
2

(x) =
1
2
(3x2 � 1) =

1
4
{3 cos(2�) + 1}

P
3

(x) =
1
2
(5x3 � 3x) =

1
8
{5 cos(3�) + 3 cos�} (24.11)

P
4

(x) =
1
8
(35x4 � 30x2 + 3) =

1
64

{35 cos(4�) + 20 cos(2�) + 9}

P
5

(x) =
1
8
(63x5 � 70x3 + 15x) =

1
128

{63 cos(5�) + 35 cos(3�) + 30 cos�} ,

where we have also used the relation x=cos� to express the results in terms
of the polar angle �.

The sequence can be extended to higher values of n by using the recurrence
relation3

(n + 1)Pn+1

(x)� (2n + 1)xPn(x) + nPn�1

(x) = 0 (24.12)

or the di↵erential definition

Pn(x) =
1

2nn!
dn

dxn
(x2 � 1)n . (24.13)

2 See for example I.S.Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series and
Products, Academic Press, New York, 1980, §8.70.

3 See I.S.Gradshteyn and I.M.Ryzhik, loc. cit. §§8.81, 8.82, 8.91 for this and more
results concerning Legendre functions and polynomials.
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In view of the above derivations, it follows that the axisymmetric functions

RnPn(cos�) (24.14)

are harmonic for all n. These functions are known as spherical harmonics.

24.3.1 Singular spherical harmonics

Legendre polynomials are defined only for n�0, so the corresponding spherical
harmonics (24.14) will be bounded at the origin, R=0. However, if we set

n = �p� 1 , (24.15)

where p�0, we find that

n(n + 1) = (�p� 1)(�p) = p(p + 1) (24.16)

and hence equation (24.9) becomes

(1� x2)
d2g

dx2

� 2x
dg

dx
+
✓

p(p + 1)� m2

(1� x2)

◆

g = 0 . (24.17)

In other words, the equation is of the same form, with p replacing n. It
follows that

R�n�1Pn(cos�) (24.18)

are harmonic functions, which are singular at R=0 for n�0. If n is allowed
to take all non-negative values, the two expressions (24.14, 24.18) define ax-
isymmetric harmonics for all integer powers of R, as indicated formally by the
series (24.8). These functions are generated by the Maple and Mathematica
files ‘sp0’, using the recurrence relation (24.12). In combination with solutions
A,B and E of Chapter 21, they provide a general solution to the problem of
a solid or hollow sphere loaded by arbitrary axisymmetric tractions.

24.3.2 Special cases

If we set n=0 in (24.18), we obtain

� = P
0

(z/R)R�1 =
1
R

, (24.19)

which we recognize as the source solution of the previous chapter.
Furthermore, if we next set n=1 in the same expression, we obtain

� = P
1

(z/R)R�2 =
z

R3

, (24.20)

which is proportional to the function �
1

of (23.27). Similar relations exist
between the sequence �

2

,�
3

, . . . , and the higher order singular spherical har-
monics.
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24.4 Non-axisymmetric harmonics

When m 6= 0, equation (24.2) will define harmonic functions that are not
axisymmetric. Corresponding solutions of Legendre’s equation (24.9) can be
developed from the axisymmetric forms by the relations

Pm
n (x) = (�1)m(1� x2)m/2

dm

dxm
Pn(x) (24.21)

for mn, or

Pm
n (x) = (1� x2)�m/2

Z

1

x

. . .

Z

1

x

Pn(x)(dx)m . (24.22)

for m>n. The functions Pm
n (x) are known as Legendre functions. For problems

of the sphere, only the harmonics with m  n are useful, since the others
involve singularities on either the positive or negative z-axis.

The first few non-axisymmetric Legendre functions are

P 1

1

(x) = �(1� x2)
1
2 = � sin�

P 1

2

(x) = �3x(1� x2)
1
2 = �3

2
sin(2�)

P 2

2

(x) = 3(1� x2) =
3
2
{1� cos(2�)} (24.23)

P 1

3

(x) = �3
2
(5x2 � 1)(1� x2)

1
2 = �3

8
{sin� + 5 sin(3�)}

P 2

3

(x) = 15x(1� x2) =
15
4
{cos� � cos(3�)}

P 3

3

(x) = �15(1� x2)
3
2 = �15

4
{3 sin� � sin(3�)} .

The spherical harmonics

RnPm
n (cos�) cos(m✓) ; RnPm

n (cos�) sin(m✓) (24.24)
R�n�1Pm

n (cos�) cos(m✓) ; R�n�1Pm
n (cos�) sin(m✓) (24.25)

in combination with solutions A,B and E of Chapter 21 can be used for prob-
lems of a solid or hollow sphere loaded by non-axisymmetric tractions, but
the solution is complete only for the solid sphere. The functions (24.24, 24.25)
are generated by the Maple and Mathematica files ‘spn’.

24.5 Cartesian and cylindrical polar coördinates

The bounded Legendre polynomial solutions (24.14, 24.24) also correspond
to finite polynomial functions in cylindrical polar coördinates and hence can
be used for the problem of the solid circular cylinder loaded by polynomial
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tractions on its curved boundaries. For example, the axisymmetric functions
(24.14) take the form

RnPn(z/R) (24.26)

and the first few can be expanded in cylindrical polar coördinates as

R0P
0

(z/R) = 1
R1P

1

(z/R) = z

R2P
2

(z/R) =
1
2
(3z2 �R2) =

1
2
(2z2 � r2)

R3P
3

(z/R) =
1
2
(5z3 � 3zR2) =

1
2
(2z3 � 3zr2) (24.27)

R4P
4

(z/R) =
1
8
(35z4 � 30z2R2 + 3R4) =

1
8
(8z4 � 24z2r2 + 3r4)

R5P
5

(z/R) =
1
8
(63z5 � 70z3R2 + 15zR4) =

1
8
(8z5 � 40z3r2 + 15zr4) ,

where we have used the relation R2 = r2 +z2. This sequence of functions is
generated in the Maple and Mathematica files ‘cyl0’.

These functions can also be expanded as finite polynomials in Cartesian co-
ördinates, using the relations x=r cos ✓, y=r sin ✓. For example, the function
R3P 1

3

(z/R) sin ✓ expands as

R3P 1

3

(z/R) sin ✓ = �3
2
(5z2 �R2)

p

R2 � z2 sin ✓ = �3
2
(4z2 � r2)r sin ✓

= �3
2
(4z2y � x2y � y3) . (24.28)

Of course, these polynomial solutions can also be obtained by assuming a
general polynomial form of the appropriate order and substituting into the
Laplace equation to obtain constraint equations, by analogy with the proce-
dure for biharmonic polynomials developed in §5.1.

24.6 Harmonic potentials with logarithmic terms

Equation (24.10), is a second order ordinary di↵erential equation and as such
must have two linearly independent solutions for each value of n, one of which
is the Legendre polynomial Pn(x). To find the other solution, we define a new
function h(x) through the relation

g(x) = Pn(x)h(x) (24.29)

and substitute into (24.10), obtaining

(1� x2)Pn(x)h00(x) + 2{(1� x2)P 0
n(x)� xPn(x)}h0(x)

+ {(1� x2)P 00
n (x)� 2xP 0

n(x) + n(n + 1)Pn(x)}h(x) = 0 . (24.30)
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The last term in this equation must be zero, since Pn(x) satisfies (24.10). We
therefore have

(1� x2)Pn(x)h00(x) + 2{(1� x2)P 0
n(x)� xPn(x)}h0(x) = 0 , (24.31)

which is a homogeneous first order ordinary di↵erential equation for h0 and
can be solved by separation of variables.

If the non-constant solution of (24.31) is substituted into (24.29), we obtain
the logarithmic Legendre function Qn(x), the first few such functions being

Q
0

(x) =
1
2

ln
✓

1 + x

1� x

◆

Q
1

(x) =
x

2
ln
✓

1 + x

1� x

◆

� 1

Q
2

(x) =
1
4
(3x2 � 1) ln

✓

1 + x

1� x

◆

� 3x

2

Q
3

(x) =
1
4
(5x3 � 3x) ln

✓

1 + x

1� x

◆

� 5x2

2
+

2
3

(24.32)

Q
4

(x) =
1
16

(35x4 � 30x2 + 3) ln
✓

1 + x

1� x

◆

� 35x3

8
+

55x

24

Q
5

(x) =
1
16

(63x5 � 70x3 + 15x) ln
✓

1 + x

1� x

◆

� 63x4

8
+

49x2

8
� 8

15
.

The recurrence relation

(n + 1)Qn+1

(x)� (2n + 1)xQn(x) + nQn�1

(x) = 0 (24.33)

can be used to extend this sequence to higher values of n.
The corresponding harmonic functions are logarithmically singular at all

points on the z-axis. For example

R0Q
0

(z/R) =
1
2

ln
✓

R + z

R� z

◆

R1Q
1

(z/R) =
z

2
ln
✓

R + z

R� z

◆

�R (24.34)

R2Q
2

(z/R) =
1
4
(3z2 �R2) ln

✓

R + z

R� z

◆

� 3Rz

2

and the factor (R� z) ! 0 on the positive z-axis (r = 0, z > 0), where
R =

p
r2+z2 ! z, whilst (R+z)! 0 on the negative z-axis (r = 0, z < 0),

where R=
p

r2+z2!�z. These potentials in combination with the bounded
potentials (24.14), permit a general solution of the problem of a hollow cone
loaded by prescribed axisymmetric polynomial tractions on the curved sur-
faces. They are generated in the Maple and Mathematica files ‘Qseries’, using
the recurrence relation (24.33).
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The attentive reader will recognize a similarity between the logarithmic
terms in this series and the functions ��1

,��2

, . . . of equation (23.23), ob-
tained from the source solution by successive partial integrations. However,
the two sets of functions are not identical. In e↵ect, the functions in (23.23)
correspond to distributions of sources along the negative z-axis, whereas those
in (24.34) involve distributions of sources along both the positive and nega-
tive z-axes. The functions (23.23) are actually more useful, since they are
harmonic throughout the region z >0 and hence can be applied to problems
of the half space with concentrated loading, as we discovered in §23.2.1.

The functions Qn(x) can all be written in the form

Qn(x) = Pn(x) ln
✓

1 + x

1� x

◆

�Wn�1

(x) , (24.35)

where

Wn�1

(x) =
n
X

k=1

1
k

Pk�1

(x)Pn�k(x) (24.36)

is a finite polynomial of degree of degree (n�1). In other words, the multi-
plier on the logarithmic term is the Legendre polynomial Pn(x) of the same
order. This is also true for the functions of equation (23.23), as can be seen
by comparing them with equations (24.34). A convenient way to extend the
sequence of functions (23.23) is therefore to assume a solution of the form

��n�1

= RnPn(z/R) ln(R + z) + Rn(R, z) , (24.37)

where Rn is a general polynomial of degree n in R, z, substitute into the
Laplace equation

r2� =
@2�

@r2

+
1
r

@�

@r
+

1
r2

@2�

@✓2

+
@2�

@z2

= 0 (24.38)

and use the resulting equations to determine the coe�cients in Rn. This
method is used in the Maple and Mathematica files ‘sing’.

24.6.1 Logarithmic functions for cylinder problems

The function ln(R+z) corresponds to a uniform distribution of sources along
the negative z-axis. A similar distribution along the positive z-axis would lead
to the related harmonic function ln(R�z). Alternatively, we could add these
two functions, obtaining the solution for a uniform distribution of sources
along the entire z-axis (�1<z<1) with the result

ln(R + z) + ln(R� z) = ln(R2 � z2) = 2 ln(r) . (24.39)

Not surprisingly, this function is independent of z. It is actually the source
solution for the two-dimensional Laplace equation
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@2�

@r2

+
1
r

@�

@r
+

1
r2

@2�

@✓2

= 0 (24.40)

and could have been obtained directly by seeking a singular solution of this
equation that was independent of ✓.

More importantly, a similar superposition can be applied to the functions
(24.37) to obtain a new class of logarithmically singular harmonic functions
of the form

� = RnPn(z/R) ln(r) + Sn(r, z) , (24.41)

where Sn is a polynomial of degree n in r, z. These functions, in combination
with the bounded harmonics of equation (24.27) and solutions A,B and E,
provide a general solution to the problem of a hollow circular cylinder loaded
by axisymmetric polynomial tractions on the curved surfaces. As before, the
sequence (24.41) is most conveniently obtained by assuming a solution of
the given form with Sn a general polynomial of r, z, substituting into the
Laplace equation (24.38), and using the resulting equations to determine the
coe�cients in Sn. This method is used in the Maple and Mathematica files
‘hol0’. The first few functions in the sequence are

'
0

= ln(r)
'

1

= z ln(r)

'
2

=
1
2
{(2z2 � r2) ln(r) + r2}

'
3

=
1
2
{(2z3 � 3zr2) ln(r) + 3zr2} (24.42)

'
4

=
1
8

⇢

(8z4 � 24z2r2 + 3r4) ln(r)� 9r4

2
+ 24z2r2

�

'
5

=
1
8

⇢

(8z5 � 40z3r2 + 15zr4) ln(r)� 45zr4

2
+ 40z3r2

�

.

Notice that only even powers of r can occur in these functions.

24.7 Non-axisymmetric cylindrical potentials

As in §24.4, we can develop non-axisymmetric harmonic potentials in cylin-
drical polar coördinates in the form

�m = fm(r, z)
⇢

sin(m✓)
cos(m✓) , (24.43)

with m 6= 0. Substitution in (24.38) shows that the function fm must satisfy
the equation

@2fm

@r2

+
1
r

@fm

@r
� m2fm

r2

+
@2fm

@z2

= 0 . (24.44)
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A convenient way to obtain such functions is to note that if �m is harmonic,
the function

�m+1

= fm+1

(r, z) cos
�

(m + 1)✓
�

(24.45)

will also be harmonic if

fm+1

=
@fm

@r
� mfm

r
⌘ rm @

@r

✓

fm

rm

◆

, (24.46)

which can also be written

fm = rmLmf
0

where L{·} =
1
r

@

@r
. (24.47)

To prove this result, we first note that

@2fm

@z2

= �@
2fm

@r2

� 1
r

@fm

@r
+

m2fm

r2

, (24.48)

from (24.44). We then substitute (24.46) into (24.45) and the resulting ex-
pression into (24.38), using (24.48) to eliminate the derivatives with respect
to z. The coe�cients of all the remaining derivatives will then be found to be
identically zero, confirming that (24.45) is harmonic.

The relation (24.46) can be used recursively to generate a sequence of
non-axisymmetric harmonic potentials, starting from m = 0 with any of the
axisymmetric functions developed above. For example, starting with the axi-
symmetric function

�
0

= f
0

= R4P
4

(z/R) =
1
8
(8z4 � 24z2r2 + 3r4) , (24.49)

from equation (24.27), we can construct

f
1

=
@f

0

@r
=

3
2
(�4z2r + r3) ; f

2

=
@f

1

@r
� f

1

r
= 3r2 ,

from which we obtain the harmonic potentials

�
1

=
3
2
(�4z2r + r3) cos ✓ ; �

2

= 3r2 cos(2✓) . (24.50)

Similarly, from the logarithmically singular function

�
0

= f
0

= '
2

=
1
2
{(2z2 � r2) ln(r) + r2} (24.51)

of equation (24.42), we obtain

f
1

=
@f

0

@r
= �r ln(r) +

z2

r
+

r

2
= ; f

2

=
@f

1

@r
� f

1

r
= �1� 2z2

r2

,

defining the potentials
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�
1

=
✓

�r ln(r) +
z2

r
+

r

2

◆

cos ✓ ; �
2

=
✓

�1� 2z2

r2

◆

cos(2✓) . (24.52)

This process is formalized in the Maple and Mathematica files ‘cyln’ and
‘holn’, which generate a sequence of functions Fmn, Smn such that the poten-
tials

Fmn cos(m✓) ; Fmn sin(m✓) ; Smn cos(m✓) ; Smn sin(m✓) (24.53)

are harmonic. These files are easily extended to larger values of m or n if
required. For convenience, we list here the first few functions of this sequence
for the case m=1.

F
11

= r

F
12

= 3zr

F
13

=
3
2
(4z2r � r3) (24.54)

F
14

=
5
2
(4z3r � 3zr3)

F
15

=
15
8

(8z4r � 12z2r3 + r5) .

S
10

=
1
r

S
11

=
z

r

S
12

= �r ln(r) +
z2

r
+

r

2
(24.55)

S
13

= �3zr ln(r) +
z3

r
+

3zr

2

S
14

=
3
2
(r3 � 4z2r) ln(r) +

z4

r
+ 3z2r � 15r3

8

S
15

=
5
2
(3zr3 � 12z3r) ln(r) +

z5

r
+ 5z3r � 75zr3

8
.

24.8 Spherical harmonics in complex notation

In §21.6 we developed a version of the Papkovich-Neuber solution in which the
Cartesian coördinates (x, y, z) were replaced by (⇣, ⇣̄, z), where ⇣=x+ıy, ⇣̄=
x�ıy. In this system, the Laplace equation takes the form

r2 ⌘ 4
@2 

@⇣@⇣̄
+
@2 

@z2

= 0 . (24.56)

We consider solutions of the series form
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2k(⇣, ⇣̄, z) =

k
X

j=0

z2jfk�j(⇣, ⇣̄)
(2j)!

. (24.57)

Substitution into (24.56) then shows that

k
X

j=0

4z2j

(2j)!
@2fk�j

@⇣@⇣̄
+

k
X

j=1

z2j�2fk�j

(2j � 2)!
= 0 (24.58)

and equating coe�cients of z2k�2i�2, we have

@2fi+1

@⇣@⇣̄
= �fi

4
; i = (0, k � 1) , (24.59)

@2f
0

@⇣@⇣̄
= 0 , (24.60)

which defines a recurrence relation for the functions fi. Furthermore, equation
(24.60) is the two-dimensional Laplace equation whose general solution can
be written

f
0

= g
1

(⇣) + g
2

(⇣̄) , (24.61)

where g
1

, g
2

are general holomorphic functions of the complex variable ⇣ and
its conjugate ⇣̄, respectively. Thus, the most general solution of the form
(24.57) can be constructed by successive integrations of (24.59), starting from
(24.61). This defines an even function of z, but it is easily verified that the
odd function

 
2k+1

(⇣, ⇣̄, z) =
k
X

j=0

z2j+1fk�j(⇣, ⇣̄)
(2j + 1)!

(24.62)

also satisfies (24.56), where the functions fi again satisfy the recurrence rela-
tions (24.59, 24.60).

24.8.1 Bounded cylindrical harmonics

The bounded harmonics of equations (24.26, 24.27, 24.54) can be obtained
from equations (24.57, 24.62) by choosing

f
0

(⇣, ⇣̄) = g
1

(⇣) = ⇣m . (24.63)

Successive integrations of equation (24.59) then yield

f
1

(⇣, ⇣̄) =
⇣m+1⇣̄

(�4)(m + 1)
; f

2

(⇣, ⇣̄) =
⇣m+2⇣̄

2

(�4)2(m + 1)(m + 2)(2)
, (24.64)

or in general

fi(⇣, ⇣̄) =
m!(⇣⇣̄)i⇣m

(�4)i(m + i)!i!
, (24.65)
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where we have omitted the arbitrary functions of integration. Substituting fi

into (24.57, 24.62), we can then construct the harmonic functions

�m
2k =

k
X

j=0

m!z2j(⇣⇣̄)k�j⇣m

(�4)k�j(m + k � j)!(k � j)!(2j)!

�m
2k+1

=
k
X

j=0

m!z2j+1(⇣⇣̄)k�j⇣m

(�4)k�j(m + k � j)!(k � j)!(2j + 1)!
, (24.66)

the first few functions in the sequence being

�m
0

(⇣, ⇣̄, z) = ⇣m

�m
1

(⇣, ⇣̄, z) = z⇣m

�m
2

(⇣, ⇣̄, z) =
z2⇣m

2!
+

(⇣⇣̄)⇣m

(�4)(m + 1)
(24.67)

�m
3

(⇣, ⇣̄, z) =
z3⇣m

3!
+

z(⇣⇣̄)⇣m

(�4)(m + 1)

�m
4

(⇣, ⇣̄, z) =
z4⇣m

4!
+

z2(⇣⇣̄)⇣m

(�4)(m + 1)(2!)
+

(⇣⇣̄)2⇣m

(�4)2(m + 1)(m + 2)(2)
.

The functions (24.66, 24.67) are three-dimensionally harmonic and satisfy the
recurrence relations

@�m
n

@z
= �m

n�1

;
@�m

n

@⇣
= m�m�1

n ;
@�m

n

@⇣̄
= � �m+1

n�2

4(m + 1)
. (24.68)

or
Z

�m
n dz = �m

n+1

;
Z

�m
n d⇣ =

�m+1

n

(m + 1)
;
Z

�m
n d⇣̄ = �4m�m�1

n+2

.

The factor

(⇣⇣̄) = reı✓re�ı✓ = r2 and ⇣m = rm(cos(m✓) + ı sin(m✓)) (24.69)

and hence the functions �m
n can be expanded as functions of r, z with Fourier

multipliers as in (24.53, 24.54). In fact they are related to the spherical har-
monics (24.24) by the expressions

�m
n (⇣, ⇣̄, z) =

(�2)mm!
(n + 2m)!

Rm+nPm
m+n(z/R) exp(ım✓) , (24.70)

where
R =

q

z2 + ⇣⇣̄ =
p

x2 + y2 + z2 . (24.71)

A few low order potentials that we shall need later are
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�0

0

= 1 ; �0

1

= z ; �0

2

=
z2

2
� ⇣⇣̄

4
; �0

3

=
z3

6
� z⇣⇣̄

4
,

�1

0

= ⇣ ; �1

1

= z⇣ ; �1

2

=
z2⇣

2
� ⇣2⇣̄

8
; �1

3

=
z3⇣

6
� z⇣2⇣̄

8
, (24.72)

�2

0

= ⇣2 ; �2

1

= z⇣2 ; �2

2

=
z2⇣2

2
� ⇣3⇣̄

12
; �2

3

=
z3⇣2

6
� z⇣3⇣̄

12
.

24.8.2 Singular cylindrical harmonics

A similar procedure can be used to develop complex versions of the singular
harmonics of equations (24.53, 24.55), starting with the function

f
0

(⇣, ⇣̄) = ⇣�m ; m � 1
= ln(⇣⇣̄) ; m = 0 . (24.73)

Notice that in the complex variable formulation of two-dimensional problems,
ln(⇣) is generally excluded as being multivalued and hence non-holomorphic.
However,

ln(⇣⇣̄) = ln(⇣) + ln(⇣̄) = 2 ln(r)

is clearly a real single-valued harmonic function (being of the form (24.61).
Singular potentials with m > 0 will eventually integrate up to include loga-
rithmic terms when following the procedure (24.59). We see this for example
in the real stress function versions (24.55) for m=1.

PROBLEMS

1. Use equation (24.22) to evaluate the function P 2

1

(x) and verify that it
satisfies Legendre’s equation (24.9) with m = 2 and n = 1. Construct the
appropriate harmonic potential function from equation (24.24) and verify that
it is singular on the z-axis.

2. The functions (23.23) are singular only on the negative z-axis (r=0, z<0).
Similar functions singular only on the positive z-axis are given in equations
(23.25). Develop the first three of (24.42) by superposition, noting that ln(R+
z)+ln(R�z)=2 ln(r).

3. Use the methodology of §5.1 to construct the most general harmonic poly-
nomial function of degree 3 in Cartesian coördinates x, y, z. Decompose the
resulting polynomial into a set of spherical harmonics.

4. Express the recurrence relation of equations (24.43–24.46) in spherical polar
coördinates R, ✓,�. Check your result by deriving the first three functions
starting from the source solution �

0

=1/R and compare the results with the
expressions derived in the Maple or Mathematica file ‘spn’.
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CYLINDERS AND CIRCULAR PLATES

The bounded harmonic potentials of equations (24.27) in combination with
solutions A, B and E provide a complete solution to the problem of a solid
circular cylinder loaded by axisymmetric polynomial tractions on its curved
surfaces. The corresponding problem for the hollow cylinder can be solved by
including also the singular potentials of equation (24.42). The method can be
extended to non-axisymmetric problems using the results of §24.7. If strong
boundary conditions are imposed on the curved surfaces and weak conditions

in which L � a, where L is the length of the cylinder and a is its outer
radius. At the other extreme, where L ⌧ a, the same harmonic functions
can be used to obtain three-dimensional solutions for in-plane loading and
bending of circular plates, by imposing strong boundary conditions on the
plane surfaces and weak conditions on the curved surfaces. As in Chapter
5, some indication of the order of polynomial required can be obtained from
elementary Mechanics of Materials arguments.

25.1 Axisymmetric problems for cylinders

If axisymmetric potentials are substituted into solutions A and B, we find
that the circumferential displacement u✓ is zero everywhere, as are the stress
components �✓r,�✓z. There is therefore no torque transmitted across any
cross-section of the cylinder and no twist. The only force resultant on the
cross-section is a force F in the z-direction given by

F =
Z b

a

Z

2⇡

0

�zzrd✓dr = 2⇡
Z b

a

r�zzdr , (25.1)

where a, b are the inner and outer radii of the cylinder respectively.
By contrast, substitution of an axisymmetric potential into solution E

yields a stress and displacement state where the only non-zero displacement
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on the ends, the solutions are most appropriate to problems of ‘long’ cylinders
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and stress components are u✓,�✓r,�✓z. In this case, the axial force F =0, but
in general there will be a transmitted torque

T =
Z b

a

Z

2⇡

0

�✓zr
2d✓dr = 2⇡

Z b

a

r2�✓zdr . (25.2)

Notice that the additional power of r in equation (25.2) compared with (25.1)
is the moment arm about the z-axis for the elemental force �✓zrdrd✓.

Axisymmetric problems are therefore conveniently partitioned into irrota-

tional (torsionless) problems requiring solutions A and B only and rotational

(torsional) problems requiring only solution E. There is a close similarity here
with the partition of two-dimensional problems into in-plane problems (Chap-
ters 5 to 14) and antiplane problems (Chapter 15). Notice that the rotational
problem, like the antiplane problem, involves only one non-zero displacement
(u✓) and requires only a single harmonic potential function (in solution E). By
contrast, the irrotational problem involves two non-zero displacements (ur, uz)
and requires two independent harmonic potentials, one each in solutions A and
B. In the same way, the in-plane two-dimensional solution involves two dis-
placements (e.g. ux, uy) and requires a single biharmonic potential, which we
know to be equivalent to two independent harmonic potentials.

25.1.1 The solid cylinder

Problems for the solid cylinder are solved by a technique very similar to that
used in Chapter 5. We shall find that we can always find finite polynomials
satisfying polynomial boundary conditions on the curved boundaries in the
strong (pointwise) sense, but that the boundary conditions on the ends can
then only be satisfied in the weak sense. Corrective solutions for these end
e↵ects can be developed from an eigenvalue problem, as in Chapter 6.

A torsional problem

As an example, we consider the solid cylinder (0r<a, 0<z<L), built in at
the end z = L and subjected to the traction distribution

�r✓ =
Sz

L
; �rr = �rz = 0 ; r = a (25.3)

�zr = �z✓ = �zz = 0 ; z = 0 . (25.4)

In other words, the end z=0 is traction-free and the curved surfaces are loaded
by a linearly varying torsional traction. This is clearly a torsional problem and
elementary equilibrium arguments show that the torque must increase with
z2 from the free end. This suggests a leading term proportional to z2r in
the stress component �z✓ and we therefore use solution E with a 5th degree
polynomial and below.
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We use the trial function1

 =
C

5

8
(8z5 � 40z3r2 + 15zr4) +

C
4

8
(8z4 � 24z2r2 + 3r4)

+
C

3

2
(2z3 � 3zr2) +

C
2

2
(2z2 � r2) (25.5)

from equation (24.27) and substitute into solution E (Table 21.1), obtaining
the non-zero stress and displacement components

2µu✓ = 5C
5

(4z3r � 3zr3) + 3C
4

(4z2r � r3) + 6C
3

zr + 2C
2

r (25.6)
�r✓ = �15C

5

zr2 � 3C
4

r2 (25.7)

�z✓ = 15C
5

✓

2z2r � r3

2

◆

+ 12C
4

zr + 3C
3

r . (25.8)

The boundary condition (25.3) must be satisfied for all z, giving

C
5

= � S

15a2L
; C

4

= 0 . (25.9)

The traction-free condition (25.4) can only be satisfied in the weak sense.
Substituting (25.8) into (25.2), and evaluating the integral at z=0, we obtain

T =
⇡a4(3C

3

� 5C
5

a2)
2

(25.10)

and hence the weak condition T = 0 gives

C
3

=
5C

5

a2

3
= � S

9L
, (25.11)

using (25.9). The complete stress field is therefore

�r✓ =
Szr2

a2L
(25.12)

�z✓ =
Sr

L

✓

r2

2a2

� 2z2

a2

� 1
3

◆

. (25.13)

Notice that the constant C
2

is not determined in this solution, since it de-
scribes merely a rigid-body displacement and does not contribute to the stress
field. In order to determine it, we need to generate a weak form for the built-in
condition at z=L. An appropriate condition is2

Z a

0

Z

2⇡

0

u✓r
2d✓dr = 0 ; z = L . (25.14)

1 Notice that the first two functions from equation (24.27) give no stresses or dis-
placements when substituted into solution E and hence are omitted here.

2 See §9.1.1.
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Substituting for u✓ from (25.6) and using (25.9, 25.11) we obtain

C
2

=
2SL2

3a2

(25.15)

and hence
2µu✓ = S

✓

zr3

a2L
� 4z3r

3a2L
� 2zr

3L
+

4L2r

3a2

◆

. (25.16)

A thermoelastic problem

As a second example, we consider the traction-free solid cylinder 0  r <
a,�L<z<L, subjected to the steady-state thermal boundary conditions

qr(a, z) = �q
0

; T (r,±L) = 0 . (25.17)

In other words, the curved surfaces r=a are uniformly heated, whilst the ends
z=±L are maintained at zero temperature.

The problem is clearly symmetrical about z=0 and the temperature must
therefore be described by even Legendre polynomial functions. Using solution
T to describe the thermoelastic field, we note that temperature is proportional
to @�/@z and hence � must be comprised of odd functions from equation
(24.27) — in particular

� =
C

3

2
(2z3 � 3zr2) + C

1

z . (25.18)

Substituting (25.18) into solution T (Table 22.1), yields

T =
(1� ⌫)

µ↵(1 + ⌫)

✓

C
3

2
(6z2 � 3r2) + C

1

◆

(25.19)

qr = �K
@T

@r
=

3(1� ⌫)KC
3

r

µ↵(1 + ⌫)
(25.20)

and hence
C

3

= �µ↵(1 + ⌫)q
0

3Ka(1� ⌫)
, (25.21)

from (25.17, 25.21). The constant C
1

can be determined3 from the weak form
of (25.17)

2

— i.e.
3 The constant C1 serves merely to set the base level for temperature and since no

stresses are generated in a traction-free body subject to a uniform temperature
rise, we could set C1 =0 at this stage without a↵ecting the final solution for the
stresses. Notice however, that this choice would lead to di↵erent values for the
constants A4, A2, B3, B1 in the following analysis. Also, a uniform temperature
rise does cause dilatation and hence non-zero displacements, so it is essential to
solve for C1 if the displacement field is required.
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2⇡
Z a

0

T (r,±L)rdr =
2⇡(1� ⌫)
µ↵(1 + ⌫)

⇢

C
3

2

✓

3L2a2 � 3a4

4

◆

+
C

1

a2

2

�

= 0

(25.22)
and hence

C
1

= �3C
3

(4L2 � a2)
4

=
µ↵(1 + ⌫)q

0

(4L2 � a2)
4Ka(1� ⌫)

. (25.23)

It follows that the complete temperature field is

T (r, z) =
q
0

(4(L2 � z2) + 2r2 � a2)
4Ka

, (25.24)

from (25.19, 25.21, 25.23).
A particular solution for the thermal stress field is then obtained by sub-

stituting (25.21, 25.23, 25.18) into Table 22.1. To complete the solution, we
must superpose the homogeneous solution which is here given by solutions A
and B, since axisymmetric temperature fields give dilatational but irrotational
stress and displacement fields. To determine the appropriate order of polyno-
mials to include in � and !, we compare Tables 21.1 and 22.1 and notice that
whilst solution B involves the same order of di↵erentials as solution T, the
corresponding components in solution A involve one further di↵erentiation,
indicating the need for a higher order polynomial function. We therefore try
the functions

� =
A

4

8
(8z4 � 24z2r2 + 3r4) +

A
2

2
(2z2 � r2) ; ! =

B
3

2
(2z3 � 3zr2) + B

1

z .

(25.25)
Substitution into Tables 21.1, 22.1 then yields the stress components

�rr = A
4

✓

9r2

2
� 6z2

◆

�A
2

� 3B
3

(z2 + 2⌫z2 � ⌫r2)� 2⌫B
1

�3C
3

(3z2 � r2)� 2C
1

�rz = �6(2A
4

+ ⌫B
3

+ C
3

)zr (25.26)
�zz = 6A

4

(2z2 � r2) + 2A
2

+ 3B
3

(22 � ⌫r2 + 2⌫z2) + 2⌫B
1

+ 6C
3

z2 .

The strong traction-free boundary conditions

�rr(a, z) = 0 ; �rz(a, z) = 0 (25.27)

yield the three equations

�6A
4

� 3B
3

(1 + 2⌫) = 9C
3

9A
4

a2

2
�A

2

+ 3B
3

⌫a2 � 2⌫B
1

= �3C
3

a2 + 2C
1

(25.28)

2A
4

+ ⌫B
3

= �C
3

and another equation is obtained from the weak condition F =0 on the ends
z=±L. Substituting for �zz into (25.1) and evaluating the integral, we obtain
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F = ⇡a2

⇢

3A
4

(4L2 � a2) + 3B
3

✓

(1� ⌫)a2

2
+ 2⌫L2

◆

+ 2A
2

�B
1

(1� ⌫) + 6C
3

L2

�

= 0 . (25.29)

Finally, solving (25.28, 25.29) for A
4

, A
2

, B
3

, B
1

and substituting the resulting
expressions into (25.25) and Tables 21.1, 22.1 yields the complete stress field

�rr =
q
0

µ↵(a2 � r2)
4Ka

; �✓✓ =
q
0

µ↵(a2 � 3r2)
4Ka

; �zz =
q
0

µ↵(2r2 � a2)
2Ka

�rz = �r✓ = �✓z = 0 . (25.30)

25.1.2 The hollow cylinder

Problems for the hollow cylinder a < r < b can be solved by supplementing
the bounded potentials (24.27) with the logarithmically singular potentials
of equation (24.42). The bounded potentials required are the same as those
needed for a solid cylinder with similar boundary conditions, but the loga-
rithmic potentials are generally several orders lower, being typically no higher
than the order of the most rapidly varying traction on the curved surfaces4.

To illustrate the procedure, we consider the hollow cylinder a < r < b
subjected to the torsional tractions

�r✓ =
Sz

L
; �rr = �rz = 0 ; r = b (25.31)

�r✓ = �rr = �rz = 0 ; r = a (25.32)

�zr = �z✓ = �zz = 0 ; z = 0 . (25.33)

This is the hollow cylinder equivalent of the torsional example considered in
§25.1.1 above and hence the required bounded potentials are given by equa-
tion (25.5), though of course the values of the multiplying constants will be
di↵erent. In the interests of brevity, we shall solve only for the stress field
and hence the potential C

2

(2z2�r2)/2 can be omitted, since it defines only a
rigid-body displacement.

The traction varies with z1, so for the hollow cylinder, we need to add in
the logarithmic potentials '

1

,'
0

, giving the potential function

 =
C

5

8
(8z5 � 40z3r2 + 15zr4) +

C
4

8
(8z4 � 24z2r2 + 3r4) +

C
3

2
(2z3 � 3zr2)

+A
1

z ln(r) + A
0

ln(r) . (25.34)
4 This arises because when we di↵erentiate the potentials by parts, some of the

resulting expressions involve di↵erentiation only of the logarithmic multiplier,
leaving higher order polynomial expressions for the stress and displacement com-
ponents on a given radial surface.



25.2 Axisymmetric circular plates 397

Substituting into solution E (Table 21.1) we obtain

�r✓ = �15C
5

zr2 � 3C
4

r2 +
2A

1

z

r2

+
2A

0

r2

(25.35)

�z✓ = 15C
5

✓

2z2r � r3

2

◆

+ 12C
4

zr + 3C
3

r � A
1

r
. (25.36)

The boundary conditions (25.31, 25.32) must be satisfied for all z, giving the
four equations

�15C
5

a2 +
2A

1

a2

= 0 (25.37)

�3C
4

a2 +
2A

0

a2

= 0 (25.38)

�15C
5

b2 +
2A

1

b2

=
S

L
(25.39)

�3C
4

b2 +
2A

0

b2

= 0 . (25.40)

A fifth equation is obtained by substituting (25.36) into (25.2) and enforc-
ing the weak condition T = 0. Solving these equations for the five constants
C

5

, C
4

, C
3

, A
1

, A
0

and back substitution into (25.35, 25.36) yields the final
stress field

�r✓ =
Sb2z(r4 � a4)
Lr2(b4 � a4)

�z✓ =
Sb2(3(b2 + a2)(a4 � 4z2r2 + r4)� 2(4a4 + a2b2 + b4)r2)

6Lr(b2 + a2)(b4 � a4)
.

25.2 Axisymmetric circular plates

Essentially similar methods can be applied to obtain three-dimensional solu-
tions to axisymmetric problems of the circular plate 0r<a, �h/2<z<h/2
loaded by polynomial tractions on the surfaces z=±h/2 (or with a polynomial
temperature distribution), where h⌧ a. In this case, we impose the strong
boundary conditions on the plane surfaces z =±h/2 and weak conditions on
r = a. As in the corresponding two-dimensional problems of Chapter 5, we
generally need to start with a polynomial up to 3 orders higher than that
suggested by the applied loading.

Weak boundary conditions at r = a can be stated in terms of force and
moment resultants per unit circumference or of averaged displacements. The
force resultants are a membrane tensile force N and shear force V defined by

N =
Z h/2

�h/2

�rrdz ; V =
Z h/2

�h/2

�rzdz , (25.41)
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whilst the moment resultant is

M =
Z h/2

�h/2

z�rrdz . (25.42)

Weak displacement boundary conditions can be defined by analogy with equa-
tions (9.21).

25.2.1 Uniformly loaded plate on a simple support

As an example, we consider the plate 0  r < a, �h/2 < z < h/2 loaded by
a uniform compressive traction p

0

on the surface z = h/2, simply-supported
at the edge r = a and otherwise traction-free. Thus, the traction boundary
conditions are

�zz = �p
0

; �zr = 0 ; z = h/2 (25.43)

�zz = �zr = 0 ; z = �h/2 (25.44)
Z h/2

�h/2

�rrdz = 0 ;
Z h/2

�h/2

z�rrdz = 0 ; r = a . (25.45)

The loading is uniform suggesting potentials of degree 2 in � and degree
1 in !, but as in the plane stress problem of Figure 5.3, the loading will
generate bending moments and bending stresses, requiring potentials three
orders higher than this. We therefore start with the potential functions

� =
A

5

8
(8z5 � 40z3r2 + 15zr4) +

A
4

8
(8z4 � 24z2r2 + 3r4) +

A
3

2
(2z3 � 3zr2)

+
A

2

2
(2z2 � r2) (25.46)

! =
B

4

8
(8z4 � 24z2r2 + 3r4) +

B
3

2
(2z3 � 3zr2) +

B
2

2
(2z2 � r2) + B

1

z ,

(25.47)

where we have omitted those terms leading only to rigid-body displacements.
Substituting into Table 21.1, the stresses are obtained as

�rr =
5A

5

2
(9r2z � 4z3) +

3A
4

2
(3r2 � 4z2)� 3A

3

z �A
2

� 2B
4

(3 + 4⌫)z3

+
3B

4

2
(3 + 8⌫)r2z � 3B

3

(1 + 2⌫)z2 + 3⌫B
3

r2 �B
2

(1 + 4⌫)z � 2B
1

⌫

�✓✓ =
5A

5

2
(3r2z � 4z3) +

3A
4

2
(r2 � 4z2)� 3A

3

z �A
2

� 2B
4

(3 + 4⌫)z3

+
3B

4

2
(1 + 8⌫)r2z � 3B

3

(1 + 2⌫)z2 + 3⌫B
3

r2 �B
2

(1� 4⌫)z � 2B
1

⌫

�rz =
15A

5

2
(r3 � 4rz2)� 12A

4

rz � 3A
3

r � 6B
4

(1 + 2⌫)z2r
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�3B
4

2
(1� 2⌫)r3 � 6B

3

⌫zr + B
2

(1� 2⌫)r (25.48)

�zz = 10A
5

(2z3 � 3r2z) + 6A
4

(2z2 � r2) + 6A
3

z + 2A
2

+4B
4

(1 + 2⌫)z3 + 6B
4

(1� 2⌫)r2z + 6B
3

⌫z2 + 3B
3

(1� ⌫)r2

�2B
2

(1� 2⌫)z � 2B
1

(1� ⌫) .

Notice that �zz is even in r and �rz is odd in r. The strong boundary conditions
(25.43, 25.44) therefore require us to equate coe�cients of r2 and r0 in �zz

and of r3 and r1 in �rz on each of the boundaries z =±h/2, leading to the
equations

15A
5

2
� 3B

4

2
(1� 2⌫) = 0

�15A
5

h2

2
� 6A

4

h� 3A
3

� 3B
4

h2

2
(1 + 2⌫)� 3B

3

⌫h + B
2

(1� 2⌫) = 0

�15A
5

h2

2
+ 6A

4

h� 3A
3

� 3B
4

h2

2
(1 + 2⌫) + 3B

3

⌫h + B
2

(1� 2⌫) = 0

�15A
5

h� 6A
4

+ 3B
4

(1� 2⌫)h + 3B
3

(1� ⌫) = 0
15A

5

h� 6A
4

+ 3B
4

(1� 2⌫)h� 3B
3

(1� ⌫) = 0
5A

5

h3

2
+ 3A

4

h2 + 3A
3

h + 2A
2

+
B

4

(1 + 2⌫)h3

2

+
3B

3

⌫h2

2
�B

2

(1� 2⌫)h� 2B
1

(1� ⌫) = �p
0

�5A
5

h3

2
+ 3A

4

h2 � 3A
3

h + 2A
2

� B
4

(1 + 2⌫)h3

2

+
3B

3

⌫h2

2
+ B

2

(1� 2⌫)h� 2B
1

(1� ⌫) = 0 .

Two additional equations are obtained by substituting (25.48) into the weak
conditions (25.45) and evaluating the integrals, with the result

A
4

(9a2h� h3)
2

�A
2

h� B
3

(1 + 2⌫)h3

4
+ 3B

3

⌫a2h� 2B
1

⌫h = 0

A
5

(15a2h3 � h5)
8

� A
3

h3

4
� B

4

(3 + 4⌫)h5

40

+
B

4

(3 + 8⌫)a2h3

8
� B

2

(1 + 4⌫)h3

12
= 0 .

Solving these equations for the constants A
5

, A
4

, A
3

, A
2

, B
4

, B
3

, B
2

, B
1

and substituting the resulting expressions into (25.48), we obtain the final
stress field as

�rr =
p
0

h3

⇢

3(3 + ⌫)(r2 � a2)z
4

+ (2 + ⌫)
✓

h2z

20
� z3

◆�

�✓✓ =
p
0

h3

⇢

3[(1 + 3⌫)r2 � (3 + ⌫)a2]z
4

+ (2 + ⌫)
✓

h2z

20
� z3

◆�
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�rz =
3p

0

(h2 � 4z2)r
4h3

(25.49)

�zz =
p
0

(4z3 � 3h2z � h3)
2h3

.

The maximum tensile stress occurs at the point 0,�h/2 and is

�
max

=
3(3 + ⌫)p

0

a2

8h2

+
(2 + ⌫)p

0

10
. (25.50)

The elementary plate theory predicts the stress field5

�rr =
3(3 + ⌫)p

0

(r2 � a2)z
4h3

�✓✓ =
3p

0

{(1 + 3⌫)r2 � (3 + ⌫)a2}z
4h3

�rz = �zz = 0 ,

with a maximum tensile stress

�
max

=
3(3 + ⌫)p

0

a2

8h2

. (25.51)

Thus, the elementary theory provides a good approximation to the more exact
solution as long as h ⌧ a. For example, it is in error by only about 0.2% if
h=a/10.

25.3 Non-axisymmetric problems

Non-axisymmetric problems can be solved by expanding the loading as a
Fourier series in ✓ and using the potentials of §24.7 in solutions A,B and
E. All three solutions are generally required, since there is no equivalent of
the partition into irrotational and torsional problems encountered for the ax-
isymmetric case. The method is in other respects similar to that used for
axisymmetric problems, but solutions tend to become algebraically compli-
cated, simply because of the number of functions involved. For this reason we
shall consider only a very simple example here. More complex examples are
readily treated using Maple or Mathematica.

25.3.1 Cylindrical cantilever with an end load

We consider the case of the solid cylinder 0 < r < a,�L < z < L, built in at
z = L and loaded only by a shear force F in the x-direction at z = 0. Thus,
the curved surfaces are traction-free
5 S.Timoshenko and S.Woinowsky-Krieger, Theory of Plates and Shells, McGraw-

Hill, New York, 2nd edn., 1959, §16.
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�rr = �r✓ = �rz = 0 ; r = a , (25.52)

and on the end z=0 we have �zz =0 and
Z a

0

Z

2⇡

0

(�zr cos ✓ � �z✓ sin ✓)rd✓dr = �F , (25.53)

from equilibrium considerations.
As in §13.1, loading in the x-direction implies normal stress components

varying with cos ✓ and these will be obtained from potentials �,! with a cos ✓
multiplier and from  with a sin ✓ multiplier6.

From elementary bending theory, we anticipate bending stresses �zz vary-
ing with zr cos ✓, suggesting fourth order polynomials in �, and third order
in !. We therefore try

� =
5A

4

2
(4z3r � 3zr3) cos ✓ + 3A

2

zr cos ✓

! =
3B

3

2
(4z2r � r3) cos ✓ (25.54)

 =
5E

4

2
(4z3r � 3zr3) sin ✓ ,

from equations (24.54). Notice that the problem is antisymmetric in z, so
only odd powers of z are included in �, and even powers in !. Also, we have
omitted the second order term in  and the first order term in !, since these
correspond only to rigid-body displacements.

Substituting (25.54) into Table 21.1, we obtain

�rr = �3(15A
4

+ (3 + 8⌫)B
3

+ 10E
4

)rz cos ✓
�r✓ = 3(5A

4

+ B
3

+ 10E
4

)rz sin ✓
�✓✓ = �3(5A

4

+ (1 + 8⌫)B
3

� 10E
4

)rz cos ✓ (25.55)

�zr =
3
2
{5A

4

(4z2 � 3r2) + 2A
2

+ B
3

(4(1 + 2⌫)z2 + 3(1� 2⌫)r2)

+ 5E
4

(4z2 � r2)} cos ✓

�z✓ = �3
2
{5A

4

(4z2 � r2) + 2A
2

+ B
3

(4(1 + 2⌫)z2 + (1� 2⌫)r2)

+ 5E
4

(4z2 � 3r2)} sin ✓
�zz = 12(5A

4

� (1� 2⌫)B
3

)rz cos ✓ .

Substituting these expressions into (25.53) and evaluating the integral, we
obtain the condition

3⇡a2

2
(�5A

4

a2 + 2A
2

+ B
3

(1� 2⌫)a2 � 5E
4

a2) = �F (25.56)

6 Notice that the expressions for normal stresses in solution E involve a derivative
with respect to ✓, so generally if cosine terms are required in A and B, sine terms
will be required in E and vice versa.
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and the strong boundary conditions (25.52) provide the three additional equa-
tions

�3(15A
4

+ (3 + 8⌫)B
3

+ 10E
4

) = 0
3(5A

4

+ B
3

+ 10E
4

) = 0 (25.57)
�3(5A

4

+ (1 + 8⌫)B
3

� 10E
4

) = 0 .

Solving (25.56, 25.57) for the four constants A
4

, A
2

, B
3

, E
4

and substituting
the resulting expressions into (25.55), we obtain the final stress field

�rr = �r✓ = �✓✓ = 0

�zr = �F (3 + 2⌫)
�

a2 � r2

�

cos ✓
2⇡a4(1 + ⌫)

(25.58)

�z✓ =
F
⇥

(3 + 2⌫)a2 � (1� 2⌫)r2

⇤

sin ✓
2⇡a4(1 + ⌫)

�zz = �4Frz cos ✓
⇡a4

.

PROBLEMS

1. The solid cylinder 0 r < a, 0 < z < L is supported at the end z = L and
subjected to a uniform shear traction �rz =S on the curved boundary r =a.
The end z=0 is traction-free.

Find the complete stress field in the cylinder using strong boundary con-
ditions on the curved boundary and weak conditions at the ends.

2. The hollow cylinder b<r <a, 0<z <L is supported at the end z =L and
subjected to a uniform shear traction �rz = S on the outer boundary r = a,
the inner boundary r=b and the end z=0 being traction-free.

Find the complete stress field in the cylinder using strong boundary con-
ditions on the curved boundary and weak conditions at the ends.

3. The solid cylinder (0  r < a,�L < z < L) is subjected to the traction
distribution

�rr = �p
0

�

L2 � z2

�

; �zr = 0 ; r = a ;
�zr = �zz = 0 ; z = ±L .

Find the complete stress field in the cylinder using strong boundary con-
ditions on the curved boundary and weak conditions at the ends.

4. The hollow cylinder b < r < a, 0 < z < L is subjected to the traction
distribution
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�rr = �r✓ = �rz = 0 ; r = a

�rz = S ; �rr = �r✓ = 0 ; r = b

�zr = �zz = 0 ; z = 0 .

Find the complete stress field in the cylinder using strong boundary con-
ditions on the curved boundary and weak conditions at the ends.

5. A heat exchanger tube b<r<a, �L<z<L is subjected to the steady-state
temperature distribution

T = T
0

⇣

1 +
z

10a

⌘

; r = b

= �T
0

z

10a
; r = a .

Find the complete stress field in the tube if all the surfaces are traction-
free. Find the location and a general expression for the magnitude of (i) the
maximum tensile stress and (ii) the maximum Von Mises equivalent stress for
the case where b=0.8a and L=20a. Find the magnitude of these quantities
when T

0

=50oC and the material is copper for which E =121 GPa, ⌫=0.33
and ↵=17⇥ 10�6 per oC.

6. The circular plate 0 r < a, �h/2 < z < h/2 is simply supported at r = a
and loaded by a shear traction �zr = Sr on the top surface z = h/2. All the
other tractions on the plane surfaces z =±h/2 are zero. Find the stresses in
the plate, using strong boundary conditions on z=±h/2 and weak boundary
conditions on r=a.

7. The circular plate 0  r < a, �h/2 < z < h/2 rotates at constant speed
⌦ about the z-axis, all the surfaces being traction-free. Find the stresses in
the plate, using strong boundary conditions on z=±h/2 and weak boundary
conditions on r=a.

8. The solid cylinder 0r<a, 0<z <L with its axis horizontal is built in at
z=L and loaded only by its own weight (density ⇢). Find the complete stress
field in the cylinder.

9. The hollow cylinder b<r<a, 0<z<L with its axis horizontal is built in at
z=L and loaded only by its own weight (density ⇢). Find the complete stress
field in the cylinder.

10. The hollow cylinder b  r < a, �L < z < L rotates at constant speed ⌦
about the x-axis, all the surfaces being traction-free. Find the complete stress
field in the cylinder.

11. The solid cylinder 0 r < a, �L < z < L is accelerated from rest by two
equal and opposite forces F applied in the positive and negative y-directions



404 25 Cylinders and circular plates

respectively at the ends z=±L. All the other surface tractions are zero. Find
the complete stress field in the cylinder at the instant when the forces are
applied7 (i.e. when the angular velocity is zero).

12. The circular plate 0  r < a, �h/2 < z < h/2 rotates at constant speed
⌦ about the x-axis, all the surfaces being traction-free. Find the stresses in
the plate, using strong boundary conditions on z=±h/2 and weak boundary
conditions on r=a. Note: This problem is not axisymmetric. It is the three-
dimensional version of Problem 8.3.

7 This is a three-dimensional version of the problem considered in §7.4.2.
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PROBLEMS IN SPHERICAL
COÖRDINATES

The spherical harmonics of Chapter 24 can be used in combination with Tables
21.2, 22.2 to treat problems involving bodies whose boundaries are surfaces
of the spherical coördinate system, for example the spherical surface R = a
or the conical surface �=�

0

, where a,�
0

are constants. Examples of interest
include the perturbation of an otherwise uniform stress field by a spherical
hole or inclusion, the stresses in a solid sphere due to rotation about an axis
and problems for a conical beam or shaft.

26.1 Solid and hollow spheres

The general solution for a solid sphere with prescribed surface tractions can
be obtained using the spherical harmonics of equation (24.24) in solutions A,B
and E. The addition of the singular harmonics (24.25) permits a general solu-
tion to the axisymmetric problem of the hollow sphere, but the corresponding
non-axisymmetric solution cannot be obtained from equations (24.24, 24.25).
To understand this, we recall from §20.4 that the elimination of one of the
components of the Papkovich-Neuber vector function  is only generally pos-
sible when all straight lines drawn in a given direction cut the boundary of
the body at only two points. This is clearly not the case for a body containing

surface of the hole in two points and the external boundaries of the body at
two additional points.

A similar di�culty arises for a body containing a plane crack, such as the
penny-shaped crack problem of Chapter 31. There are various ways of getting
around it. For example,

(i) We could decompose the loading into symmetric and antisymmetric com-
ponents with respect to the plane z = 0. Each problem would then be
articulated for the hollow hemisphere with symmetric or antisymmetric
boundary conditions on the cut surface. Since the hollow hemisphere sat-
isfies the conditions of §20.4, a general solution can be obtained using

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 405

a spherical hole, since lines in any direction can always be chosen that cut the

DOI 10.1007/978-90-481-3809-8_26, © Springer Science+Business Media B.V. 2010 
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solutions A,B and E, but generally we shall need to supplement the po-
tentials (24.24, 24.25) with those of equations (24.37) that are singular on
that half of the z-axis that does not pass through the hemisphere being
analyzed.

(ii) We could include all four terms of the Papkovich-Neuber solution1 or
the six terms of the Galerkin vector of section §20.2. The former option
is equivalent to the use of solutions A and B in combination with two
additional solutions obtained by permuting su�ces x, y, z in solution B.

(iii) In certain cases, we may be able to obtain particular non-axisymmetric
solutions by superposition of axisymmetric ones. For example, the spher-
ical hole in an otherwise uniform shear field can be solved by superposing
the stress fields for the same body subject to equal and opposite tension
and compression respectively about orthogonal axes.

26.1.1 The solid sphere in torsion

As a simple example, we consider the solid sphere 0R<a subjected to the
torsional tractions

�R✓ = S
0

sin(2�) (26.1)

on the surface R=a, the remaining tractions �RR,�R� being zero.
This is clearly an axisymmetric torsion problem, for which we require only

solution E and the axisymmetric bounded potentials (24.14). Substitution of
the first few potentials into Table 21.2 shows that the problem can be solved
using the potential

 = E
3

R3P
3

(cos�) =
E

3

2
(5 cos3 � + 3 cos�) , (26.2)

where E
3

is an unknown constant. The corresponding non-zero stress compo-
nents in spherical polar coördinates are

�R✓ = 3E
3

R sin� cos� ; ��✓ = �3E
3

R sin2 � , (26.3)

so by inspection we see that the boundary condition (26.1) is satisfied by
choosing E

3

=3S
0

/2a.

26.1.2 Spherical hole in a tensile field

A more interesting problem is that in which a state of uniaxial tension �zz =S
0

is perturbed by the presence of a small, traction-free, spherical hole of radius
a — i.e.
1 See for example, A.I.Lur’e, Three-Dimensional Problems of the Theory of Elas-

ticity, Interscience, New York, 1964, Chapter 8.
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�zz ! S ; R!1 (26.4)
�rr,�✓✓,�r✓,�✓z,�zr ! 0 ; R!1 (26.5)
�RR = �R✓ = �R� = 0 ; R = a . (26.6)

This problem is the axisymmetric equivalent of the two-dimensional problem
of §8.4.1 and as in that case it is convenient to start by determining a stress
function description of the unperturbed uniaxial stress field. This is clearly
axisymmetric and involves no torsion, so we use solutions A and B with the
polynomials (24.27) in cylindrical polar coördinates. The stress components
involve two di↵erentiations in solution A and one in solution B, so we need
the functions R2P

2

(z/R) in � and R1P
1

(z/R) in ! to get a uniform state of
stress. Writing

� =
A

1

2
(2z2 � r2) ; ! = B

1

z (26.7)

and substituting into Table 21.1, we obtain

�rr = �✓✓ = �(A
1

+⌫B
1

) ; �zz = 2A
1

�2B
1

(1�⌫) ; �rz = �z✓ = �✓r = 0 .
(26.8)

The conditions (26.4, 26.5) are therefore satisfied by the choice

A
1

=
S⌫

(1 + ⌫)
; B

1

= � S

2(1 + ⌫)
. (26.9)

To satisfy the traction-free condition at the hole surface (26.6), we now change
to spherical polar coördinates and superpose singular potentials from (24.18)
with the same Legendre polynomial form as those in the unperturbed solution
— i.e.

� = A
1

R2P
2

(cos�) + A
2

R�3P
2

(cos�) + A
3

R�1P
0

(cos�) (26.10)
! = B

1

R1P
1

(cos�) + B
2

R�2P
1

(cos�) . (26.11)

Notice that in contrast to the two-dimensional problem of §8.4.1, we need to
include also any lower order Legendre polynomial terms that have the same
symmetry (in this case even orders in � and odd orders in !).

Substituting (26.10, 26.11) into Table 21.2, we obtain

�RR =
✓

3A
1

+
18A

2

R5

� 2(1� 2⌫)B
1

+
2(5� ⌫)B

2

R3

◆

cos2 �

�A
1

� 6A
2

R5

+
2A

3

R3

� 2⌫B
1

� 2⌫B
2

R3

(26.12)

�R� =
✓

�3A
1

+
12A

2

R5

� 2(1� 2⌫)B
1

+
2(1 + ⌫)B

2

R3

◆

sin� cos�

(26.13)

and hence the boundary conditions (26.6) require that
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3A
1

+
18A

2

a5

� 2(1� 2⌫)B
1

+
2(5� ⌫)B

2

a3

= 0

�A
1

� 6A
2

a5

+
2A

3

a3

� 2⌫B
1

� 2⌫B
2

a3

= 0

�3A
1

+
12A

2

a5

� 2(1� 2⌫)B
1

+
2(1 + ⌫)B

2

a3

= 0 .

Solving these equations and using (26.9), we obtain

A
2

=
Sa5

(7� 5⌫)
; A

3

=
Sa3(6� 5⌫)
2(7� 5⌫)

; B
2

=
�5Sa3

2(7� 5⌫)
(26.14)

and the final stress field is

�RR = S cos2 � +
S

(7� 5⌫)

✓

a3

R3

(6� 5(5� ⌫) cos2 �) +
6a5

R5

(3 cos2 � � 1)
◆

�✓✓ =
3S

2(7� 5⌫)

✓

a3

R3

(5⌫ � 2 + 5(1� 2⌫) cos2 �) +
a5

R5

(1� 5 cos2 �)
◆

��� = S sin2 �

+
3S

2(7� 5⌫)

✓

a3

R3

(4� 5⌫ + 5(1� 2⌫) cos2 �)� 9a5

R5

(3 cos2 � � 1)
◆

�R� = S

⇢

�1 +
1

(7� 5⌫)

✓

�5a3(1 + ⌫)
R3

+
12a5

R5

◆�

sin� cos� . (26.15)

The maximum tensile stress is ��� at �=⇡/2, R=a and is

�
max

=
3S(9� 5⌫)
2(7� 5⌫)

. (26.16)

The stress concentration factor is 13/6 = 2.17 for materials with ⌫ = 0.5 and
decreases only slightly for other values in the practical range.

26.2 Conical bars

The equation � = �
0

, where �
0

is a constant, define conical surfaces in the
spherical polar coördinate system and the potentials developed in Chapter 24
can therefore be used to solve various problems for the solid or hollow conical
bar.

Substitution of a potential of the form Rnf(✓,�) into Table 21.2 will yield
stress components varying with Rn�2 in solutions A and E or with Rn�1

in solution B. The bounded potentials of equations (24.14, 24.24) therefore
provide a general solution of the problem of a solid conical bar with polynomial
tractions on the curved surfaces.

If the curved surfaces are traction-free, but the bar transmits a force or
moment resultant, the stresses will increase without limit as the vertex (the
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origin) is approached, so in these cases we should expect to need singular
potentials even for the solid bar.

For the hollow conical bar, we need additional potentials with the same
power law variation with R and these are provided by the Q-series of equa-
tions (24.34). Notice that the singularity of these solutions on the z-axis is
acceptable for the hollow bar, since the axis is not then contained within the
body.

26.2.1 Conical bar transmitting an axial force

We consider the solid conical bar 0�<�
0

transmitting a tensile axial force
F , the curved surfaces �=�

0

being traction-free. We shall impose the strong
(homogeneous) conditions

��R = ��✓ = ��� = 0 ; � = �
0

(26.17)

on the curved surfaces and weak conditions on the ends. If the bar has plane
ends and occupies the region a<z<b, we have

Z

2⇡

0

Z b tan �0

0

�zz(r, ✓, b)rdrd✓ = F (26.18)

and a similar condition2 at z =a. Alternatively, we could consider the equiv-
alent problem of a bar with spherical ends Ra < R < Rb, for which the weak
boundary condition takes the form3

Z

2⇡

0

Z �0

0

{�RR(Rb, ✓,�) cos� � �R�(Rb, ✓,�) sin�}R2

b sin�d�d✓ = F .

(26.19)
The cross-sectional area of the ends of the conical bar increase with R2

(the radius increases with R), so the stresses must decay with R�2 as in the
point force solutions of §23.1.2 and §23.2.1. This suggests the use of the source
solution 1/R in solution B and the potential ln(R+z) in solution A. Notice
that this problem is axisymmetric and there is no torsion, so solution E will
not be required. Also, notice that the bar occupies only the region z > 0
in cylindrical polar coördinates, so the singularities on the negative z-axis
implied by ln(R+z) are acceptable.

Writing these potentials in spherical polar coördinates and introducing
arbitrary multipliers A,B, we have
2 As in earlier problems, the weak condition need only be imposed at one end, since

the condition at the other end will be guaranteed by the fact that the stress field
satisfies the equilibrium condition everywhere.

3 To derive this result, note that the element of area on a spherical surface is
(Rd�)(rd✓) = R2 sin�d�d✓ and the forces on this element due to the stress com-
ponents �

RR

,�
R�

must be resolved into the axial direction.
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� = A{ln(R) + ln(1 + cos(�))} ; ! =
B

R
(26.20)

and substitution into Table 21.2 gives the non-zero stress components

�RR = � A

R2

+
2(2� ⌫)B cos�

R2

(26.21)

�✓✓ =
A

R2(1 + cos�)
� (1� 2⌫)B cos�

R2

(26.22)

��� =
A cos�

R2(1 + cos�)
� (1� 2⌫)B cos�

R2

(26.23)

��R =
A sin�

R2(1 + cos�)
� (1� 2⌫)B sin�

R2

. (26.24)

The strong conditions (26.17) will therefore be satisfied as long as

A

(1 + cos�
0

)
= (1� 2⌫)B (26.25)

and the weak condition (26.19) after substitution for the stress components
and evaluation of the integral gives

2⇡(1� cos�
0

)
�

A +
�

cos2 �
0

+ cos�
0

+ 2� 2⌫
�

B
 

= F . (26.26)

Solving equations (26.25, 26.26) for A,B, we obtain

A =
F (1� 2⌫)(1 + cos�

0

)
2⇡(1� cos�

0

) (1 + 2⌫ cos�
0

+ cos2 �
0

)

B =
F

2⇡(1� cos�
0

) (1 + 2⌫ cos�
0

+ cos2 �
0

)
(26.27)

and the stress components are then recovered by substituting for A,B into
equations (26.21–26.24).

Elementary Mechanics of Materials arguments predict that the axial stress
�zz would be uniform and equal to F/⇡b2 at z = b. We can assess the ap-
proximation involved in this prediction by recasting the present solution in
cylindrical coordinates — i.e. writing

� = A ln
⇣

p

r2 + z2 + z
⌘

; ! =
Bp

r2 + z2

(26.28)

with A,B given by (26.27) and substituting into the cylindrical polar form
of solutions A and B (Table 21.1). This is done at the end of the Maple file
‘conetension’. The normalized stresses on a cross-sectional plane are shown
in Figure 26.1 for various cone angles �

0

. The axial stress is largest at the
axis r = 0, but remains fairly uniform across the cross-section for �

0

< 10o.
Significant non-uniformity occurs for larger cone angles. For example, even for
a 30o cone, the maximum stress exceeds the elementary prediction by 46%.
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Figure 26.1: Distribution of the axial stress �zz for the cone loaded in
tension.

In the special case where �
0

=⇡/2, the cone becomes a half space and we
recover the Boussinesq solution of §23.2.1, albeit expressed in spherical polar
coördinates. For values of � in the range ⇡/2<�

0

<⇡, the solution defines the
problem of a large body with a conical notch loaded by a concentrated force
at the vertex of the notch.

The related problem of the hollow conical bar �
1

<�<�
2

can be treated
in the same way by supplementing � in solution A by the term A

2

{ln(R)+
ln(1�cos(�))}. This is similar to the term in equation (26.20), except that
the singularities are now on the positive z-axis, which of course is acceptable
for the hollow bar, since this axis does not now lie inside the material of the
bar4.

26.2.2 Inhomogeneous problems

If polynomial tractions are applied to the curved surfaces of the cone, but
there are no concentrated loads at the vertex, the stresses will vary with the
same power of R as the tractions and the order of the corresponding potential
is easily determined5 by examining the derivatives in Table 21.2.
4 See Problem 26.13.
5 As in Chapter 8, some of the lower order bounded potentials correspond merely to

rigid-body displacements and involve no stresses. In such cases, we need additional
special potentials which are obtained from the logarithmic series of equations
(24.37, 23.23), see for example Problem 26.17. Similar considerations apply to the
cone loaded by low-order non-axisymmetric polynomial tractions. These special
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Example

As a simple example, we consider the hollow cone �
1

< � < �
2

loaded by
quadratic torsional shear tractions on the outer surface, the othere tractions
being zero — i.e.

��✓ = SR2 ; ��R = ��� = 0 ; � = �
2

��✓ = ��R = ��� = 0 ; � = �
1

. (26.29)

This is clearly an axisymmetric torsion problem which requires solution E only.
The tractions vary with R2 and hence  must vary with R4, from Table 21.2.
Since the cone is hollow, we require both P and Q series Legendre functions
of this order, giving

 = C
1

R4P
4

(cos�) + C
2

R4Q
4

(cos�) , (26.30)

where P,Q are given by equations (24.11, 24.32) respectively. Substituting
into Table 21.2 yields the non-zero stress components

�✓� = �R2

2

⇢

30C
1

sin2 � cos� + 15C
2

sin2 � cos� ln
✓

1� cos�
1 + cos�

◆

�C
2

�

30 cos4 � � 50 cos2 � + 16
�

sin2 �

)

(26.31)

�R✓ =
R2 sin�

2

⇢

6C
1

�

5 cos2 � � 1
�

+ 3C
2

�

5 cos2 � � 1
�

ln
✓

1� cos�
1 + cos�

◆

+
C

2

�

30 cos3 � � 26 cos�
�

sin2 �

)

(26.32)

and the boundary conditions (26.29) will therefore be satisfied if

6C
1

�

5 cos2 �
1

� 1
�

+ 3C
2

�

5 cos2 �
1

� 1
�

ln
✓

1� cos�
1

1 + cos�
1

◆

+
C

2

�

30 cos3 �
1

� 26 cos�
1

�

sin2 �
1

= 0 (26.33)

6C
1

�

5 cos2 �
2

� 1
�

+ 3C
2

�

5 cos2 �
2

� 1
�

ln
✓

1� cos�
2

1 + cos�
2

◆

+
C

2

�

30 cos3 �
2

� 26 cos�
2

�

sin2 �
2

=
2S

sin�
2

.

(26.34)

Solution of these equations for C
1

, C
2

and substitution of the result into (26.31,
26.32) completes the solution of the problem.

solutions are related to the two-dimensional corner fields described in §11.1.2,
§11.1.3 and are needed because a state of uniform traction on the conical surface
is not consistent with a locally homogeneous state of stress near the apex of the
cone.



26.2 Conical bars 413

26.2.3 Non-axisymmetric problems

Non-axisymmetric problems for the solid or hollow cone can be solved using
the potentials6

RnPm
n (cos�)

⇢

cos(m✓)
sin(m✓) ; RnQm

n (cos�)
⇢

cos(m✓)
sin(m✓)

R�n�1Pm
n (cos�)

⇢

cos(m✓)
sin(m✓) ; R�n�1Qm

n (cos�)
⇢

cos(m✓)
sin(m✓) .

As a simple example, we consider the solid cone 0 � < �
0

loaded only
by a concentrated moment M about the x-axis at the vertex, the curved
surfaces � = �

0

being traction free. There is no length scale, so the problem
is self-similar and both the stresses and the potential functions must be of
separated-variable form.

The applied moment leads to the transmission of a bending moment M
along the cone and we anticipate stress components varying with y and hence
with sin ✓. The stress components on a given spherical surface will have mo-
ment arms proportional to the radius R and the area of this surface is pro-
portional to R2, so if the same moment is to be transmitted across all such
surfaces, the stresses must decay with R�3. This implies the use of a poten-
tial proportional to R�2 in solution B and to R�1 in solutions A and E. We
therefore choose

� = AR�1P 1

0

(cos�) sin ✓ =
A sin� sin ✓
R(1 + cos�)

(26.35)

! = BR�2P 1

1

(cos�) sin ✓ =
B sin� sin ✓

R2

(26.36)

 = CR�1P 1

0

(cos�) cos ✓ =
C sin� cos ✓
R(1 + cos�)

, (26.37)

where we have used (24.22) to evaluate P 1

0

.
Substituting these expressions into Table 21.2, we obtain the stress com-

ponents

�RR =
2{A + 2C + (5� ⌫)B cos�(1 + cos�)} sin� sin ✓

R3(1 + cos�)

�✓✓ = �
�

(A + 2C)(2 + cos�) + 3(1� 2⌫)B cos�(1 + cos�)2
 

sin� sin ✓
R3(1 + cos�)2

��� = �
�

A + 2C + (1� 2⌫)B(1 + cos�)2
 

cos� sin� sin ✓
R3(1 + cos�)2

(26.38)

�✓� =
�

A + 2C + (1� 2⌫)B(1 + cos�)2
 

sin� cos ✓
R3(1 + cos�)2

6 but see footnote 5 on Page 411.
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��R = �
�

2A + C(1�3 cos�) + 2B(1 + cos�)
�

1�2⌫ + (1 + ⌫) cos2 �
� 

sin ✓
R3(1 + cos�)

�R✓ = �
�

2A + C
�

4� 3 cos� � 2 cos2 �
�

+ 2(2� ⌫)B cos�(1 + cos�)
 

cos ✓
R3(1 + cos�)

and hence the traction free boundary conditions ��R =��✓ =��� =0 on �=�
0

will be satisfied provided

2A + C(1� 3 cos�
0

) + 2B(1 + cos�
0

)
�

1� 2⌫ + (1 + ⌫) cos2 �
0

�

= 0

A + 2C + (1� 2⌫)B(1 + cos�
0

)2 = 0
A + 2C + (1� 2⌫)B(1 + cos�

0

)2 = 0 .

(26.39)

These three homogeneous equations have a non-trivial solution, since the last
two equations are identical. The resulting free constant is determined from
the equilibrium condition

Z �0

0

Z

2⇡

0

(�R✓ cos ✓ cos� + �R� sin ✓)R3 sin�d✓d� = M , (26.40)

which states that the resultant of the tractions across any spherical surface
of radius R is a moment M about the x-axis. Substituting for the stress
components and evaluating the double integral, we obtain

⇡
��2A(1� cos�

0

) + C cos�
0

sin2 �
0

+2B
�

cos3 �
0

+ (1� 2⌫) cos�
0

� 2(1� ⌫)
 �

= M . (26.41)

The final stress field is obtained by solving (26.39, 26.41) for A,B, C and
substituting into (26.38). These operations are performed in the Maple and
Mathematica files ‘conebending’.

PROBLEMS

1. A traction-free solid sphere of radius a and density ⇢ rotates at constant
angular velocity ⌦ about the z-axis7. Find the complete stress field in the
sphere. Find the location and magnitude of (i) the maximum tensile stress
and (ii) the maximum Von Mises stress and also (iii) the increase in the
equatorial diameter and (iv) the decrease in the polar diameter due to the
rotation.

2. A traction-free hollow sphere of inner radius b, outer radius a and density
⇢ rotates at constant angular velocity ⌦ about the z-axis. Find the complete
7 This problem is of some interest in connection with the stresses and displacements

in the earth’s crust due to diurnal rotation.
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stress field in the sphere. Find also the increase in the outer equatorial diam-
eter and the decrease in the outer polar diameter due to the rotation.

3. A hollow sphere of inner radius b and outer radius a is filled with a gas at
pressure p. Find the complete stress field in the sphere and the increase in the
contained volume due to the internal pressure..

4. A state of uniaxial tension, �zz = S in a large body is perturbed by the
presence of a rigid spherical inclusion in the region 0R<a. The inclusion is
perfectly bonded to the surrounding material, so that the boundary condition
at the interface in a suitable frame of reference is one of zero displacement
(uR =u✓ =u� =0 ; R=a).

Develop a solution for the stress field and find the stress concentration
factor.

5. A rigid spherical inclusion of radius a in a large elastic body is subjected
to a force F in the z-direction.

Find the stress field if the inclusion is perfectly bonded to the elastic body
at R=a and the stresses tend to zero as R!1.

6. Investigate the steady-state thermal stress field due to the disturbance of
an otherwise uniform heat flux, qz =Q, by an insulated spherical hole of radius
a.

You must first determine the perturbed temperature field, noting (i) that
the temperature T is harmonic and hence can be represented in terms of
spherical harmonics and (ii) that the insulated boundary condition implies
that @T/@R=0 at R=a.

The thermal stress field can now be obtained using Solution T supple-
mented by appropriate functions in Solutions A,B, chosen so as to satisfy the
traction-free condition at the hole.

7. A state of uniaxial tension, �zz =S in a large body (the matrix) of elastic
properties µ

1

, ⌫
1

is perturbed by the presence of a spherical inclusion in the
region 0  R < a with elastic properties µ

2

, ⌫
2

. The inclusion is perfectly
bonded to the matrix.

Develop a solution for the stress field and find the two stress concentration
factors

K
1

=
�max

1

S
; K

2

=
�max

2

S
,

where �max

1

,�max

2

are respectively the maximum tensile stresses in the matrix
and in the inclusion.

Plot figures showing how K
1

,K
2

vary with the modulus ratio µ
1

/µ
2

and
with the two Poisson’s ratios.
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8. A sphere of radius a and density ⇢ rests on a rigid plane horizontal surface.
Assuming that the support reaction consists of a concentrated vertical force
equal to the weight of the sphere, find the complete stress field in the sphere.

Hint: Start with the solution for a point force acting on the surface of
a half-space (the Boussinesq solution of §23.2.1) and determine the tractions
on an imaginary spherical surface passing through the point of application of
the force. Comparison with the corresponding cylindrical problems 12.1, 12.2,
12.3, would lead one to expect that these tractions could be removed by a
finite series of spherical harmonics, but this is not the case. In fact, the trac-
tions are still weakly (logarithmically) singular, though the dominant (1/R)
singularity associated with the point force has been removed. A truncated
series of spherical harmonics will give an approximate solution, but the series
will be rather slowly convergent. A more rapidly convergent solution can be
obtained by first removing the logarithmic singularity.

9. A sphere of radius a is loaded by two equal and opposite point forces F
applied at the poles �=0, 2⇡). Find the stress field in the sphere. (Read the
‘hint’ for Problem 26.8).

10. A cylindrical bar of radius b transmits a torque T . It also contains a small
spherical hole of radius a (⌧ b) on the axis. Find the perturbation in the
elementary torsional stress field due to the hole.

11. A vertical conical tower, 0 < � < �
0

of height h and density ⇢ is loaded
only by its own weight. Find the stress field in the tower.

12. A vertical hollow conical tower, �
1

< � < �
2

of height h and density ⇢ is
loaded only by its own weight. Find the stress field in the tower. Are there
any conditions (values of �

1

,�
2

) for which tensile stresses are developed in the
tower? If so, when and where?

13. The hollow conical bar �
1

<�<�
2

is loaded by a tensile axial force F , the
curved surfaces �=�

1

,�
2

being traction-free. Use the stress functions

� = A
1

{ln(R) + ln(1 + cos(�))}+ A
2

{ln(R) + ln(1� cos(�))} ; ! =
B

R

to obtain a solution for the stress field.

14. A horizontal solid conical bar, 0<�<�
0

of length L and density ⇢ is built
in at z=L and loaded only by its own weight. Find the stress field in the bar
and the vertical displacement of the vertex.

15. Figure 26.2 shows the cross-section of a concrete dam which may be ap-
proximated as a sector of a truncated hollow cone. The dam is loaded by
hydrostatic pressure (water density ⇢) and by self weight (concrete density
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⇢c =2.3⇢). Assuming the stress field is axisymmetric — i.e. that the tractions
at the side support are the same as those that would occur on the equivalent
plane in a complete truncated hollow cone loaded all around the circumfer-
ence — determine the stress field in the dam using strong conditions on the
curved surfaces and weak (traction-free) conditions on the truncated end.

Figure 26.2: Truncated hollow conical dam.

16. Find the stress field in the solid conical shaft 0<�<�
0

, loaded only by a
torque T at the vertex.

17. The solid conical bar 0 < � < �
0

is loaded by uniform torsional shear
tractions ��✓ = S at � = �

0

, all other traction components being zero. Find
the stress field in the bar. Note: The ‘obvious’ stress function for this prob-
lem is R2P

2

(cos�), but it corresponds only to rigid-body rotation and gives
zero stress components. As in Chapter 8, we need a special stress function for
this case, which is in fact ��3

from equation (23.23). You will need to write
z=R cos� to express this function in spherical polar coördinates. It will con-
tain the term R2 ln(R), but as in §10.3, the same degeneracy that causes the
elementary potential to give zero stresses will cause there to be no logarithmic
terms in the stress components.

18. Use spherical polar coördinates to find the stresses in the half-space z>0
due to a concentrated tangential force F in the x-direction, applied at the
origin. Note: The half-space is equivalent to the cone 0  � < ⇡/2. This
problem is the spherical polar equivalent of Problem 23.1.
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19. A solid sphere of radius a is loaded only by self-gravitation — i.e. each
particle of the sphere is attracted to each other particle by a force �m

1

m
2

/R2,
where m

1

,m
2

are the masses of the two particles, R is the distance betwen
them and � is the universal gravitational constant. Find the stress field in
the sphere and in particular the location and magnitude of the maximum
compressive stress and the maximum shear stress.

Assuming that the solution is to be applied to the earth, express the results
in terms of the gravitational acceleration g at the surface.

20. The solid cone 0<�<�
0

is loaded by a force in the x-direction applied at
the vertex. The surface of the cone is otherwise traction-free. Find the stress
field in the cone. Notice that Problem 18 is a special case of this solution for
�

0

=⇡/2.

21. The surface of a solid sphere of radius a is traction-free, but is subjected
to the steady-state heat flux

qR = q
0

(3 cos(2�) + 1) .

In other words, it is heated near the equator and cooled near the poles.
Find the complete stress and displacement field in the sphere. Also, find the

di↵erence between the largest and smallest external diameter of the thermally
distorted sphere.
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AXISYMMETRIC TORSION

We have already remarked in §25.1 that the use of axisymmetric harmonic
potential functions in Solution E provides a general solution of the problem of
an axisymmetric body loaded in torsion. In this case, the only non-zero stress
and displacement components are

µu✓ = �@ 
@r

; �✓r =
1
r

@ 

@r
� @2 

@r2

; �✓z = � @2 

@r@z
. (27.1)

A more convenient formulation of this problem can be obtained by consid-
ering the relationship between the stress components and the torque transmit-
ted through the body. We first note that the two non-zero stress components
(27.1) both act on the cross-sectional ✓-plane, on which they constitute a
vector field �

✓

of magnitude

|�
✓

| =
q

�2

✓r + �2

✓z . (27.2)

This vector field is illustrated in Figure 27.1. It follows that the stress compo-
nent �✓n

complementary shear stress �n✓ = 0. Thus, the flow lines define traction-free
surfaces in r, ✓, z space.

Figure 27.1: Vector representation of the shear stresses on the cross-sectional
plane.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 419

normal to any of the ‘flow lines’ in this figure is zero and hence the

DOI 10.1007/978-90-481-3809-8_27, © Springer Science+Business Media B.V. 2010 
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Consider now the equilibrium of the axisymmetric body defined by ABCD
in Figure 27.1. The surfaces AB and CD are flow lines and are therefore
traction-free, so we must conclude that the resultant torque transmitted across
the circular surface AD is equal to that transmitted across BC. Thus the flow
lines define surfaces enclosing axisymmetric bodies that transmit constant
torque along the axis. Conversely, if we use the torque T (r, z) transmitted
across the disk of radius r as our fundamental variable, a traction-free surface
will then correspond to a line in the cross-section along which T is constant.
This has many advantages, not the least of which is that we can make contour
plots of candidate functions T (r, z) and then adjust parameters in order to
approximate the shape of the required body by one of the contours.

27.1 The transmitted torque

The torque transmitted across a disk of radius r is

T (r, z) = 2⇡
Z r

0

r2�z✓dr . (27.3)

To avoid the factor of 2⇡, we shall define a stress function � such that

T (r, z) = 2⇡�(r, z) . (27.4)

Di↵erentiation of (27.3) with respect to r then yields

�z✓ =
1

2⇡r2

@T

@r
=

1
r2

@�

@r
. (27.5)

The torque transmitted into a disk of thickness �z and radius r across the
curved surface is

�T = �2⇡r2�r✓�z (27.6)

and hence
�r✓ = � 1

2⇡r2

@T

@z
= � 1

r2

@�

@z
. (27.7)

27.2 The governing equation

Equations (27.5, 27.7) and (27.1) are alternative representations of the stress
field and hence

� 1
r2

@�

@z
=

1
r

@ 

@r
� @2 

@r2

;
1
r2

@�

@r
= � @2 

@r@z
. (27.8)

Multiplying through by r2 and di↵erentiating these expressions, we obtain

@2�

@z2

= �r
@2 

@r@z
+ r2

@3 

@r2@z
;
@2�

@r2

= �2r
@2 

@r@z
� r2

@3 

@r2@z
(27.9)
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and hence
@2�

@r2

+
@2�

@z2

= �3
@2 

@r@z
=

3
r

@�

@r
, (27.10)

from (27.8). Thus, the stress function � must satisfy the equation

@2�

@r2

� 3
r

@�

@r
+
@2�

@z2

= 0 . (27.11)

The axisymmetric torsion problem is therefore reduced to the determi-
nation of a function � satisfying (27.11), such that � is constant along any
traction-free boundary. The stress field is then given by

�r✓ = � 1
r2

@�

@z
; �z✓ =

1
r2

@�

@r
. (27.12)

Recall also that the transmitted torque is related to � through equation (27.4).

27.3 Solution of the governing equation

Equation (27.11) is similar in form to the Laplace equation (24.38) and solu-
tions can be obtained in terms of Legendre functions, using a technique similar
to that used in Chapter 24. A relationship with harmonic functions can be
established by defining a new function f through the equation

�(r, z) = r2f(r, z) . (27.13)

Substitution into (27.11) then shows that f must satisfy the equation

@2f

@r2

+
1
r

@f

@r
� 4f

r2

+
@2f

@z2

= 0 , (27.14)

which is (24.44) with m = 2. It follows that (27.13) will define a function
satisfying (27.11) if the function

f(r, z) cos(2✓)

is harmonic. In particular, we conclude that the functions

r2RnP 2

n(cos�) ; r2RnQ2

n(cos�) ; r2R�n�1P 2

n(cos�) ; r2R�n�1Q2

n(cos�)
(27.15)

satisfy (27.11). More generally, we can use equation (24.46) recursively to
show that the function

f(r, z) =
@2g

@r2

� 1
r

@g

@r
= r

@

@r

✓

1
r

@g

@r

◆

(27.16)

will satisfy (27.14) if g(r, z) is an axisymmetric harmonic function and hence
the function
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� = r2

@2g

@r2

� r
@g

@r
= r3

@

@r

✓

1
r

@g

@r

◆

(27.17)

satisfies (27.11). This can also be verified directly by substitution (see Problem
27.1). Any axisymmetric harmonic function g can be used to generate solutions
in this way, including for example those defined by equations (24.14, 24.18,
24.27, 24.34, 24.42).

The functions

RnP 2

n�2

(cos�) ; RnQ2

n�2

(cos�) ; R3�nP 2

n�2

(cos�) ; R3�nQ2

n�2

(cos�)
(27.18)

define solutions to equation (27.11) for n� 4. The P -series functions define
the bounded polynomials

�
4

= R4 sin4 � = r4

�
5

= R5 sin4 � cos� = r4z

�
6

= R6

�

7 cos2 � � 1
�

sin4 � = r4

�

6z2 � r2

�

(27.19)

�
7

= R7

�

3 cos2 � � 1
�

sin4 � cos� = r4z
�

2z2 � r2

�

and a corresponding set of functions

��1

= R�1 sin4 � =
r4

R5

��2

= R�2 sin4 � cos� =
r4z

R7

��3

= R�3 =
r4z

R7

�

7 cos2 � � 1
�

sin4 � =
r4

�

6z2 � r2

�

R9

(27.20)

��4

= R�4

�

3 cos2 � � 1
�

sin4 � cos� =
r4z

�

2z2 � r2

�

R11

.

that are singular only at the origin. The Q-series functions include logarithmic
terms and are singular on the entire z-axis.

The two solutions of (27.11) of degree 0,1,2,3 in R are

RnP�2

n�2

(cos�) ; RnQ2

n�2

(cos�) , (27.21)

which can be expanded as

�
0

= R0(1� cos�)2(2 + cos�) =
(R� z)2(2R + z)

R3

�
1

= R1(1� cos�)2 =
(R� z)2

R
�

2

= R2(1� cos�)2 = (R� z)2 (27.22)
�

3

= R3(1� cos�)2(2 + cos�) = (R� z)2(2R + z)
(27.23)
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and

'
0

= 1
'

1

= R cos� = z

'
2

= R2 cos� = Rz (27.24)
'

3

= R3

respectively.

27.4 The displacement field

Eliminating  between equations (27.1), we have

�✓r = µ

✓

@u✓

@r
� u✓

r

◆

; �✓z = µ
@u✓

@z
. (27.25)

Once the stress field is known, these equations can be solved for the only
non-zero displacement component u✓.

An alternative approach is to define a displacement function  through
the equation

u✓ = r , (27.26)

in which case
�✓r = µr

@ 

@r
; �✓z = µr

@ 

@z
, (27.27)

from (27.25, 27.26) and more generally the vector traction on the ✓-plane is

�
✓

= µrr . (27.28)

It follows from (27.28) that on a traction free surface

@ 

@n
= 0 , (27.29)

where n is the local normal to the surface. Thus lines of constant � and lines
of constant  are everywhere orthogonal to each other.

Equations (27.12) and (27.27) are alternative representations of the stress
components and hence

µr
@ 

@r
= � 1

r2

@�

@z
; µr

@ 

@z
=

1
r2

@�

@r
. (27.30)

Eliminating � between these equations, we obtain

@2 

@r2

+
3
r

@ 

@r
+
@2 

@z2

= 0 , (27.31)

which is the governing equation that must be satisfied by the displacement
function  .
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27.5 Cylindrical and conical bars

The formulation introduced in this chapter is particularly e↵ective for deter-
mining the stresses in an axisymmetric bar loaded only by torques on the
ends. In this case, the curved surfaces of the bar must be defined by lines
of constant � and the problem is reduced to the determination of a solution
of (27.11) that is constant along a specified surface. It may be possible to
determine this by inspection, using a suitable combination of functions such
as (27.18–27.24). In other cases, an approximate solution may be obtained by
making a contour plot of a candidate function and adjusting multiplying con-
stants or other parameters until one of the contours approximates the required
shape of the bar.

A simple case is the solid cylindrical bar of radius a, transmitting a torque
T . Clearly the function

� = C�
4

= Cr4 (27.32)

is constant on r = a, so the traction-free condition is satisfied along this
boundary. To determine the multiplying constant C, we use equation (27.4)
to write

T = 2⇡�(a, z)� 2⇡�(0, z) = 2⇡Ca4 (27.33)

and hence
C =

T

2⇡a4

. (27.34)

The stress components are then recovered from (27.12) as

�z✓ = 4Cr =
2Tr

⇡a4

; �r✓ = 0 , (27.35)

agreeing of course with the elementary torsion theory.
A more interesting example concerns the conical bar 0<�<�

0

transmit-
ting a torque T . The traction-free condition on the boundary �= �

0

will be
satisfied if � is independent of R and hence a function of � only in spherical
polar coördinates. This condition is clearly satisfied by the functions �

0

,'
0

of
equations (27.22, 27.24), but the latter leads only to a null state of stress, so
we take

� = C�
0

= C(1� cos�)2(2 + cos�) =
C(R� z)2(2R + z)

R3

. (27.36)

For the constant C, we have

T = 2⇡�(R,�
0

)� 2⇡�(R, 0) = 2⇡C(1� cos�
0

)2(2 + cos�
0

) , (27.37)

from (27.4) and hence

C =
T

2⇡(1� cos�
0

)2(2 + cos�
0

)
. (27.38)
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The stress components are then obtained from (27.12) as

�z✓ =
3Trz

2⇡(1� cos�
0

)2(2 + cos�
0

)R5

; �r✓ =
3Tr2

2⇡(1� cos�
0

)2(2 + cos�
0

)R5

.

(27.39)
Simpler expressions for the stresses are obtained in spherical polar coördinates.
Vector transformation of the tractions (27.12) on the ✓-plane leads to the
general expressions

�✓R =
1
r2

1
R

@�

@�
=

1
R3 sin2 �

@�

@�
; �✓� = � 1

r2

@�

@R
= � 1

R2 sin2 �

@�

@R
.

(27.40)
Substitution for � from (27.36, 27.38) then yields

�✓R =
3T sin�

2⇡(1� cos�
0

)2(2 + cos�
0

)R3

; �✓� = 0 , (27.41)

showing that the traction on the ✓-surface is purely radial. Of course, this
follows immediately from the fact that � is a function of � only and hence is
constant on any line � = constant.

The displacements for the conical bar can be obtained by equating (27.41)
and (27.28), which in spherical polar coördinates takes the form

�✓R = µR sin�
@ 

@R
; �✓� = µ sin�

@ 

@�
. (27.42)

Using (27.41), we therefore have

@ 

@R
=

3T

2⇡µ(1� cos�
0

)2(2 + cos�
0

)R4

;
@ 

@�
= 0 . (27.43)

Thus  must be a function of R only and integrating the first of (27.43) we
have

 = � T

2⇡µ(1� cos�
0

)2(2 + cos�
0

)R3

. (27.44)

The displacements are then recovered as

u✓ = � Tr

2⇡µ(1� cos�
0

)2(2 + cos�
0

)R3

= � T sin�
2⇡µ(1� cos�

0

)2(2 + cos�
0

)R2

,

(27.45)
from (27.26).

27.5.1 The centre of rotation

The stress function (27.36) can also be used to determine the stresses in an
infinite body loaded only by a concentrated torque T about the z-axis acting
at the origin. Using (27.40), we have
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�✓R =
3C sin�

R3

; �✓� = 0 (27.46)

and the torque transmitted across the spherical surface R=a is

T = 2⇡
Z ⇡

0

�R✓(a,�)a2 sin2 �d� = 8⇡C . (27.47)

It follows that C = T/8⇡ and the stress field is

�✓R =
3T sin�
8⇡R3

; �✓� = 0 . (27.48)

The same result can be obtained from (27.41) by setting �
0

=⇡, since a cone of
angle ⇡ is really an infinite body with an infinitesimal hole along the negative
z-axis1

27.6 The Saint Venant problem

As in Chapter 23, bounded polynomial solutions of (27.11) can be used to
solve problems of the cylindrical bar with prescribed polynomial tractions on
the curved surfaces, but the boundary conditions on the ends can generally
only be satisfied only in the weak sense. The corrective solution needed to re-
establish strong boundary conditions on the ends is a Saint Venant problem
in the sense of Chapter 6 and can be treated by similar methods.

We first postulate the existence of solutions of (27.11) of the separated-
variable form

� = e��zf(r) . (27.49)

Substitution in (27.11) then yields the ordinary di↵erential equation

d2f

dr2

� 3
r

df

dr
+ �2f = 0 (27.50)

for the function f(r). This equation has the general solution

f(r) = C
1

r2J
2

(�r) + C
2

r2Y
2

(�r) , (27.51)

where J
2

, Y
2

are Bessel functions of the first and second kind respectively of
order 2 and C

1

, C
2

are arbitrary constants. The boundaries r = a, b of the
hollow cylinder a<r<b will be traction-free if f(a)=f(b)=0 and hence

C
1

J
2

(�a) + C
2

Y
2

(�a) = 0
C

1

J
2

(�b) + C
2

Y
2

(�b) = 0 . (27.52)

These equations have a non-trivial solution for C
1

, C
2

if and only if
1 This hole does not alter the stress field, since the stresses are zero on the axis.
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J
2

(�a)Y
2

(�b)� Y
2

(�a)J
2

(�b) = 0 , (27.53)

which constitutes an eigenvalue equation for the exponential decay rate �.
The function Y

2

is unbounded at r! 0 and hence must be excluded for the
solid cylinder 0r<a. In this case, the eigenvalue equation reduces to

J
2

(�a) = 0 . (27.54)

As in Chapter 6, a more general solution can then be constructed for the
corrective stress field in the form of an eigenfunction expansion.

In contrast to the plane problem, the eigenvalues of equations (27.53) are
real. The first eigenvalue of (27.54) is �a=5.136, showing that self-equilibrated
corrections to the boundary conditions on the ends decay quite rapidly with
distance from the ends.

PROBLEMS

1. Verify that equation (27.17) defines a function satisfying equation (27.11)
by direct substitution, using the result

@2g

@z2

= �@
2g

@r2

� 1
r

@g

@r

(which is a restatement of the condition r2g = 0) to eliminate the derivatives
with respect to z.

2. The solid cylindrical bar 0r<a, 0<z<L is loaded by a uniform torsional
shear traction �r✓ = S on the surface r = a, the end z = 0 being traction-
free. Find the stress field in the bar, using bounded polynomial solutions to
equation (27.11).

3. Show that the function
'

1

= z

satisfies equation (27.11) and defines a state of stress that is independent of
z. Combine this solution with a bounded polynomial solution of (27.11) to
determine the stress field in the hollow cylindrical bar a < r < b, 0 < z < L
built in at z = L and loaded by a uniform torsional shear traction �r✓ = S
on the inner surface r = a, the outer surface r = b and the end z = 0 being
traction-free.

4. A solid cylindrical bar of radius b transmitting a torque T , contains a
small spherical hole of radius a (⌧ b) centred on the axis. Find a bounded
polynomial solution to equation (27.11) to describe the stress field in the bar
in the absence of the hole and hence determine the perturbation in this field
due to the hole by superposing a suitable singular solution.

5. Develop a contour plot in the r, z plane of a function comprising
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(i) the function �
4

of equation (27.19),
(ii) a centre of rotation, centred on the point (0, a),
(iii) an equal negative centre of rotation, centred on the point (0,�a).

By experimenting with di↵erent multiplying constants on these functions,
show that the solution can be obtained for a cylindrical bar with an approx-
imately elliptical central hole, transmitting a torque T . If the bar has outer
radius b and the hole has radius 0.1b at the mid-plane and is of total axial
length 0.4b, estimate the stress at the point (0.1b, 0).

6. Show that the lines R � z = C define a set of parabolas, where C is a
constant. Combine suitable functions from equations (27.18–27.24) to obtain
a solution of (27.11) that is constant on these lines and hence solve the problem
of a paraboloidal bar transmitting a torque T . Comment on the nature of the
solution in the region z  0 and in particular at the origin. Do your results
place any restrictions on the applicability of the solution?

7. The solid cylindrical bar 0 r < a, z > 0 is bonded to a rigid body at the
curved surface r=a and loaded by torsional tractions on the plane end z=0.
Using a displacement function

 = e��zf(r) ,

find suitable non-trivial solutions for the stress field and hence determine the
slowest rate at which the stress field will decay along the bar.



28

THE PRISMATIC BAR

We have seen in Chapter 25 that three-dimensional solutions can be obtained
to the problem of the solid or hollow cylindrical bar loaded on its curved
surfaces, using the Papkovich-Neuber solution with spherical harmonics and
related potentials. Here we shall show that similar solutions can be obtained
for bars of more general cross-section, using the complex-variable form of the
Papkovich-Neuber solution from §21.6.

We use a coördinate system in which the axis of the bar is aligned with

of the bar then comprises a domain ⌦ in the xy-plane, which may be the
interior of a closed curve � , or that part of the region interior to a closed
curve �

0

that is also exterior to one or more closed curves �
1

,�
2

, etc. The
following derivations and examples will be restricted to the former, simply
connected case, but it will be clear from the methods used that the additional
complications asssociated with multiply connected cross-sections arise only in
the solution of two-dimensional boundary-value problems, for which classical
methods exist. As in Chapter 25, we shall apply weak boundary conditions at
the ends of the bar, which implies that the solutions are appropriate only for
relatively long bars in regions that are not too near the ends.

28.1 Power series solutions

The most general loading of the lateral surfaces � comprises the three traction
components Tx, Ty, Tz, which we shall combine in the complex variable form
as

T = Tx + ıTy , Tz .

Consider the problem in which T, Tz can be written as power series in z —
i.e.

T =
m�1

X

j=1

fj(s)zj�1 ; Tz =
m
X

j=1

gj(s)zj�1 , (28.1)
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the z-direction, one end being the plane z = 0. The constant cross-section
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where f, g are arbitrary complex and real functions respectively of the curvi-
linear coordinate s defining position on � . We shall denote this system of
tractions by the symbol T (m). Notice that the in-plane tractions T are carried
only up to the order zm�2 whereas the out-of-plane traction Tz includes a
term proportional to zm�1. Practical cases where the highest order term in
all three tractions is the same (zn say) can of course be treated by setting
m = n + 2 and gm(s) = 0. We describe the problem (28.1) as Pm and denote
the corresponding stress and displacement fields in the bar by

�(m) =
n

⇥(m), �(m),  (m), �(m)

zz

o

; u(m) =
n

u(m), u(m)

z

o

, (28.2)

respectively, using the complex-variable notation of §21.6.
The bar will transmit force resultants comprising an axial force Fz, shear

forces Fx, Fy, a torque Mz and bending moments Mx,My, which are related
to the stress components (28.2) by the equilibrium relations

Fz(z) =
Z Z

⌦

�zzd⌦ ; F (z) ⌘ Fx + ıFy =
Z Z

⌦

 d⌦

Mz(z) =
ı

2

Z Z

⌦

(⇣ � ⇣̄ )d⌦ ; M(z) ⌘Mx + ıMy = �ı

Z Z

⌦

⇣�zzd⌦ .

(28.3)
Consideration of the equilibrium of a segment of the bar shows that these
resultants will also take the form of finite polynomials in z, with highest
power zm in Fz,M and zm�1 in F,Mz.

The complete definition of problem Pm requires that we also specify the
force resultants F (0), Fz(0),M(0),Mz(0) on the end z = 0. However, it is
su�cient at this stage to obtain a particular solution with any convenient
end condition. Correction of the end condition in the weak sense can then be
completed using the techniques of Part III.

28.1.1 Superposition by di↵erentiation

Suppose that the solution to a given problem Pm is known — i.e. that we
have found stress and displacement components �(m), u(m) that reduce to a
particular set of polynomial tractions (28.1) on � and that satisfy the quasi-
static equations of elasticity in the absence of body forces, which we here
represent in the symbolic form

L
⇣

�(m), u(m)

⌘

= 0 , (28.4)

where L is a set of linear di↵erential operators. Di↵erentiating (28.4) with
respect to z, we have

@

@z
L
⇣

�(m),u(m)

⌘

= L
✓

@�(m)

@z
,
@u(m)

@z

◆

= 0 . (28.5)
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It follows that the new set of stresses and displacements defined by di↵eren-
tiation as

�(m�1) =
@�(m)

@z
; u(m�1) =

@u(m)

@z
(28.6)

will also satisfy the equations of elasticity and will correspond to the tractions

T =
m�1

X

j=2

(j � 1)fj(s)zj�2 ; Tz =
m
X

j=2

(j � 1)gj(s)zj�2 . (28.7)

This process of generating a new particular solution by di↵erentiation with
respect to a spatial coordinate can be seen as a form of linear superposition
of the original solution on itself after an infinitesimal displacement in the
z-direction and was already used in §23.3 to generate singular spherical har-
monics. The resulting tractions (28.7) are polynomials in z with highest order
terms zm�3, zm�2 in T, Tz respectively and hence are of the form T (m�1).
Thus the stress field @�(m)/@z is the solution of a particular problem of the
class Pm�1

.

28.1.2 The problems P0 and P1

Repeating this di↵erential operation m times, we find that the stress and
displacement fields

�(0) =
@m�(m)

@zm
; u(0) =

@mu(m)

@zm
(28.8)

correspond to the physical problem P
0

in which the tractions T =0, and the
only non-zero force resultants are the axial force Fz and the bending moment
M , which are independent of z. This is a classical problem for which the only
non-zero stress component is

�(0)

zz = A
0

⇣ + A
0

⇣̄ + B
0

, (28.9)

where A
0

is a complex constant and B
0

a real constant.
The class P

1

includes the problems of Chapters 16,17, where an otherwise
traction-free bar is loaded by a lateral force F (0) and a torque Tz(0) at the end
z = 0. However, it also permits z-independent antiplane tractions Tz on the
lateral surfaces, which also generally lead to the bending moment M and/or
the axial force Fz varying linearly with z. This generalization is described by
Milne-Thomson1 as the ‘push’ problem. In P

1

, the in-plane stress components
⇥(1),�(1) remain zero, the antiplane stress components  (1) are independent
of z and �(1)

zz has the form

�(1)

zz = (A
0

⇣ + A
0

⇣̄ + B
0

)z + A
1

⇣ + A
1

⇣̄ + B
1

. (28.10)
1 L.M.Milne-Thomson, Antiplane Elastic Systems, Springer, Berlin, 1962.
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28.1.3 Properties of the solution to P
m

From these results, it is clear that the solution of problem Pm posesses the
following properties:-

(i) The stress and displacement components, �(m), u(m) can be expressed as
power series in z.

(ii) The highest order terms in z in the in-plane stress components ⇥(m),�(m)

are of order zm�2, since after m�1 di↵erentiations with respect to z they
are zero.

(iii) The highest order terms in z in the antiplane stress components  (m) are
of order zm�1, since after m�1 di↵erentiations with respect to z they are
independent of z.

(iv) The highest order terms in the stress component �(m)

zz are of the form

�(m)

zz =
(A

0

⇣ + A
0

⇣̄ + B
0

)zm

m!
+

(A
1

⇣ + A
1

⇣̄ + B
1

)zm�1

(m� 1)!
, (28.11)

from (28.8, 28.10).

Conclusions (ii,iii) explain why we chose to terminate the traction series (28.1)
at zm�2 in T and at zm�1 in Tz.

28.2 Solution of Pm by integration

The process of di↵erentiation elaborated in §28.1.1 shows that for every prob-
lem Pm, there exists a set of lower order problems Pj , j =(0,m�1) satisfying
the recurrence relations

T (j) =
@T (j+1)

@z
; �(j) =

@�(j+1)

@z
; u(j) =

@u(j+1)

@z
. (28.12)

The lowest-order problems in this set, P
0

, P
1

can be solved by the methods
of Part III, so the more general problem Pm could be solved recursively if we
could devise a method to generate the solution of Pj+1

from that of Pj . This
process clearly involves partial integration of �(j),u(j) with respect to z. In a
formal sense, we can write

�(j+1) =
Z

�(j)dz + f(x, y) , (28.13)

where f(x, y) is an arbitrary function of x, y only. Since �(j) is in the form of
a finite power series in z, it is always possible to find a particular integral for
the first term in (28.13). The function f must then be chosen to satisfy two
conditions:-

(i) The complete stress field �(j+1) including f(x, y) must satisfy the equa-
tions of elasticity (28.4), and
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(ii) the stresses must reduce to the known tractions T (j+1) on � .

Condition (ii) involves only the coe�cient of z0 in T (j+1), since the coe�-
cients of higher order terms will have been taken care of at an earlier stage in
the recursive process. Similarly, the conditions imposed by the equations of
elasticity can only arise in the lowest order terms in the stress field. We shall
show that the determination of f is a well-posed two-dimensional problem.

The concept of a recursive solution to problems Pm was first enunciated
by Ieşan2, who started from a state of arbitrary rigid-body displacement,
rather than P

0

of §28.1.2. A rigid body displacement lies in the class P�1

and
since it involves no stresses, it is the same for all domains ⌦. The present
treatment will place emphasise on the analytical solution of specific problems
rather than on general features of the solution method and is based on the
paper J.R.Barber, Three-dimensional elasticity solutions for the prismatic bar,
Proceedings of the Royal Society of London, Vol. A462 (2006), pp.1877–1896.

28.3 The integration process

The recursive procedure is most easily formulated in the context of the
complex-variable Papkovich-Neuber (P-N) solution of §21.6 and equations
(21.45–21.50). The prismatic bar satisfies the condition that all lines drawn in
the z-direction cut the boundary of the body at only two points (the ends of
the bar), which is the criterion established in §20.4.1 for the elimination of the
component  z in the P-N solution without loss of generality. We can there-
fore simplify the solution by omitting all the terms involving ! in equations
(21.45–21.50), giving

2µu = 2
@�

@⇣̄
� (3� 4⌫) + ⇣

@ 

@⇣̄
+ ⇣̄

@ 

@⇣̄
(28.14)

2µuz =
@�

@z
+

1
2

✓

⇣̄
@ 

@z
+ ⇣

@ 

@z

◆

(28.15)

⇥ = �@
2�

@z2

� 2
✓

@ 

@⇣
+
@ 

@⇣̄

◆

� 1
2

✓

⇣
@2 

@z2

+ ⇣̄
@2 

@z2

◆

(28.16)

� = 4
@2�

@⇣̄
2

� 4(1� 2⌫)
@ 

@⇣̄
+ 2⇣

@2 

@⇣̄
2

+ 2⇣̄
@2 

@⇣̄
2

(28.17)

�zz =
@2�

@z2

� 2⌫
✓

@ 

@⇣
+
@ 

@⇣̄

◆

+
1
2

✓

⇣̄
@2 

@z2

+ ⇣
@2 

@z2

◆

(28.18)

 = 2
@2�

@⇣̄@z
� (1� 2⌫)

@ 

@z
+ ⇣

@2 

@⇣̄@z
+ ⇣̄

@2 

@⇣̄@z
, (28.19)

2 D.Ieşan, On Saint-Venant’s Problem, Archive for Rational Mechanics and Anal-
ysis, Vol. 91 (1986), pp.363–373.
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where �, are respectively a real and a complex harmonic function of ⇣, ⇣̄, z.
None of the expressions (28.14–28.19) include explicit z-multipliers and

hence the integration (28.13) can be performed on the P-N potentials �, ,
rather than directly on the stress and displacement components. The require-
ment §28.2(i) that the solution satisfy the equations of elasticity (28.4) will
then be met by ensuring that the integrated potentials are three-dimensional
harmonic functions.

Suppose that the complex potential  in (28.14–28.19) for problem Pj is
given by a known function  j . This must be three-dimensionally harmonic,
and hence

r2 j ⌘ @2 j

@z2

+ 4
@2 j

@⇣@⇣̄
= 0 , (28.20)

from (24.56). We next write

 j+1

= h
1

(⇣, ⇣̄, z) + h
2

(⇣, ⇣̄) , (28.21)

where
h

1

=
Z

 j(⇣, ⇣̄, z)dz (28.22)

is any partial integral of  j . The recurrence relations (28.12) then imply that
h

2

is independent of z. Applying the Laplace operator (28.20) to the function
 j+1

of equation (28.21), we obtain

4
@2h

2

@⇣@⇣̄
= �r2h

1

, (28.23)

and the function h
2

can then be recovered by integration with respect to ⇣
and ⇣̄. These integrations will introduce arbitrary holomorphic functions that
will be used to satisfy the zeroth-order boundary conditions in problem Pj+1

.
We know from §28.1.3 that at any given stage in the recurrence procedure,

 can be written as a finite power series in z and one way to write this series
is as a set of terms of the form

 
2n(⇣, ⇣̄, z) =

n
X

i=0

z2ifn�i(⇣, ⇣̄)
(2i)!

;  
2n+1

(⇣, ⇣̄, z) =
n
X

i=0

z2i+1fn�i(⇣, ⇣̄)
(2i + 1)!

from §24.8, where the functions fk satisfy the recurrence relations (24.59,
24.60). It is easily verified that suitable z-integrals of these functions that
satisfy the three-dimensional Laplace equation (28.20) are
Z

 
2n(⇣, ⇣̄, z)dz =  

2n+1

(⇣, ⇣̄, z) ;
Z

 
2n+1

(⇣, ⇣̄, z)dz =  
2n+2

(⇣, ⇣̄, z) ,

(28.24)
where  

2n+2

is obtained from  
2n by replacing n by n+1.

The first term of this form is the two-dimensionally harmonic function

 
0

= f
0

(⇣, ⇣̄) = g
1

(⇣) + g
2

(⇣̄) ,
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from (24.61). Thus, if the above integration process is applied sequentially, the
arbitrary functions of ⇣ and ⇣̄ that are introduced at stage i can be expressed
in the form of the function  

0

and this will integrate up to the corresponding
function  j�i at stage j.

In the special case where the functions fk are finite polynomials in ⇣, ⇣̄, the
potentials can be expressed as a series of the bounded cylindrical harmonics
�m

n defined in equations (24.66, 24.67), which can be integrated using the
relation

Z

�m
n dz = �m

n+1

, (28.25)

from (24.68).
Similar procedures can be used to produce harmonic partial integrals of

the real potential, �j , in which case the the arbitrary holomorphic functions
in h

2

must be chosen so as to ensure that the resulting potential is real.

28.4 The two-dimensional problem P0

Problem P
0

corresponds to the elementary stress field in which the lateral
surfaces of the bar are traction-free and the bar transmits a bending moment
M and an axial force Fz. The only non-zero stress component is �(0)

zz given by
equation (28.9), but to start the recursive process, we need to express this in
terms of the P-N solution of §28.3.

It is readily verified by substitution in (28.16–28.19) that this elementary
stress field is generated by the choice of potentials

�
0

= G0

0

;  
0

= H0

0

, (28.26)

where we introduce the notation

Gn
m ⌘

(1� 2⌫)
2(1� ⌫2)

�

Am�
1

n+2

+ Ām�
1

n+2

�

+
Bm�0

n+2

(1 + ⌫)

Hn
m ⌘

Ām�0

n+2

(1� ⌫2)
� (1� 2⌫)Am�2

n

8(1� ⌫2)
� Bm�1

n

4(1 + ⌫)
(28.27)

and �m
n are the bounded cylindrical harmonics defined in §24.8.1 and equations

(24.66, 24.67). The recurrence relation (28.25) implies that
Z

Gn
mdz = Gn+1

m ;
Z

Hn
mdz = Hn+1

m (28.28)

and we shall find this useful in subsequent developments.
Since the stress components ⇥(0),�(0), (0) are identically zero, no trac-

tions are implied on any surface � and hence that the potentials (28.26) define
the solution of problem P

0

for a bar of any cross-section ⌦.
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28.5 Problem P1

Problem P
1

could be solved using the methods of Part III, but here we shall
develop the solution by integration using the P-N solution, since similar pro-
cedures will be needed at higher-order stages of the recursive process. The
strategy is first to develop a particular solution describing the most general
force resultants that can be transmitted along the bar, but without regard to
the exact form of the antiplane tractions on � . We then superpose a corrective
antiplane solution, in the spirit of Chapter 15, but within the P-N formalism,
to satisfy these boundary conditions in the strong sense.

Starting with the solution �
0

, 
0

of equation (28.26), we first generate a
trial solution for �, by integration with respect to z. Using the recurrence
relations (28.28) to ensure that the resulting functions are harmonic, we obtain

� = G1

0

;  = H1

0

. (28.29)

The constants A
0

, B
0

in these functions provide the degrees of freedom to
define the lateral force resultants F , but in problem P

1

, we also need to allow
for the transmission of a torque Mz. Any particular solution of the torsion
problem can be used for this purpose (remember we are going to correct the
tractions on the lateral surfaces at the next stage) and the simplest solution
is described by the potentials

�(t) = 0 ;  (t) = � ıC
0

�1

1

2(1� ⌫)
, (28.30)

where C
0

is a real constant.
Combining these results, we define the particular antiplane solution as

�P = G1

0

;  P = H1

0

� ıC
0

�1

1

2(1� ⌫)
, (28.31)

for which the corresponding non-zero stress components are

�zz = A
0

z⇣ + Ā
0

z⇣̄ + B
0

z (28.32)

 = �A
0

(1 + 2⌫)⇣2

4(1 + ⌫)
� Ā

0

⇣⇣̄

2(1 + ⌫)
� B

0

⇣

2
+ ıC

0

⇣ , (28.33)

from (28.31, 28.18, 28.19).
Notice that in this solution, the real constant B

0

corresponds to an axial
force Fz that varies linearly with z and this will arise only when there are
non-self-equilibrating uniform antiplane tractions on the surface � . Thus, if
this method is used to solve the problems of Chapters 16 or 17, B

0

can be set
to zero.
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28.5.1 The corrective antiplane solution

Equation (28.33) defines non-zero values of  and hence generally implies non-
zero tractions Tz on � , which however are independent of z. We may indeed
have non-zero tractions Tz, but these will not generally correspond to those
of the particular solution. It is therefore necessary to superpose a corrective
solution in which the tractions are changed by some known function �Tz

without a↵ecting the force resultants implied by the constants A
0

, B
0

, C
0

.
Thus, the corrective solution satisfies the conditions

⇥ = � = �zz = 0 ;
@ 

@z
= 0 , (28.34)

with self-equilibrated tractions �Tz, and it is an antiplane solution in the
sense of Chapter 15 and §19.2.

A convenient representation of the corrective solution in P-N form can be
written in the form

� = z(h + h)� z(⇣h0 + ⇣̄h0)
4(1� ⌫)

;  =
zh0

2(1� ⌫)
, (28.35)

where h is a holomorphic function of ⇣. These potentials satisfy the Laplace
equation (28.20) and substitution into (28.14–28.19) show that the homoge-
neous conditions (28.34) are satisfied identically. The non-zero displacement
and stress components are obtained as

2µuz = h + h ;  = h0 , (28.36)

agreeing with the notation of equations (19.16, 19.18).
It follows from (19.25) that

�Tz =
@hy

@s
, (28.37)

where s is a real coördinate locally tangential to the boundary � , and hence hy

is identical to the real Prandtl stress function ' for the antiplane correction.
Since the corrective tractions �Tz are known everywhere, we can integrate
(28.37) around � to determine hy at all points on the boundary. Interior values
of the real two-dimensionally harmonic function hy and hence the holomorphic
function of which it is the imaginary part can then be obtained using the real
stress function methods of Chapters 15–17, or the complex variable method
of §19.2. It is important that the integration of (28.37) should yield a single-
valued function of s. This is equivalent to the requirement that the tractions
in the corrective antiplane problem should sum to a zero axial force Fz. If the
applied tractions do not meet this condition, Fz will be a linear function of z
and hence the constant B

0

in (28.33) will be non-zero. Thus, the single-valued
condition on hy serves to determine the constant B

0

.
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28.5.2 The circular bar

To illustrate the process and to record some useful results, we consider the
antiplane problem P

1

for the circular bar of radius a, with zero tractions Tz.
The potentials �P , P define the stress field

�zr + ı�z✓ = e�ı✓ (r, ✓) = �A
0

r2(1 + 2⌫)eı✓

4(1 + ⌫)
� Ā

0

r2e�ı✓

2(1 + ⌫)
� B

0

r

2
+ ıC

0

r ,

(28.38)
from (28.33), where we have also used the coördinate transformation relation
(19.13). On the boundary r = a, we have ⇣ = a exp(ı✓), ⇣̄ = a exp(�ı✓) and
hence the antiplane traction is

Tz = �zr(a, ✓) = � (3 + 2⌫)a2 (<{A
0

} cos ✓ �={A
0

} sin ✓)
4(1 + ⌫)

� B
0

a

2
+

1
a

@hy

@✓
,

(28.39)
where we have added in the antiplane corrective term from (28.37). Equating
Tz to zero, we obtain

@hy

@✓
=

(3 + 2⌫)a3 (<{A
0

} cos ✓ �={A
0

} sin ✓)
4(1 + ⌫)

+
B

0

a2

2

and this integrates to a single-valued function of ✓ if and only if B
0

=0, giving

hy =
(3 + 2⌫)a3 (<{A

0

} sin ✓ + ={A
0

} cos ✓)
4(1 + ⌫)

.

The holomorphic function h whose imaginary part takes this boundary value
can be obtained using the direct method of §19.2.1, but it can also be seen by
inspection that the appropriate function is

h =
(3 + 2⌫)A

0

a2⇣

4(1 + ⌫)
=

(3 + 2⌫)A
0

a2�1

0

4(1 + ⌫)
, (28.40)

using (24.72).
Substituting this result into (28.35) and adding the results to (28.29, 28.30)

with B
0

=0, we obtain
�

1

= Q0

0

;  
1

= V0

0

, (28.41)

where we introduce the notation

Qn
m =

(1� 2⌫)
2(1� ⌫2)

�

Am�
1

n+3

+ Ām�
1

n+3

�

+
(3� 4⌫)(3 + 2⌫)a2(Am�1

n+1

+ Ām�
1

n+1

)
16(1� ⌫2)

Vn
m =

Ām�0

n+3

(1� ⌫2)
� (1� 2⌫)Am�2

n+1

8(1� ⌫2)
+

(3 + 2⌫)Āma2�0

n+1

8(1� ⌫2)

� ıCm�1

n+1

2(1� ⌫)
. (28.42)
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Equation (28.41) defines the solution to P
1

for the traction-free circular cylin-
der in P-N form. Notice that we have chosen to describe the new polynomial
terms arising from (28.40) in terms of the functions �m

n of equations (24.66),
since this and the notation (28.42) facilitates subsequent integrations through
the recurrence relation (28.25), which here implies that

Z

Qn
mdz = Qn+1

m ;
Z

Vn
mdz = Vn+1

m . (28.43)

The stress functions (28.41), excluding the torsion term, can be used as an
alternative solution to the problem of §17.4.1 and §25.3.1.

28.6 The corrective in-plane solution

In higher order problems Pj , j > 1, we shall also need to make corrections
for zeroth-order in-plane tractions T , using an appropriate form of the two-
dimensional plane strain equations. If we use the complex form of the P-N
solution (28.14–28.19) and define plane harmonic functions through

� = f + f ;  = g , (28.44)

where f, g are holomorphic functions of ⇣, we obtain

2µu = �(3� 4⌫)g + ⇣ g0 + 2 f 0 ; 2µuz = 0 . (28.45)

This is identical to the classical form of the plane strain complex variable
solution (19.42) under the notation relation

g ) �� ; 2f 0 ) �✓ . (28.46)

We recall from §19.3.2 that we can set ✓(0)=0 without loss of generality, so
the implied integration in obtaining f from ✓ does not require a constant of
integration. The corresponding stress components are given by

⇥ = �2(g0 + g0) ; � = 2(⇣ g00 + 2 f 00) ; �zz = �2⌫(g0 + g0) ;  = 0 .
(28.47)

28.7 Corrective solutions using real stress functions

We have seen in §28.3 that the integration process is greatly facilitated by the
use of the complex-variable notation. However, for many geometries, the in-
plane and antiplane corrections are easier to perform using the real Airy and
Prandtl stress functions of Parts II and III. In Chapter 19 we established sim-
ple relations between the real and complex formulations for two-dimensional
problems. Here we shall use these relations to convert real stress function
expressions to complex P-N form.
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28.7.1 Airy function

If we define a corrective field by the Airy stress function ', we can write it in
the form

' = g
1

+ g
1

+ ⇣̄g
2

+ ⇣ g
2

, (28.48)
using the procedure defined in §18.4.1 or the Maple and Mathematica files
‘rtocb’, where g

1

, g
2

are holomorphic functions. The relations (19.62, 19.64)
and (28.46) then imply that the appropriate complex P-N potentials are

� = �g
1

� g
1

;  = �2g
2

. (28.49)

28.7.2 Prandtl function

If a solution of problem P
1

is defined in terms of the Prandtl function ',
the first stage is to determine the real constants A,B, C by substituting into
equation (17.10)

r2' =
A⌫y

(1 + ⌫)
� B⌫x

(1 + ⌫)
+ C

and equating coe�cients. By expressing the antiplane stress  from equation
(28.33) in terms of �zx,�zy and comparing the results with (17.8), we can
show that the complex potentials �P , P of equation (28.31) are equivalent
to the Prandtl function

'P = �B[3(1 + 2⌫)y2x� (1� 2⌫)x3]
24(1 + ⌫)

+
A[3(1 + 2⌫)x2y � (1� 2⌫)y3]

24(1 + ⌫)

+
C(x2 + y2)

4
, (28.50)

if the constants A
0

, B
0

, C
0

are replaced by

A
0

=
A� ıB

2
; B

0

= 0 ; C
0

= �C

2
.

Next, we construct the real harmonic function

'H(x, y) = '� 'P ,

representing the di↵erence between the actual Prandtl function and the par-
ticular solution (28.50). This can be converted to complex form as discussed
in §19.2.1. We first find the holomorphic function g such that 'H = g + g (for
example, using the Maple or Mathematica procedure ‘rtoch’) and then define

h = 2ıg . (28.51)

It then follows from (19.28)
2

that 'H = =(h) and the corresponding complex
potentials �H , H are obtained by substituting h into (28.35). Finally, the
complex potentials appropriate to ' are recovered as

� = �P + �H ;  =  P +  H . (28.52)

This procedure is contained in the Maple and Mathematica files ‘Prandtl-
toPN’.
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28.8 Solution procedure

We are now in a position to summarize the solution procedure for the three-
dimensional problem Pm. We first di↵erentiate the tractions T m times with
respect to z in order to define the sub-problems Pj , j = (1,m). We shall be
particularly interested in the zeroth-order tractions in each sub-problem —
i.e. the terms in T (j) that are independent of z, since these are the only terms
that are active in the incremental solution.

Suppose the potentials �j , j corresponding to problem Pj are known. In
other words, if we substitute these potentials into equations (28.14–28.19), the
resulting stresses satisfy the boundary conditions on the tractions T (j) on the
lateral surfaces in problem Pj . This solution will contain two undetermined
constants Aj�1

, Cj�1

, corresponding to a lateral force and a torque on the
end of the bar, but we do not concern ourselves with end conditions at this
stage.

To move up to the solution of problem Pj+1

, we proceed as follows:-

(i) Define new potentials by adding in the pure bending solution (28.26) with
new constants Aj , Bj — i.e.

� = �j + G0

j ;  =  j +H0

j . (28.53)

(ii) Integrate �, with respect to z as in §28.3. Notice that any terms in these
potentials of the form �m

n ,Gn
m,Hn

m,Qn
m,Vn

m can be integrated using the
recurrence relations (28.25, 28.28, 28.43).

(iii) Add in the torsion solution (28.30) with a new constant Cj . At this
stage, ⇥,� will generally contain terms up to order j�1 in z and  will
contain terms up to order j. However, all except the zeroth order terms
(those independent of z) will satisfy the boundary conditions on the lateral
surfaces, since both the tractions and the stresses were obtained by one
integration with respect to z from the given solution Pj .

(iv) To satisfy the boundary conditions on the zeroth order terms in the in-
plane tractions T (j+1), we add in the in-plane solution from §28.6 and
solve an in-plane boundary value problem, using the methods of §19.3.
Alternatively, we could solve the corrective in-plane problem using the
real Airy stress function of Chapters 5–13 and then use the relations in
§28.7.1 to convert the resulting biharmonic function to P-N form. Solv-
ability of this in-plane problem requires that the corrective tractions be
self-equilibrated in the plane (see for example §19.5.1 and §19.6.1) and
this provides a condition for determining the constants Aj�1

, Cj�1

.
(v) To satisfy the boundary conditions on the zeroth order term in the an-

tiplane tractions T (j+1)

z , we add in the antiplane corrective solution from
(28.35) and determine the function h(⇣), using the procedure outlined in
§28.5.1. This solution is possible only if the tractions associated with h
alone are self-equilibrating and hence the solution at this stage will also
determine the constant Bj .
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This completes the solution of problem Pj+1

, except for the constants Aj , Cj .
The same procedure can be adapted to give the solution of problem P

1

by
setting j = 0 and replacing (28.53) by (28.26).

After repeating the procedure m times, a solution will be obtained that
satisfies the traction conditions T completely and which contains two free con-
stants Am�1

, Cm�1

. To complete the solution, we once again add in the zeroth
order solution, as in equations (28.53), using constants Am, Bm. Finally, we
determine the constants Am�1

, Cm�1

, Am, Bm from the weak end conditions
(three force and three moment resultants) at z=0 in Pm. More specifically, the
conditions on axial force and torque determine the real constants Bm, Cm�1

,
respectively, the conditions on lateral forces determine Am�1

(which is a com-
plex constant and hence has two degrees of freedom) and the conditions on
bending moments determine Am.

28.9 Example

The solution procedure described involves a sequence of essentially elemen-
tary steps, but for a problem of significant order the number of such steps is
large and the solution can become extremely complicated. For this reason, in
most cases it is only really practical to undertake the solution using Maple or
Mathematica. However, to illustrate the procedure we shall give the solution
of a suitably low-order problem.

We consider the circular bar of radius a defined by 0r<a, 0<z <L, in
which the end z = 0 is traction-free and the curved surfaces are subjected to
the tractions

T = 0 ; Tz = Sz cos ✓ ,

where S is a real constant. It is clear that the loading is symmetrical about
the plane ✓=0,⇡ (y=0) and hence that the bar will not be subject to torsion,
so the constants Cj in §28.8(iii) will all be zero and can be omitted.

Comparison with (28.1) shows that this is a problem of class P
2

. The
sub-problem P

1

corresponds to the tractions

T = 0 ; Tz = S cos ✓ . (28.54)

28.9.1 Problem P1

The solution of problem P
0

is defined by the functions �
0

, 
0

of equation
(28.26). Integrating with respect to z as in §28.5, but omitting the torsion
term, we obtain

� = G1

0

;  = H1

0

. (28.55)

There are no in-plane stresses or tractions in problem P
1

, so no in-plane
correction is required.
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Antiplane correction

The antiplane stress components  are then obtained as

 = �A
0

(1 + 2⌫)⇣2

4(1 + ⌫)
� Ā

0

⇣⇣̄

2(1 + ⌫)
� B

0

⇣

2
, (28.56)

from (28.19). The antiplane traction Tz is obtained exactly as in §28.5.2 as

Tz = �zr(a, ✓) = � (3 + 2⌫)a2 (<{A
0

} cos ✓ �={A
0

} sin ✓)
4(1 + ⌫)

� B
0

a

2
+

1
a

@hy

@✓
(28.57)

and equating this to the boundary value (28.54), we obtain

@hy

@✓
=

(3 + 2⌫)a3 (<{A
0

} cos ✓ �={A
0

} sin ✓)
4(1 + ⌫)

+
B

0

a2

2
+ Sa cos ✓ .

This integrates to a single-valued function of ✓ if and only if B
0

=0, giving

hy =
(3 + 2⌫)a3 (<{A

0

} sin ✓ + ={A
0

} cos ✓)
4(1 + ⌫)

+ Sa sin ✓

and the holomorphic function h whose imaginary part takes this boundary
value is

h =
(3 + 2⌫)A

0

a2⇣

4(1 + ⌫)
+ S⇣ . (28.58)

Substituting this expression into (28.35) and adding the results to (28.55),
we obtain

�
1

= Q0

0

+
(3� 4⌫)S(�1

1

+ �1

1

)
4(1� ⌫)

;  
1

= V0

0

+
S�0

1

2(1� ⌫)
, (28.59)

which defines the solution to P
1

in P-N form.

28.9.2 Problem P2

The next stage is to substitute �
1

, 
1

into (28.53) with j = 1 and perform a
further integration with respect to z, using equations (28.25,28.28, 28.43) to
ensure that the potentials �, are three-dimensionally harmonic. We obtain

� = Q1

0

+
(3� 4⌫)S(�1

2

+ �1

2

)
4(1� ⌫)

+ G1

1

;  = V1

0

+
S�0

2

2(1� ⌫)
+H1

1

. (28.60)
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In-plane correction

There are no z-independent components in the in-plane tractions T for prob-
lem P

2

and we anticipate requiring a corrective solution to satisfy this con-
dition. Substituting the partial solution (28.60) into equations (28.16, 28.17),
we obtain the in-plane stress components

⇥ =
⇥

2(1� ⌫)⇣⇣̄ � (3 + 2⌫)(3� 4⌫)a2

⇤

(A
0

⇣ + Ā
0

⇣̄)
16(1� ⌫2)

� S(3� 4⌫)(⇣ + ⇣̄)
4(1� ⌫)

� =
(1 + 4⌫)A

0

⇣3

24(1 + ⌫)
+
⇥

2(1� ⌫)⇣⇣̄ � (3 + 2⌫)a2

⇤

Ā
0

⇣

16(1� ⌫2)
� S⇣

4(1� ⌫)
. (28.61)

From equation (19.70), we have

Tds =
ı

2
�

�d⇣̄ �⇥d⇣
�

and on r=a,

⇣ = aeı✓ ; ⇣̄ = ae�ı✓ ; d⇣ = ıaeı✓d✓ ; d⇣̄ = �ıae�ı✓d✓ , (28.62)

so the integral around a portion of the boundary of the complex traction T is
Z

Tds =
a

2

Z

�

�e�ı✓ +⇥eı✓
�

d✓ . (28.63)

Substituting the boundary values (28.62) in (28.61), we obtain

�e�ı✓ +⇥eı✓ = � (19� 18⌫ � 16⌫2)A
0

a3e2ı✓

48(1� ⌫2)
� Sa(3� 4⌫)e2ı✓

4(1� ⌫)

� Ā
0

a3

2
� Sa . (28.64)

The in-plane corrective problem is solvable if and only if the tractions on the
boundary are self-equilibrating, which requires that the integral (28.63) return
a single-valued function of ✓. This condition requires that

� Ā
0

a3

2
� Sa = 0 and hence Ā

0

= �2S

a2

= A
0

. (28.65)

Notice that since the constant Ā
0

is real it is also equal to A
0

. Using this
result, we then obtain

�e�ı✓ +⇥eı✓ =
Sa(1� 12⌫ + 8⌫2)e2ı✓

24(1� ⌫2)
. (28.66)

To satisfy the homogeneous in-plane boundary conditions on � in P
2

, we
superpose holomorphic functions f, g through equations (28.44, 28.47) and
choose them so as to reduce (28.66) to zero for all ✓. This can be done using
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the direct method of §19.6.1, but the form of (28.66) makes it clear that low
order polynomial terms in f, g will give an expression of the appropriate form.
Choosing

f = 0 ; g = C⇣2 = C�2

0

and hence � = 0 ;  = C�2

0

(28.67)

from (28.44), where C is a real constant, we obtain the additional stress com-
ponents

⇥ = �4C(⇣ + ⇣̄) ; � = 4C⇣ ,

from (28.47) and on the surface r=a,

�e�ı✓ +⇥eı✓ = �4Cae2ı✓ .

The boundary condition T =0 will therefore be satisfied for all ✓ if

C =
S(1� 12⌫ + 8⌫2)

96(1� ⌫2)
.

Antiplane correction

Since there are no zeroth-order antiplane tractions in P
2

, the antiplane cor-
rection is identical to that in §28.5.2. In particular, we have B

1

= 0 and the
additional potentials are derived from (28.40) with A

0

replaced by A
1

.
Applying this and the in-plane correction (28.67) to (28.60) and using

(28.65) to eliminate A
0

, we then have

�
2

= � S(1� 2⌫)
a2(1� ⌫2)

�

�1

4

+ �1

4

�� S(3� 4⌫)
8(1� ⌫2)

�

�1

2

+ �1

2

�

+Q0

1

(28.68)

 
2

= � 2S�0

4

a2(1� ⌫2)
+

S(1� 2⌫)�2

2

4a2(1� ⌫2)
� S�0

2

4(1� ⌫2)

+
S(1� 12⌫ + 8⌫2)�2

0

96(1� ⌫2)
+ V0

1

, (28.69)

which completes the solution of problem P
2

.

28.9.3 End conditions

It remains to satisfy the weak traction-free conditions on the end z = 0. We
add the pure bending solution (28.26) with new constants A

2

, B
2

into (28.68,
28.69), which is achieved by adding the terms G0

2

,H0

2

into �, respectively.
We then substitute the resulting potentials into (28.18, 28.19) to obtain the
complex stress components �zz, . In particular, the tractions on the end of
the bar z=0 are obtained as
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�zz(0, ⇣, ⇣̄) =
S(2 + ⌫)⇣⇣̄(⇣ + ⇣̄)

4a2(1 + ⌫)
� S(3� 2⌫)(⇣ + ⇣̄)

6
+ A

2

⇣ + Ā
2

⇣̄ + B
2

 (0, ⇣, ⇣̄) =
Ā

1

[(3 + 2⌫)a2 � 2⇣⇣̄]�A
1

(1 + 2⌫)⇣2

4(1 + ⌫)
. (28.70)

Clearly the shear tractions  =�zx + ı�zy on z = 0 can be set to zero in the
strong sense by choosing A

1

= 0. For the normal tractions, we use (28.3) to
calculate the force and moment resultants

Fz =
Z a

0

Z

2⇡

0

�zz(0, r, ✓)rd✓dr = ⇡B
2

a2

Mx + ıMy =
Z a

0

Z

2⇡

0

�zz(0, r, ✓)r2eı✓drd✓ = �⇡S(1� 2⌫2)a4

12(1 + ⌫)
+
⇡Ā

2

a4

2
.

Thus, the weak traction-free conditions are satisfied by setting

A
2

= Ā
2

=
S(1� 2⌫2)
6(1 + ⌫)

; B
2

= 0 .

Substituting these constants into the potentials and simplifying, we obtain

� = � S(1� 2⌫)
a2(1� ⌫2)

�

�1

4

+ �1

4

�� S(7 + ⌫ � 8⌫2 � 8⌫3)
24(1� ⌫2)(1 + ⌫)

�

�1

2

+ �1

2

�

 = � 2S�0

4

a2(1� ⌫2)
+

S(1� 2⌫)�2

2

4a2(1� ⌫2)
� S(1 + 3⌫ + 4⌫2)�0

2

12(1� ⌫2)(1 + ⌫)
� S(1 + 7⌫)�2

0

96(1� ⌫2)(1 + ⌫)
,

which defines the complete solution of the problem. The complex stress com-
ponents can be recovered by substitution into equations (28.16–28.19) as

⇥ =
S(⇣ + ⇣̄)

3
� S⇣⇣̄(⇣ + ⇣̄)

4(1 + ⌫)a2

� =
S⇣[2a2 � 3⇣⇣̄ � (1 + 4⌫)⇣2 + 2(1� 2⌫)a2]

12(1 + ⌫)a2

�zz =
S(2 + ⌫)(3⇣⇣̄ � 2a2)(⇣ + ⇣̄)

12(1 + ⌫)a2

� Sz2(⇣ + ⇣̄)
a2

 =
Sz
⇥

(1 + 2⌫)⇣2 + 2⇣⇣̄ � a2

⇤

2(1 + ⌫)a2

.

We have deliberately given a very detailed and hence lengthy solution of
this example problem in order to clarify the steps involved, but the astute
reader will realize that many steps might reasonably have been omitted as
trivial. For example, the original problem is even in z, which immediately
allows us to omit the terms involving the constants A

1

, Ā
1

, B
1

, causing the in-
plane correction to be trivial in problems Pj where j is odd and the antiplane
correction to be trivial when j is even.
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PROBLEMS

1. A circular cylindrical bar of radius a is loaded by the tangential tractions
�r✓ = S cos ✓ on r = a. The end of the bar z = 0 is traction-free. Find the
complete stress field in the bar.

2. A circular cylindrical bar of radius a is loaded by a uniform radially-inward
load F

0

per unit length along the line ✓ = 0. The end of the bar z = 0 is
traction-free. Find the complete stress field in the bar.

3. A circular cylindrical bar of radius a is loaded by a uniform tangential load
F

0

per unit length along the line ✓=0. The load acts in the positive ✓-direction
and the end of the bar z=0 is traction-free. Find the complete stress field in
the bar.

4. The lateral surfaces � of a bar of equilateral trianglular cross-section are
defined by the equations x = ±p3y, x = a. The bar is twisted by in-plane
tractions T on � that are independent of z, the end z = 0 being traction-free.
The tractions on the surface x = a are defined by

�xx = 0 ; �xy = S

and those on the other two surfaces are similar under a rotation of ±120�.
This problem lies in class P

2

. Use the strategy suggested in Problem 16.3
to find a Prandtl stress function solution of the corresponding problem P

1

,
convert it to P-N form as in §28.5.4 and then integrate with respect to z
to obtain a particular solution of P

2

. Determine the tractions on the surface
x = a implied by this solution and discuss possible strategies for completing
the in-plane correction, but do not attempt it.

5. The rectangular bar �a<x<a,�b<y<b, 0<z<L is built in at z=L and
loaded only by the uniform shear tractions

�xy(a, y, z) = S ; �xy(�a, y, z) = �S

on the surfaces x =±a. Find the complete stress field in the bar using weak
conditions on the end z = 0. Assume that b � a and use weak boundary
conditions on the edges y = ±b. Hint: The problem is even in x and odd
in y, which implies that <(A

0

) = C
0

= 0. The easiest way to impose these
symmetries on the rest of the solution is to use an Airy function for the in-
plane corrective solution.

6. A bar of square cross-section �a<x<a, = �a<y <a, 0<z <L is built in
at z=L and loaded only by the uniform tractions

�yy(x, a, z) = �p
0
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on the surface y = a. Find the complete stress field in the bar using only
the closed-form terms from the solution of §17.4.2 for the problem P

1

and
an appropriate finite polynomial as an Airy stress function for the in-plane
correction in P

2

. Plot appropriate stress components to estimate the errors in
the elementary bending solution.
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FRICTIONLESS CONTACT

As we noted in §21.5.1, Green and Zerna’s Solution F is ideally suited to the
solution of frictionless contact problems for the half-space, since it identically
satisfies the condition that the shear tractions be zero at the surface z=0. In
fact the surface tractions for this solution take the form

�zz = �@
2'

@z2

; �zx = �zy = 0 ; z = 0 , (29.1)

whilst the surface displacements are

ux =
(1� 2⌫)

2µ

@'

@x
; uy =

(1� 2⌫)
2µ

@'

@y
; uz = � (1� ⌫)

µ

@'

@z
; z = 0 ,

(29.2)
from Table 21.3.

29.1 Boundary conditions

Following §12.5, we can now formulate the general problem of indentation

a function u
0

(x, y) (see Figure 12.5). Notice that since the problem is three-
dimensional, the punch profile is now a function of two variables x, y and the
contact area will be an extended region of the plane z = 0, which we denote
by A.

Within the contact area, the normal displacement of the half-space must
conform to the shape of the punch and hence

uz = u
0

(x, y) + C
0

+ C
1

x + C
2

y in A , (29.3)

where the constants C
0

, C
1

, C
2

define an arbitrary rigid-body displacement of
the punch. Outside the contact area, there must be no normal tractions. i.e.

�zz = 0 in Ā , (29.4)

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 449

of the half-space by a frictionless rigid punch whose profile is described by
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where we denote the complement of A — i.e. that part of the surface z = 0
which is not in contact — by Ā.

We now use equations (29.1, 29.2) to write these conditions in terms of
the potential function ' with the result

@'

@z
= � µ

(1� ⌫)
u

0

(x, y) ; in A (29.5)

@2'

@z2

= 0 ; in Ā , (29.6)

where for brevity we have omitted the rigid-body displacement terms in equa-
tion (29.3), since these can easily be reintroduced as required or subsumed
under the function u

0

(x, y).

29.1.1 Mixed boundary-value problems

Equations (29.5, 29.6) define a mixed boundary-value problem for the potential
function ' in the region z > 0. The word ‘mixed’ here refers to the fact
that di↵erent derivatives of the function are specified at di↵erent parts of the
boundary. More specifically, it is a two-part mixed boundary-value problem1,
since the boundary conditions are specified over two complementary regions
of the boundary, A, Ā.

Similar mixed boundary-value problems arise in many fields of engineering
mechanics, such as heat conduction, electrostatics and fluid mechanics. For
example, in heat conduction, a mathematically similar problem arises if the
region A is raised to a prescribed temperature whilst Ā is insulated. They can
be reduced to integral equations using a Green’s function formulation. Thus,
considering the normal traction �zz(x, y, 0)⌘�p(x, y) in A as comprising a
set of point forces F =p(x, y)dxdy and using equation (23.18) for the normal
surface displacement due to a concentrated normal force at the surface, we
can write

uz(x, y, 0) =
(1� ⌫)

2⇡µ

Z Z

A

p(⇠, ⌘)d⇠d⌘
r(x, y, ⇠, ⌘)

, (29.7)

where
r(x, y, ⇠, ⌘) =

p

(x� ⇠)2 + (y � ⌘)2 (29.8)

is the distance between the points (⇠, ⌘, 0) and (x, y, 0). Substitution in (29.3)
then yields a double integral equation for the unknown contact pressure
p(x, y). This is of course a generalization of the method used in Chapter 12.
However, in three-dimensional problems, the resulting double integral equa-
tion is generally of rather intractable form. We shall find that other methods
of solution are more e�cient (see Chapter 30 below).
1 Strictly this terminology is restricted to cases where the two regions A, Ā are

connected. A special case where this condition is not satisfied is the indentation
by an annular punch for which Ā has two unconnected regions — one inside the
annulus and one outside. This would be referred to as a three-part problem.
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The fact that Solution F is described in terms of a single harmonic function
enables us to use results from potential theory to prove some interesting re-
sults. For example, we note that the derivative @'/@z must also be harmonic
in the half-space z > 0. Suppose we wish to locate the point where @'/@z is
a maximum. It cannot be inside the region z>0, since at a such a maximum
we would need

r2

@'

@z
< 0 (29.9)

and the left-hand side of this expression is zero everywhere. It follows that
the maximum must occur somewhere on the boundary z=0 or else at infinity.
Furthermore, if it occurs on the boundary, all immediately adjacent points
must have lower values and in particular, we must have

@2'

@z2

< 0 (29.10)

at the maximum point.
Recalling equations (29.1, 29.2), we conclude that the maximum value of

the surface displacement uz must occur either at infinity or at a point where
the contact traction �zz is compressive. If we choose a frame of reference such
that the displacement at infinity is zero, it follows that the maximum can
only occur there if the surface displacement is negative throughout the finite
domain, which can only arise if the net force on the half-space is tensile. Thus,
when the half-space is loaded by a net compressive force, the maximum surface
displacement must occur in a region where the surface traction is compressive,
and must be positive.

29.2 Determining the contact area

In many contact problems, the contact area is not known a priori, but has
to be determined as part of the solution2. As in Chapter 12, the contact area
has to be chosen so as to satisfy the two inequalities

�zz < 0 ; in A (29.11)
uz > u

0

(x, y) + C
0

+ C
1

x + C
2

y ; in Ā , (29.12)

which state respectively that the contact traction should never be tensile
and that the gap between the indenter and the half-space should always be
positive. It is worth noting that physical considerations demand that these
conditions be satisfied in all problems — not only those in which the con-
tact area is initially unknown. However, if the indenter is rigid and has sharp
corners, the contact area will usually be identical with the plan-form of the
indenter and conditions (29.11, 29.12) need not be explicitly imposed. Notice
2 See for example §12.5.3.



452 29 Frictionless contact

however that if there is also distortion due to thermoelastic e↵ects or if there
is a su�ciently large rigid-body rotation as in Problem 12.4, the contact area
may not be coextensive with the plan-form of the indenter. In general, condi-
tions (29.11, 29.12) define a solution space in which the mathematical solution
will be physically meaningful. If any further restrictions are imposed in the
interests of simplicity, it is always wise to check the solution at the end to
ensure that the inequalities are satisfied.

In treating the Hertzian problem in §12.5.3, we were able to satisfy the
inequalities by choosing the contact area in such a way that the contact trac-
tion tended to zero at the edge. A similar technique can be applied in three-
dimensional problems provided that the profile of the indenter is smooth,
but now we have to determine the equation of a boundary line in the plane
z = 0, rather than two points defining the ends of a strip. This is generally
a formidable problem and closed form solutions are known only for the case
where the contact area is either an ellipse or a circle.

Boundedness of the contact traction at the edge of the contact area is
a necessary but not su�cient condition for the inequalities to be satisfied.
Suppose for example the indenter has concave regions as shown in Figure 29.1.
For some values of the load, there will be contact in two discrete regions near
to A and B. However, we could construct a mathematical solution assuming
contact near B only, in which the traction was bounded throughout the edge
of the contact area and in which there would be interpenetration (i.e. violation
of inequality (29.12)) near A. In general, the boundedness condition may be
insu�cient to determine a unique solution if the physically correct contact
area is not simply connected.

Figure 29.1: Contact problem which will have two unconnected multiply
connected contact areas in an intermediate load range

In a numerical solution, this di�culty can be avoided by using the inequal-
ities directly to determine the contact area by iteration. A simple approach is
to guess the extent of the contact area A, solve the resulting contact problem
numerically and then examine the solution to determine whether the inequal-
ities (29.11, 29.12) are violated at any point. Any points in A at which the
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contact traction is tensile are then excluded from A in the next iteration,
whereas any points in Ā at which the gap is negative are included in A.

This method is found to converge rapidly, but it involves the calculation
of tractions or displacements at all surface nodes. An alternative method is
to formulate a function which is minimized when the solution satisfies the
inequalities and then treat the iterative process as an optimization problem.
Kalker3 and Kikuchi and Oden4 have explored this technique at length and
used it to develop finite element solutions to the contact problem.

A simpler method is available for the special problem of the indentation of
an elastic half-space by a rigid indenter. Suppose we select a value at random
for the contact area A, solve the resulting indentation problem, and then
determine the corresponding total indentation force

F (A) = �
Z Z

A

�zz(x, y, 0)dxdy , (29.13)

where �zz is the contact traction associated with the ‘wrong’ contact area, A.
It can be shown that the maximum value of F (A) occurs when A is chosen
such that the inequalities (29.11, 29.12) are satisfied — i.e. when A takes its
correct value. Thus, we can formulate the iteration process in terms of an
optimization problem for F (A). The proof of the theorem is as follows:-

Proof

Consider the e↵ect of increasing A by a small element �A.
If F (A) is thereby increased, the corresponding di↵erential contact traction

distribution — i.e. the di↵erence between the final and the initial traction —
amounts to a net compressive force on the half-space. Now we proved in §29.1.1
that in such cases, the maximum surface displacement must occur in a region
where the traction is compressive and be positive in sign. Thus, the maximum
di↵erential surface displacement �uz must occur somewhere in A or �A and
be positive in sign. However, �uz is zero throughout A, since the process of
including a further region in the contact area does not a↵ect the displacement
boundary condition in A. It therefore follows that the di↵erential displacement
in �A is positive and that the contact traction there is compressive.

We know that the final value of uz in �A is f(x, y)+C
0

+C
1

x+C
2

y. The
e↵ect of the di↵erential contact traction distribution has therefore been shown
to be an increase of uz at �A to the value f(x, y)+C

0

+C
1

x+C
2

y and it follows
that �A must be an area for which initially

uz < f(x, y) + C
0

+ C
1

x + C
2

y (29.14)
3 J.J.Kalker, Variational principles of contact elastostatics, Journal of the Institute

for Mathematics and its Applications, Vol. 20 (1977), pp.199–221.
4 N.Kikuchi and J.T.Oden, Contact Problems in Elasticity: A Study of Variational

Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
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— i.e. for which the gap is negative.
Hence, an increase in F (A) can only be achieved by increasing A if there

are some areas �A outside A satisfying (29.14). By a similar argument, we can
show that an increase in F (A) can follow from a reduction in A only if there
exist areas �A inside A for which

�zz > 0 (29.15)

— i.e. for which the contact traction is tensile.
It follows that the maximum value of F (A) must occur when A is chosen

so that there are no regions satisfying (29.14, 29.15) — i.e. when the original
inequalities (29.11, 29.12) are satisfied everywhere5.

The above method has the formal advantage that it replaces the intractable
inequality conditions by a variational statement, but in order to use it we
need to have a way of determining the total load F (A) on the indenter for an
arbitrary contact area6 A. We shall show in Chapter 34 how the reciprocal
theorem can be used to simplify this problem7.

29.3 Contact problems involving adhesive forces

At very small length scales, the attractive forces between molecules (van der
Waals forces) become significant and must be taken into account in the solu-
tion of contact problems. This subject has increased in importance in recent
years with the emphasis on micro- and nano-scale systems. One approach is to
apply the same arguments as in the Gri�th theory of brittle fracture (§13.3.1)
and postulate that the contact area will adopt the value for which the total
energy (comprising elastic strain energy, potential energy of external forces
and surface energy) is at a minimum. Perturbing about this minimum energy
state, we then obtain

G = �� , (29.16)

where G is the energy release rate introduced in §13.3.3 and �� is the interface

energy of the two contacting materials — i.e. the work that must be done per
unit area against interatomic forces at the interface to separate two bodies
with atomically plane surfaces8. It follows from equation (13.54) that the
contact tractions will exhibit a tensile square-root singularity at the edge of
the contact area characterized by a stress intensity factor
5 For more details of this argument see J.R.Barber, Determining the contact area

in elastic contact problems, Journal of Strain Analysis, Vol. 9 (1974), pp.230–232.
6 Even then, the variational problem is far from trivial.
7 See also R.T.Shield, Load-displacement relations for elastic bodies, Zeitschrift für

angewandte Mathematik und Physik, Vol. 18 (1967), pp.682–693.
8 This will generally be less than the sum of the surface energies �1 + �2 of the two

contacting materials, except in the case of similar materials.
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KI = lim
s!0

�zz(s)
p

2⇡s , (29.17)

where �zz(s) is the normal contact traction (tensile positive) at a distance s
from the edge of the contact area. For the more general case of frictionless
contact between dissimilar materials, equation (13.54) is modified to

G =
K2

I

16

✓


1

+ 1
µ

1

+


2

+ 1
µ

2

◆

and for three-dimensional problems, the local conditions at the edge of the
contact are always those of plane strain (=3�4⌫) giving

KI = 2

s

��

�✓

1� ⌫
1

µ
1

+
1� ⌫

2

µ
2

◆

, (29.18)

using (29.16). This approach to adhesive contact problems was first intro-
duced by Johnson, Kendall and Roberts9 and has come to be known as the
JKR theory. Notice that it predicts that the stress intensity factor is constant
around the edge of the contact region, regardless of its shape. Of course, in
the special case where adhesive forces and hence surface energy are neglected,
this stress intensity factor will be zero and the theory reduces to the classical
condition that the contact tractions are square-root bounded at the edge of
the contact area.

The JKR theory is approximate in that it neglects the attractive forces
between the surfaces in the region where the gap is small but non-zero. More
exact numerical solutions using realistic force separation laws show that the
theory provides a good limiting solution in the range where the dimensionless
parameter

 ⌘
"

R(��)2

4"3

✓

1� ⌫
1

µ
1

+
1� ⌫

2

µ
2

◆

2

#

1/3

� 1 ,

where R is a representative radius of the contacting surfaces and " is the
equilibrium intermolecular distance10.

9 K.L.Johnson, K.Kendall and A.D.Roberts, Surface energy and the contact of elas-
tic solids, Proceedings of the Royal Society of London, Vol. A324 (1971), pp.301–
313.

10 J.A.Greenwood, Adhesion of elastic spheres, Proceedings of the Royal Society of
London, Vol. A453 (1997), pp.1277–1297.
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PROBLEMS

1. Using the result of Problem 23.4 or otherwise, show that if the punch profile
u

0

(x, y) has the form
u

0

= rpf(✓)

where p > 0 and f(✓) is any function of ✓, the resulting frictionless contact
problems at di↵erent indentation forces will be self-similar11.

Show also that if l is a representative dimension of the contact area, the
indentation force, F , and the rigid-body indentation, d, will vary according to

F ⇠ lp+1 ; d ⇠ lp

and hence that the indentation has a sti↵ening load-displacement relation

F ⇠ d1+

1
p .

Verify that the Hertzian contact relations (§30.2.5 below) agree with this
result.

2. A frictionless rigid body is pressed into an elastic body of shear modulus µ
and Poisson’s ratio ⌫ by a normal force F , establishing a contact area A and
causing the rigid body to move a distance �. Use the results of §29.1 to define
the boundary-value problem for the potential function ' corresponding to the
incremental problem, in which an infinitesimal additional force increment �F
produces an incremental rigid-body displacement ��.

Suppose that the rigid body is a perfect electrical conductor at potential
V

0

and the ‘potential at infinity’ in the elastic body is maintained at zero.
Define the boundary-value problem for the potential V in the elastic body,
noting that the current density vector i is given by Ohm’s law

i = �1
⇢
rV ,

where ⇢ is the electrical resistivity of the material. Include in your statement
an expression for the total current I transmitted through the contact interface.

By comparing the two potential problems or otherwise, show that the
electrical contact resistance R = V

0

/I is related to the incremental contact
sti↵ness dF/d� by the equation

1
R

=
(1� ⌫)
⇢µ

dF

d�
.

11 D.A.Spence, An eigenvalue problem for elastic contact with finite friction, Pro-
ceedings of the Cambridge Philosophical Society, Vol. 73 (1973), pp.249–268, has
shown that this argument also extends to problems with Coulomb friction at the
interface, in which case, the zones of stick and slip also remain self-similar with
monotonically increasing indentation force.
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3. Use equations (18.9, 18.11) to show that the function

f(x, z) = =
⇢

arcsin
✓

x + ız

a

◆�

satisfies Laplace’s equation. Show that the function

@'

@z
= A + Bf(x, z)

can be used to solve the plane strain equivalent of the flat punch problem
of §12.5.2 with suitable choices for the constants A,B. In particular, obtain
expressions for the contact pressure distribution and for the normal surface
displacement uz outside the contact area.

Note: For complex arguments, we can write12

arcsin(⇣) =
1
ı

ln(ı⇣ +
p

1� ⇣2) .

4. Show that for frictionless contact problems for the half-space z > 0, the
normal stress components near the surface z = 0 satisfy the relation

�xx + �yy = (1 + 2⌫)�zz ,

where �zz is the applied traction.

12 See I.S.Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series and Products, Aca-
demic Press, New York, 1980, §1.622.1.
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THE BOUNDARY-VALUE PROBLEM

The simplest frictionless contact problem of the class defined by equations
(29.3–29.6) is that in which the contact area A is the circle 0 < r < a and
the indenter is axisymmetric, in which case we have to determine a harmonic
function '(r, z) to satisfy the mixed boundary conditions

@'

@z
= � µ

(1� ⌫)
u

0

(r) ; 0  r < a , z = 0 (30.1)

@2'

@z2

= 0 ; r > a , z = 0 . (30.2)

30.1 Hankel transform methods

The most popular is the Hankel transform method developed by Sneddon1 and
discussed in the application to contact problems by Gladwell2. The function

f(r, z) = exp(�⇠z)J
0

(⇠r) , (30.3)

where ⇠ is a constant, is harmonic and hence a more general axisymmetric
harmonic function can be written in the form

f(r, z) =
Z 1

0

A(⇠) exp(�⇠z)J
0

(⇠r)d⇠ , (30.4)

where A(⇠) is an unknown function to be determined from the boundary
conditions.
1 I.N.Sneddon, Note on a boundary-value problem of Reissner and Sagoci, Journal

of Applied Physics, Vol. 18 (1947), pp.130–132.
2 G.M.L.Gladwell, Contact Problems in the Classical Theory of Elasticity, Sijtho↵

and Noordho↵, Alphen aan den Rijn, 1980.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 459

This is a classical problem and many solution methods have been proposed.
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Using this representation for ' and substituting into equations (30.1, 30.2),
we find that

�
Z 1

0

⇠A(⇠)J
0

(⇠r)d⇠ = � µ

(1� ⌫)
u

0

(r) ; 0  r < a (30.5)
Z 1

0

⇠2A(⇠)J(⇠r)d⇠ = 0 ; r > a . (30.6)

These constitute a pair of dual integral equations for the function A(⇠).
Sneddon used the method of Titchmarsh3 and Busbridge4 to reduce equations
of this type to a single equation, but a more recent solution by Sneddon5 and
formalized by Gladwell6 e↵ects this reduction more e�ciently for the classes
of equation considered here.

30.2 Collins’ Method

A related method, which has the advantage of yielding a single integral equa-
tion in elementary functions directly, was introduced by Green and Zerna7

and applied to a wide range of axisymmetric boundary-value problems by
Collins8.

30.2.1 Indentation by a flat punch

To introduce Collins’ method, we first examine the simpler problem in which
the punch is flat and hence u

0

(r) is a constant. This was first solved by
Boussinesq in the 1880s.

A particularly elegant solution was developed by Love9, using a series
of complex harmonic potential functions generated from the real Legendre
polynomial solutions of Chapter 24 by substituting (z + ıa) for z. This is
tantamount to putting the origin at the ‘imaginary’ point (0,�ıa). The real
and imaginary parts of the resulting functions are separately harmonic and
have discontinuities at r=a on the plane z=0.
3 E.C.Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press,

Oxford, 1937.
4 I.W.Busbridge, Dual integral equations, Proceedings of the London Mathematical

Society, Ser.2 Vol. 44 (1938), pp.115–129
5 I.N.Sneddon, The elementary solution of dual integral equations, Proceedings of

the Glasgow Mathematical Association, Vol. 4 (1960), pp.108–110.
6 G.M.L.Gladwell, loc. cit., Chapters 5,10.
7 A.E.Green and W.Zerna, loc. cit..
8 W.D.Collins, On the solution of some axisymmetric boundary-value problems

by means of integral equations, II: Further problems for a circular disc and a
spherical cap, Mathematika, Vol. 6 (1959), pp.120–133.

9 A.E.H.Love, Boussinesq’s problem for a rigid cone, Quarterly Journal of Mathe-
matics, Vol. 10 (1939), pp.161–175.
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For example, if we start with the harmonic function ln(R+z) from equation
(23.22) and replace z by z+ıa, we can define the new harmonic function

� = �
1

+ ı�
2

= ln(R⇤ + z + ıa) , (30.7)

where
R⇤2 = r2 + (z + ıa)2 . (30.8)

We also record the first derivative of � which is

@�

@z
=

1
R⇤ . (30.9)

On the plane z=0, R⇤!pr2�a2 and hence

�(r, 0) = ln(
p

r2 � a2 + ıa) (30.10)
@�

@z
(r, 0) =

1p
r2 � a2

. (30.11)

Both the real and imaginary parts of these functions have discontinuities
at r=a on the plane z=0. For example

�
2

(r, 0) ⌘ ={�(r, 0)} =
⇡

2
; 0  r < a (30.12)

= sin�1

a

r
; r > a , (30.13)

whilst

@�
2

@z
(r, 0) = � 1p

a2 � r2

; 0  r < a (30.14)

= 0 ; r > a . (30.15)

Comparing these results with the boundary conditions (30.1, 30.2), we see
that the function

@'

@z
= � 2µu

0

⇡(1� ⌫)
={ln(R⇤ + z + ıa)} (30.16)

identically satisfies both boundary conditions for the case where the function
u

0

(r) is a constant — i.e. if the rigid indenter is flat and is pressed a distance
u

0

into the half-space, as shown in Figure 30.1.
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Figure 30.1: Indentation by a flat-ended cylindrical rigid punch.

The contact pressure distribution is then immediately obtained from equa-
tions (29.1, 30.14, 30.16) and is

p(r) = ��zz(r, 0) =
2µu

0

⇡(1� ⌫)
p

a2 � r2

; 0  r < a . (30.17)

We also use (30.13) to record the surface displacement of the half-space
outside the contact area, which is

uz(r, 0) = u
0

sin�1

a

r
; r > a (30.18)

and the total indenting force

F = 2⇡
Z a

0

rp(r)dr =
4µu

0

(1� ⌫)

Z a

0

rdrp
a2 � r2

=
4µu

0

a

(1� ⌫)
. (30.19)

The remaining stress and displacement components can be obtained by
substituting (30.16) into the corresponding expressions for Solution F from
Table 19.3.

This is Love’s solution of the flat punch problem. To gain an appreciation
of its elegance, it is really necessary to compare it with the original Hankel
transform solution10 which is extremely complicated.

30.2.2 Integral representation

Green and Zerna11 extended the method of the last section to give a general
solution of the boundary-value problem of equations (30.1, 30.2), using the
integral representation
10 I.N.Sneddon, Boussinesq’s problem for a flat-ended cylinder, Proceedings of the

Cambridge Philosophical Society, Vol. 42 (1946), pp.29–39.
11 A.E.Green and W.Zerna, loc.cit., §§5.8–5.10.
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@'

@z
= <

Z a

0

g(t)dt
p

r2 + (z + ıt)2
=

1
2

Z a

�a

g(t)dt
p

r2 + (z + ıt)2
(30.20)

where g(t) is an even function of t. It can be shown that equation (30.20)
satisfies (30.2) identically and the remaining boundary condition (30.1) will
yield an integral equation for the unknown function g(t).

In e↵ect, equation (30.20) is a superposition of solutions of the form
<(r2 +(z+ ıt)2)�1/2 derived from the source solution 1/R. We could there-
fore describe ' as the potential due to an arbitrary distribution g(t) of point
sources along the imaginary z-axis between (0,0) and (0, ıa). It is therefore
a logical development of the classical method of obtaining axisymmetric po-
tential functions by distributing singularities along the axis of symmetry12. A
closely related solution is given by Segedin13, who develops it as a convolution
integral of an arbitrary kernel function with the Boussinesq solution of §30.2.1.
He uses this method to obtain the solution for a power law punch (u

0

(r) ⇠ rn)
and treats more general problems by superposition after expanding the punch
profile as a power series in r. It should be noted that Segedin’s solution is
restricted to indentation by a punch of continuous profile14 in which case the
contact pressure tends to zero at r = a. The idea of representing a general
solution by superposition of Boussinesq-type solutions for di↵erent values of
a has also been used as a direct numerical method by Maw et al.15.

Green’s method was extensively developed by Collins, who used it to treat
many interesting problems including the indentation problem for an annular
punch16 and a problem involving ‘radiation’ boundary conditions17.

30.2.3 Basic forms and surface values

To represent harmonic potential functions we shall use suitable combinations
of the four basic forms

�
1

= <
Z a

0

g
1

(t)F(r, z, t)dt

�
2

= <
Z 1

a

g
2

(t)F(r, z, t)dt

12 see §23.3 and particularly equation (23.29).
13 C.M.Segedin, The relation between load and penetration for a spherical punch,

Mathematika, Vol. 4 (1957), pp.156–161.
14 see §29.2.
15 N.Maw, J.R.Barber and J.N.Fawcett, The oblique impact of elastic spheres, Wear,

Vol. 38 (1976), pp.101–114.
16 W.D.Collins, On the solution of some axisymmetric boundary-value problems

by means of integral equations, IV: Potential problems for a circular annulus,
Proceedings of the Edinburgh Mathematical Society, Vol. 13 (1963), pp.235–246.

17 W.D.Collins, On the solution of some axisymmetric boundary-value problems
by means of integral equations, II: Further problems for a circular disc and a
spherical cap, Mathematika, Vol. 6 (1959), pp.120–133.
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�
3

= =
Z a

0

g
3

(t)F(r, z, t)dt (30.21)

�
4

= =
Z 1

a

g
4

(t)F(r, z, t)dt ,

where
F(r, z, t) = ln

⇣

p

r2 + (z + ıt)2 + z + ıt
⌘

. (30.22)

The square root in (30.22) is interpreted as
p

r2 + (z + ıt)2 = ⇢eı�/2 , (30.23)

where

⇢ = 4
p

(r2 + z2 � t2)2 + 4z2t2 ; � = tan�1

✓

2zt

r2 + z2 � t2

◆

(30.24)

and ⇢�0, 0�<⇡.
Equations (30.21) can be written in two alternative forms which for �

1

are

�
1

=
1
2

Z a

0

g
1

(t){F(r, z, t) + F(r, z,�t)}dt (30.25)

and
�

1

=
1
2

Z a

�a

g
1

(t)F(r, z, t)dt . (30.26)

We note that (30.25) is exactly equivalent to (30.26) if and only if g
1

is an
even function of t. If the boundary values of �, @�/@z etc. specified at z = 0
are even in r, it will be found that g

1

, g
2

are even and g
3

, g
4

odd functions of
t and forms like (30.26) can be used. The majority of problems fall into this
category, but there are important exceptions such as the conical punch (where
uz is proportional to r) and problems with Coulomb friction for which �zr is
proportional to �zz in some region. In these problems, forms like (30.26) can
only be used if gi(t) is extended into t < 0 by a definition with the required
symmetry.

Expressions for the important derivatives of the functions �i at the surface
z=0 are given in Table 30.1. In certain cases, higher derivatives are required —
notably in thermoelastic problems, where heat flux is proportional to @3�/@z3

(see Solution P, Table 22.1). Higher derivatives are most easily obtained by
di↵erentiating within the plane z = 0, making use of the fact that for an
axisymmetric harmonic function f ,

@2f

@z2

= �1
r

@

@r
r
@f

@r
. (30.27)

The reader can verify that this result permits the expressions for @2�i/@z2

in Table 30.1 to be obtained from those for @�i/@r.
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Table 30.1. Surface values of the derivatives of the functions �
i

(Equations (30.21)).

0 < r < a r > a
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R

a

0
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(t)dt� 1

r

R
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r

tg1(t)dtp
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2�r

2
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r
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a

0
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(t)dt
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R

r
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r
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r

2�t

2

@

2
�1

@z

2
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d

dr
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a
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R
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r

2�t
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2�r

2
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t

2�r

2
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@r

�1

r

R
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r

R

a
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r
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@�3
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tg3(t)dtp
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r

2�t

2
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2

30.2.4 Reduction to an Abel equation

Table 30.1 shows that we can satisfy the boundary condition (30.2) identically
if we represent ' in the form of �

1

of equations (30.21). Substitution in the
remaining boundary condition (30.1) then gives the integral equation

Z r

0

g
1

(t)dtp
r2 � t2

= � µ

(1� ⌫)
u

0

(r) ; 0  r < a , (30.28)

for the unknown function g
1

(t). Notice that there is a one-to-one correspon-
dence between the points 0 t < a in which g

1

(t) is defined and the domain
0 r <a in which the integral equation is to be satisfied. This is a necessary
condition for the equation to be solvable18.

Equation (30.28) is an Abel integral equation. Abel equations can be in-
verted explicitly. We operate on both sides of the equation with
18 It is akin to the condition that the number of unknowns and the number of

equations in a system of linear equations be equal.
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Z s

0

rdrp
s2 � r2

,

obtaining the equation
Z s

0

Z r

0

rg
1

(t)dtdr
p

(s2 � r2)(r2 � t2)
= � µ

(1� ⌫)

Z s

0

ru
0

(r)drp
s2 � r2

; 0  r < a .

(30.29)
Since the unknown function, g

1

(t) does not depend upon r, it is advanta-
geous to reverse the order of integration on the left-hand side of (30.29) and
perform the inner integration. To obtain the limits on the new double integral,
we consider r, t as coördinates defining the two-dimensional region of Figure
30.2, in which the domain of integration is shown shaded. It follows from this
figure that when we reverse the order of integration the new limits are
Z s

0

Z r

0

rg
1

(t)dtdr
p

(s2 � r2)(r2 � t2)
=
Z s

0

g
1

(t)dt

Z s

t

rdr
p

(s2 � r2)(r2 � t2)
. (30.30)

Figure 30.2: Domain of integration for equation (30.29)

The inner integral can now be evaluated as
Z s

t

rdr
p

(s2 � r2)(r2 � t2)
=
⇡

2
(30.31)

and hence from equations (30.30, 30.31) we have
Z s

0

g
1

(t)dt = � 2µ

⇡(1� ⌫)

Z s

0

ru
0

(r)drp
s2 � r2

. (30.32)

Di↵erentiating with respect to s, we then have

g
1

(s) = � 2µ

⇡(1� ⌫)
d

ds

Z s

0

ru
0

(r)drp
s2 � r2

, (30.33)

which is the explicit solution of the Abel equation (30.29).
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In general, we shall find that the use of the standard forms of equations
(30.21) in two-part boundary-value problems leads to the four types of Abel
equations whose solutions — obtained by a process similar to that given above
— are given in Table 30.2.

Table 30.2. Inversions of Abel integral equations.

If f(x) =

R

x

0

g(t)dtp
x

2�t

2

R

a

x

g(t)dtp
t

2�x

2
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⇡
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x
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x
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⇡

d
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a

x

tf(t)dtp
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2
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R

x
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g(t)dtp
x

2�t
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R1
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g(t)dtp
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2�x
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then g(x) =
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a

tf(t)dtp
x

2�t

2 � 2

⇡

d

dx

R1
x

tf(t)dtp
t

2�x

2

Once g
1

is known, the complete stress field can be written down using
equation (30.21) and Solution F of Table 21.3. In particular, the contact pres-
sure

p(r) = ��zz(r, 0) =
@2'

@z2

(r, 0) =
1
r

d

dr

Z b

r

tg
1

(t)dtp
t2 � r2

, (30.34)

from Table 30.1, and the total indenting force

F = 2⇡
Z a

0

rp(r)dr = 2⇡
Z a

0

✓

1
r

d

dr

Z a

r

tg
1

(t)dtp
t2 � r2

◆

rdr = 2⇡


Z a

r

tg
1

(t)dtp
t2 � r2

�r=a

r=0

= �2⇡
Z a

0

g
1

(t)dt . (30.35)

Example

As an example, we consider the problem in which a half-space is indented by
a rigid cylindrical punch of radius b with a spherical end of radius R� b. The
function u

0

is then defined by

u
0

= d� r2

2R
, (30.36)

where d is the indentation at the centre of the punch. We suppose that the
force is su�cient to ensure that the punch makes contact over the entire
surface 0  r < b.

Substituting (30.36) in (30.33) and performing the integration and di↵er-
entiation, we obtain

g
1

(s) = � 2µ

⇡(1� ⌫)

✓

d� s2

R

◆

. (30.37)
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Using this result in (30.34) the contact pressure distribution is obtained
as

p(r) =
2µ

⇡(1� ⌫)R

✓

Rd + b2 � 2r2

p
b2 � r2

◆

(30.38)

and the total force is

F =
4µ

(1� ⌫)

Z b

0

✓

d� t2

R

◆

dt =
4µb

(1� ⌫)

✓

d� b2

3R

◆

, (30.39)

from (30.35, 30.37).
Equation (30.28) defines a positive contact pressure for all r < b if and

only if d > b2/R and hence

F � 8µb3

3(1� ⌫)R
. (30.40)

For smaller values of F , contact will occur only in a smaller circle of radius
a < b. In this case, the material of the punch outside r = a plays no rôle in
the problem and the contact pressure can be determined by replacing b by a
in (30.38). Furthermore, the smooth contact condition requires that the p(r)
be bounded at r = a and this is equivalent to enforcing the equality in (30.40)
and solving for a, giving

a =
✓

3(1� ⌫)FR

8µ

◆

1/3

. (30.41)

However, we shall introduce a more systematic approach to problems of this
class in the next section.

30.2.5 Smooth contact problems

If the indenter is smooth, the extent of the contact area must be found as part
of the solution by enforcing the unilateral inequalities (29.11, 29.12). One way
to do this is first to solve the problem assuming a is an independent variable
and then determine it from the condition that p(r) be non-singular at the
boundary of the contact area r=a, as in the two-dimensional Hertz problem of
§12.5.3. Alternatively, we recall from Chapter 29 that the appropriate contact
area is that which maximizes the indentation load F , so for a circular contact
area of radius a,

dF

da
= 0 and hence g

1

(a) = 0 , (30.42)

from (30.35).
However, more direct relationships can be established between the con-

tact radius, the indenting force and the shape of the indenter, defined merely
through its slope u0

0

(r). Starting with the right-hand side of equation (30.34),
we integrate by parts, obtaining
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Z a

r

tg
1

(t)dtp
t2 � r2

= g
1

(a)
p

a2 � r2 �
Z a

r

p

t2 � r2g0
1

(t)dt (30.43)

and hence
p(r) = � g

1

(a)p
a2 � r2

+
Z a

r

g0
1

(t)dtp
t2 � r2

. (30.44)

The second term is bounded at r!a and hence the tractions will be bounded
there if and only if g

1

(a)=0, as in (30.42). Using this result, we can then write
a simpler expression for the contact pressure in smooth contact problems as

p(r) =
Z a

r

g0
1

(t)dtp
t2 � r2

. (30.45)

Since the contact pressure depends only on the derivative g0
1

, we can also
achieve some simplification by performing a similar integration by parts on
the right-hand side of (30.33). We obtain

Z s

0

ru
0

(r)drp
s2 � r2

= u
0

(0)s +
Z s

0

p

s2 � r2u0
0

(r)dr (30.46)

and hence
g
1

(s) = � 2µ

⇡(1� ⌫)



d + s

Z s

0

u0
0

(r)drp
s2 � r2

�

, (30.47)

where d = u
0

(0) represents the rigid-body indentation of the punch. We can
determine d by setting g

1

(a)=0 in (30.47), giving

d = �a

Z a

0

u0
0

(r)drp
a2 � r2

(30.48)

and hence

g
1

(s) =
2µ

⇡(1� ⌫)



a

Z a

0

u0
0

(r)drp
a2 � r2

� s

Z s

0

u0
0

(r)drp
s2 � r2

�

. (30.49)

Notice that this result depends only on the shape of the punch as defined by
the derivative u0

0

(r). Also, di↵erentiating (30.49), we obtain

g0
1

(s) = � 2µ

⇡(1� ⌫)
d

ds



s

Z s

0

u0
0

(r)drp
s2 � r2

�

. (30.50)

Substituting (30.49) into (30.35), we have

F = � 4µ

(1� ⌫)



a2

Z a

0

u0
0

(r)drp
a2 � r2

�
Z a

0

s

Z s

0

u0
0

(r)drdsp
s2 � r2

�

. (30.51)

Changing the order of integration in the second term and performing the inner
integral, we have
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Z a

0

s

Z s

0

u0
0

(r)drdsp
s2 � r2

=
Z a

0

u0
0

(r)
Z a

r

sdsdrp
s2 � r2

=
Z a

0

p

a2 � r2 u0
0

(r)dr

(30.52)
and hence, after some algebraic simplification,

F = � 4µ

(1� ⌫)

Z a

0

r2u0
0

(r)drp
a2 � r2

. (30.53)

In a typical problem, the shape of the punch u0
0

(r) is a known function and
either the force F or the indentation d will be prescribed. The contact radius
a can then be determined by evaluating the integrals in (30.53) or (30.48) and
solving the resulting equation. The function g0

1

(s) and the contact pressure
can then be obtained from equations (30.50) and (30.45) respectively.

Example – The Hertz problem

As an example, we consider the problem in which a half-space is indented by
a rigid sphere of radius R, in which case the slope of the indenter is defined
by

u0
0

= � r

R
. (30.54)

Substituting in equation (30.53) and performing the integration, we obtain

F =
4µ

(1� ⌫)R

Z a

0

r3(r)drp
a2 � r2

=
8µa3

3(1� ⌫)R
. (30.55)

Also, the rigid-body indentation is obtained from (30.48) as

d =
a

R

Z a

0

rdrp
a2 � r2

=
a2

R
. (30.56)

Alternatively, we can eliminate a between equations (30.55, 30.56), obtaining

F =
8µR1/2d3/2

3(1� ⌫)
, (30.57)

which exhibits a sti↵ening characteristic with increasing indentation.
For the contact pressure distribution, we first note that

Z s

0

u0
0

(r)drp
s2 � r2

= � 1
R

Z s

0

rdrp
s2 � r2

= � s

R
. (30.58)

Substituting this result into the right-hand side of (30.50), we then obtain

g0
1

(s) =
4µs

⇡(1� ⌫)R
, (30.59)

after which (30.45) gives

p(r) =
4µ

⇡(1� ⌫)R

Z a

r

tdtp
t2 � r2

=
4µ
p

a2 � r2

⇡(1� ⌫)R
. (30.60)
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30.2.6 Choice of form

Each of the functions �i in Table 30.1 has a zero in @�/@z or @2�/@z2 either
in 0 < r < a or in r > a. Thus, in the above examples it would have been
possible to satisfy (30.2) by choosing @'/@z=�

3

instead of '=�
1

.
The choice is best made by examining the requirements of continuity im-

posed at r=a, z=0 by the physical problem. It can be shown that, if gi(a) is
bounded, the expressions in Table 30.1 will define continuous values of @�i/@z,
but @2�

1

/@z2 will be discontinuous unless gi(a)=0. Thus if, as in the present
case, the function @'/@z represents a physical quantity like displacement or
temperature which is required to be continuous, it is appropriate to choose
@'/@z = @�

1

/@z. The alternative choice of @'/@z = �
3

imposes too strong
a continuity condition at r = a, since it precludes discontinuities in second
derivatives and hence in the stress components.

Of course, in problems involving contact between smooth surfaces, the
normal traction �zz must also be continuous at the edge of the contact region.
The most straightforward treatment is that given in §30.2.5, in which the
continuity condition furnishes an extra condition to determine the radius of
the contact region, which is not known a priori. However, it would also be
possible to force the required continuity through the formulation by using
@'/@z=�

3

in which case the contact radius is prescribed and the rigid-body
indentation d of the punch must be allowed to float. This is essentially the
technique used by Segedin19.

30.3 Non-axisymmetric problems

The method described in this chapter can also be applied to problems in which
non-axisymmetric boundary conditions are imposed interior to and exterior to
the circle r=a — for example, if the punch has a profile u

0

(r, ✓) that depends
on both polar coördinates. The first step is to perform a Fourier decomposition
of the profile, so that the boundary conditions can be expressed as a series
of terms of the form fm(r) cos(m✓) or fm(r) sin(m✓), where m is an integer.
These terms can then be treated separately using linear superposition.

Copson20 shows that if a harmonic potential function �(r, ✓, z) satisfies the
mixed boundary conditions

�(r, ✓, 0) = f(r) cos(m✓) ; 0  r < a

@�

@z
(r, ✓, 0) = 0 ; r > a , (30.61)

the surface value of the derivative in 0r<a can be written
19 C.M.Segedin, The relation between load and penetration for a spherical punch,

Mathematika, Vol. 4 (1957), pp.156–161.
20 E.T.Copson, On the problem of the electrified disc, Proceedings of the Edinburgh

Mathematical Society, Vol. 8 (1947), pp.14–19.
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@�

@z
(r, ✓, 0) = rm�1 cos(m✓)

d

dr

Z a

r

tg(t)dtp
t2 � r2

, (30.62)

where

g(t) =
2

⇡t2m

d

dt

Z t

0

sm+1f(s)dsp
t2 � s2

. (30.63)

This result can clearly be used to solve non-axisymmetric problems of the
form (30.1, 30.2) by setting

� =
@'

@z
. (30.64)

With this notation, equations (30.61, 30.62) reduce to the equivalent expres-
sions for �

1

in Table 30.1 in the axisymmetric case m=0.

Example: The tilted flat punch

We suppose that a cylindrical rigid flat punch of radius a is pressed into the
surface of the elastic half space z>0 by an o↵set force F , whose line of action
passes through the point (✏, 0, 0) causing the punch to tilt through some small
angle ↵. We restrict attention to the case where the o↵set is su�ciently small
to ensure that the complete face of the punch makes contact with the half
space. The boundary condition in 0r<a is then

uz(r, ✓, 0) = d + ↵r cos ✓ (30.65)

and since the problem is linear, we can decompose the solution into an axisym-
metric and a non-axisymmetric term, the former being identical to that given
in §30.2.1. To complete the solution, we therefore seek a harmonic function '
satisfying the boundary conditions

@'

@z
= �µ↵r cos ✓

(1� ⌫)
; 0  r < a , z = 0

@2'

@z2

= 0 ; r > a , z = 0 , (30.66)

from (30.1, 30.2). Using (30.64), these conditions are equivalent to (30.61)
with m=1 and

f(r) = � µ↵r

(1� ⌫)
.

Equation (30.63) then gives

g(t) = � 2µ↵

⇡(1� ⌫)t2
d

dt

Z t

0

s3f(s)dsp
t2 � s2

= � 4µ↵

⇡(1� ⌫)

and substituting into (30.62), we obtain

@2'

@z2

(r, ✓, 0) = cos ✓
d

dr

Z a

r

tg(t)dtp
t2 � r2

=
4µ↵r cos ✓

⇡(1� ⌫)
p

a2 � r2

.
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The contact pressure distribution under the punch is then obtained as

p(r, ✓) =
@2'

@z2

=
2µ

⇡(1� ⌫)
p

a2 � r2

(d + 2↵r cos ✓) ,

where we have superposed the axisymmetric contribution due to the term d
in (30.65) using (30.17). This solution of the tilted punch problem was first
given by A.E.Green21

Contact will occur over the complete face of the punch if and only if
p(r, ✓) > 0 for all (r, ✓) in 0  r < a. This condition will fail at (a,�⇡),
implying local separation, if

↵ >
d

2a
. (30.67)

The rigid-body motion of the punch defined by the constants d,↵ can be
related to the force F and its o↵set ✏ by equilibrium considerations. We obtain

F =
Z a

0

Z

2⇡

0

p(r, ✓)rd✓dr =
4µad

(1� ⌫)

F ✏ =
Z a

0

Z

2⇡

0

p(r, ✓)r2 cos ✓d✓dr =
8µa3↵

3(1� ⌫)

and using (30.67), we conclude that for full face contact, we require

✏  a

3
.

In other words, the line of action of the indenting force must lie within a
central circle of radius a/3.

30.3.1 The full stress field

In his solution of the tilted punch problem, Green used a semi-intuitive method
similar to that introduced in §30.2.1 to deduce the form of the harmonic
potential ' throughout the half space from the surface values obtained above.
A more formal approach is to use the recurrence relation (24.45, 24.46) to
relate the non-axisymmetric problem to an axisymmetric problem that can
be solved using the method of §30.2.2 and Table 30.1.

For example, in the case of the tilted punch problem, the non-axisymmetric
term in '(r, ✓, z) can be written f

1

(r, z) cos ✓, where f
1

satisfies the boundary
conditions

@f
1

@z
= � µ↵r

(1� ⌫)
; 0  r < a , z = 0

@2f
1

@z2

= 0 ; r > a , z = 0 , (30.68)

21 A.E.Green, On Boussinesq’s problem and penny-shaped cracks, Proceedings of
the Cambridge Philosophical Society, Vol. 45 (1949), pp.251–257.
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from (30.66). Setting m=0 in (24.46) we can define an axisymmetric harmonic
function f

0

(r, z) such that

f
1

(r, z) =
@f

0

@r
. (30.69)

Substituting this relation into (30.68)
1

and integrating with respect to r, we
conclude that f

0

must satisfy the boundary condition

@f
0

@z
(r, 0) =

Z

@f
1

@z
(r, 0)dr = � µ↵r2

2(1� ⌫)
+ C ; 0  r < a , z = 0 , (30.70)

where C is a constant of integration. Since the stress field must decay at large
values of r, the corresponding integration of the outer boundary condition
(30.68)

2

leads simply to

@2f
0

@z2

= 0 ; r > a , z = 0 . (30.71)

Equation (30.71) can be satisfied identically by representing the axisymmetric
harmonic f

0

(r, z) in the form �
1

of equation (30.21). Table 30.1 then gives
Z r

0

g
1

(t)dtp
r2 � t2

= � µ↵r2

2(1� ⌫)
+ C

and the Abel equation solution is obtained from Table 30.2 as

g
1

(x) =
2
⇡

d

dx

Z x

0

✓

� µ↵t3

2(1� ⌫)
+ Ct

◆

dtp
x2 � t2

=
2
⇡

✓

� µ↵x2

(1� ⌫)
+ C

◆

.

The constant C must be chosen so as to satisfy the condition of continuity
of displacement at r=a. As explained in §30.2.6, the representations (30.21)
ensure continuity of the derivative @�i/@z at r=a as long as the corresponding
function gi(t) is bounded. In the present case, this means that @f

0

/@z will
be continuous for all values of C. However, the di↵erentiation in (30.69) will
introduce a square-root singularity in @f

1

/@z unless the constant C is chosen
so as to satisfy the stronger condition g

1

(a)=0, giving

g
1

(x) =
2µ↵(a2 � x2)
⇡(1� ⌫)

.

The function f
0

(r, z) is then given by (30.21)
1

with this value of g
1

after which
f
1

(r, z) is defined by (30.69).
For higher-order problems (larger values of m in ' = fm(r, z) cos(m✓)),

additional constants of integration will appear in the boundary conditions for
f
0

(r, z) and stronger continuity conditions must be imposed at r =a. In fact
g
1

(t) and its first m�1 derivatives must be set to zero at t=a.



Problems 475

PROBLEMS

1. A harmonic potential function !(r, z) in the region z >0 is defined by the
surface values !(r, 0) = A(a2�r2) ; 0  r < a ; !(r, 0) = 0 ; r > a. Select
a suitable form for the function using Table 30.1 and then use the boundary
conditions to determine the corresponding unknown function gi(t).

2. Use equation (30.27) to derive the expressions for @2�
1

/@z2 in Table 30.1
from those for @�

1

/@r.

3. An elastic half space is indented by a rigid cylindrical punch of radius a with
a concave spherical end of radius R�a. Find the contact pressure distribution
p(r) and hence determine the minimum force F

0

required to maintain contact
over the entire punch surface. Do not attempt to solve the problem for F <F

0

.

4. A rigid flat punch of radius a is bonded to the surface of the elastic half
space z > 0. A torque T is then applied to the punch. Use Solution E to
describe the stress field in the half space and Collins’ method to solve the
resulting boundary-value problem for  . In particular, find the distribution of
traction between the punch and the half space and the rotation of the punch
due to the torque.

5. A rigid sphere of radius R is pressed into an elastic half space of shear
modulus µ and Poisson’s ratio ⌫. Assuming that the interface energy for this
material combination is ��, find a relation between the indenting force F
and the radius of the contact area a. You should use the conditions (29.17,
29.18) to determine the unknown constant d in (30.36) and then (30.35) to
determine F .

Hence determine the contact radius when the sphere is unloaded F = 0
and the tensile force required to pull the sphere out of contact22.

6.(i) An elastic half-space is indented by a conical frictionless rigid punch as
shown in Figure 30.3, the penetration of the apex being d. Find the contact
pressure distribution, the total load F and the contact radius a. The semi-
angle of the cone is ⇡

2

�↵, where ↵⌧1.

22 This solution was first given by K.L.Johnson, K.Kendall and A.D.Roberts, Sur-
face energy and the contact of elastic solids, Proceedings of the Royal Society of
London, Vol.A324 (1971), pp.301–313.
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Figure 30.3: The conical punch.

(ii) What is the nature of the singularity in pressure at the vertex of the cone
(point A).
(iii) Now suppose that the cone is truncated as shown in Figure 30.4. With-

out finding the new contact pressure distribution, find the new relationship
between F and a. Note: Take the radius of the truncated end of the cone as
b and refer the profile to the point A where the vertex would have been before
truncation.
(iv) Would you expect a singularity in contact pressure at B and if so of what
form. (The process of determining p(r) is algebraically tedious. Try to find a
simpler way to answer the question.)

Figure 30.4: The truncated conical punch.

7. A rigid flat punch has rounded edges, as shown in Figure 30.5. The punch
is pressed into an elastic half space by a force F . Assuming that the contact
is frictionless, find the relation between F , the indentation u

0

and the radius
a of the contact area.
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Figure 30.5: Flat punch with rounded corners.

8. An elastic half space is indented by a smooth axisymmetric rigid punch
with the power law profile Crs, so the displacement in the contact area is

u
0

(r) = d� Crs ,

where C, s are constants. Show that the indentation force F , the contact radius
a and the indentation depth d are related by the equation

F =
4µad

(1� ⌫)

✓

s

s + 1

◆

.

9. The profile of a smooth axisymmetric frictionless rigid punch is described
by the power law

u
0

(r) = Anr2n ,

where n is an integer. The punch is pressed into an elastic half space by a force
F . Find the indentation d, the radius of the contact area a and the contact
pressure distribution p(r). Check your results by comparison with the Hertz
problem of §30.2.5 and give simplified expressions for the case of the fourth
order punch

u
0

(r) = A
2

r4 .

10. For a smooth axisymmetric contact problem, the contact pressure must
be continuous at r = a. Usually this condition is imposed explicitly and it
serves to determine the radius a of the contact region. However, it can also
be guaranteed by ‘choice of form’ as suggested in §30.2.6. Use this strategy to
solve the Hertzian contact problem, for which

u0
0

(r)=� r

R
,

where R is the radius of the indenter.
You will need to find a suitable representation of the form
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@'

@z
= �i ,

where �i is one of the four functions in equation (30.21), chosen so as to satisfy
the homogeneous boundary condition (zero contact pressure in r > a). Then
use Tables 30.1, 30.2 to set up and solve an Abel equation for the unknown
function gi(t). In particular, find the contact pressure distribution p(r) and
the total load F needed to establish a circular contact area of radius a.

11. The flat end of a rigid cylindrical punch of radius a is pressed into the
curved surface of an elastic cylinder of radius R � a by a centric force F
su�cient to ensure contact throughout the punch face. Use Copson’s formula
(30.61–30.63) to determine the contact pressure distribution and hence find
the minimum value of F required for full contact.

12. Solve Problem 11 by relating the non-axisymmetric component of '(r, ✓, z)
to a corresponding axisymmetric harmonic function f

0

(r, z), as in §30.3.1.
Notice that the required function varies with cos(2✓), so you will need to
apply equation (24.46) twice recursively to relate f

2

(r, z) to f
0

(r, z). This will
introduce two arbitrary constants in the boundary conditions for f

0

and these
must be determined from the continuity conditions g

1

(a)=g0
1

(a)=0.
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THE PENNY-SHAPED CRACK

As in the two-dimensional case, we shall find considerable similarities in the
formulation and solution of contact and crack problems. In particular, we
shall find that problems for the plane crack can be reduced to boundary-value
problems which in the case of axisymmetry can be solved using the method
of Green and Collins developed in §30.2.

31.1 The penny-shaped crack in tension

The simplest axisymmetric crack problem is that in which a state of uniform
tension �zz = S in an infinite isototropic homogeneous solid is perturbed by
a plane crack occupying the region 0  r < a, z = 0. Thus, the crack has

penny-shaped crack1.
As in Chapter 13, we seek the solution in terms of an unperturbed uniform

stress field �zz = S (constant) and a corrective solution which tends to zero
at infinity. The boundary conditions on the corrective solution are therefore

�zz = �S; �zr = 0 ; 0  r < a , z = 0 (31.1)
�zz,�rz,�rr,�✓✓ ! 0 ; R!1 . (31.2)

The corrective solution corresponds to the problem in which the crack is
opened by an internal pressure �S and the body is not loaded at infinity.

The problem is symmetrical about the plane z =0 and it follows that on
that plane there can be no shear stress �zx,�zy and no normal displacement
uz. We can therefore reduce the problem to a boundary-value problem for the
half-space z>0 defined by the boundary conditions
1 I.N.Sneddon, The distribution of stress in the neighbourhood of a crack in an elas-

tic solid, Proceedings of the Royal Society of London, Vol. A187 (1946), pp.226–
260.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 479

the shape of a circular disk. This geometry has come to be known as the

DOI 10.1007/978-90-481-3809-8_31, © Springer Science+Business Media B.V. 2010 
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�zx = �zy = 0 ; all r, z = 0 (31.3)
�zz = �S ; 0  r < a, z = 0 (31.4)
uz = 0 ; r > a, z = 0 . (31.5)

Equation (31.3) is a global condition and can be satisfied identically2 by
using Solution F of Table 21.3. The remaining conditions (31.4, 31.5) then
define the mixed boundary-value problem

@2'

@z2

= S ; 0  r < a, z = 0 (31.6)

@'

@z
= 0 ; r > a, z = 0 . (31.7)

This problem can be solved by the method of §30.2. We note from Table
30.1 that (31.7) can be satisfied identically by representing ' in the form of
�

3

of (30.21) — i.e.

' = =
Z a

0

g(t)F (r, z, t)dt (31.8)

and the remaining boundary condition (31.6) then reduces to

1
r

d

dr

Z r

0

tg(t)dtp
r2 � t2

= S ; 0  r < a . (31.9)

We now multiply both sides of this equation by r and integrate, obtaining
Z r

0

tg(t)dtp
r2 � t2

=
Sr2

2
+ C ; 0  r < a , (31.10)

where C is an arbitrary constant.
Equation (31.10) is an Abel integral equation similar to (30.28) and can

be inverted in the same way (see Table 30.2), with the result

xg(x) =
2
⇡

d

dx

Z x

0

✓

Sr2

2
+ C

◆

rdrp
x2 � r2

(31.11)

and hence
g(x) =

2Sx

⇡
+

2C

⇡x
. (31.12)

The second term in this expression is singular at x! 0 and it is readily
verified from Table 30.1 that @'/@z and hence uz would be unbounded at the
2 More generally, any problem involving a crack of arbitrary cross-section A on

the plane z = 0 and loaded by a uniform tensile stress �
zz

at z =±1 has the
same symmetry and can also be formulated using Solution F. In the general case,
we obtain a two-part boundary-value problem for the half-space z > 0, in which
conditions (31.6) and (31.7) are to be satisfied over A and Ā respectively, where
Ā is the complement of A in the plane z=0.
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origin if C 6=0. We therefore set C =0 to retain continuity of displacement at
the origin.

We can then recover the expression for the stress �zz in the region r >
a, z=0 which is

�zz = �@
2'

@z2

= �2S

⇡r

d

dr

Z a

0

x2dxp
r2 � x2

= �2S

⇡

✓

sin�1

a

r
� ap

r2 � a2

◆

. (31.13)

This of course is the corrective solution. To find the stress in the original
crack problem, we must superpose the uniform tensile stress �zz =S, with the
result

�zz =
2S

⇡

✓

cos�1

a

r
+

ap
r2 � a2

◆

. (31.14)

The stress intensity factor is defined as

KI = lim
r!a+

�zz

p

2⇡(r � a) = 2S

r

a

⇡
. (31.15)

We could have obtained this result directly from g(x), without computing
the complete stress distribution. We have

�zz = �1
r

d

dr

Z a

0

xg(x)dxp
r2 � x2

(31.16)

=
g(a)p
r2 � a2

� g(0)
r
�
Z a

0

g0(x)dxp
r2 � x2

. (31.17)

Now, unless g0(x) is singular at x = a, the only singular term in (31.17)
will be the first and the stress intensity factor is therefore

KI = lim
r!a+

�zz

p

2⇡(r � a) = g(a)
r

⇡

a
. (31.18)

In the present example, g(a)=2Sa/⇡, leading to (31.15) as before.
We also compute the displacement uz at 0r<a, z=0+, which is

uz(r, 0+) = � (1� ⌫)
µ

@'

@z
=

(1� ⌫)
µ

Z a

r

g(x)dxp
x2 � r2

=
2(1� ⌫)S

p
a2 � r2

⇡µ
. (31.19)

Since the crack opens symmetrically on each face, it follows that the crack-
opening displacement is

�(r) = uz(r, 0+)� uz(r, 0�) =
4(1� ⌫)S

p
a2 � r2

⇡µ
. (31.20)
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31.2 Thermoelastic problems

In addition to acting as a stress concentration in an otherwise uniform stress
field, a crack will obstruct the flow of heat and generate a perturbed tem-
perature field in components of thermal machines. The simplest investigation
of this e↵ect assumes that the crack acts as a perfect insulator, so that the
heat is forced to flow around it. For the penny-shaped crack3, the appropriate
thermal boundary conditions are then

qz = �K
@T

@z
= 0 ; 0  r < a, z = 0 (31.21)

! Q ; R!1 . (31.22)

As in isothermal problems, we construct the temperature field as the sum
of a uniform heat flux and a corrective solution, the boundary conditions on
which become

qz = �K
@T

@z
= �Q ; 0  r < a, z = 0 (31.23)

! 0 ; R!1 . (31.24)

This problem is antisymmetric about the plane z =0 and hence the tem-
perature must be zero in the region r>a, z=0. We can therefore convert the
heat conduction problem into a boundary-value problem for the half-space
z>0 with boundary conditions

qz = �Q ; 0  r < a (31.25)
T = 0 ; r > a . (31.26)

The temperature field and a particular thermoelastic solution can be con-
structed using Solution P of Table 20.1, in terms of which (31.4, 31.5) define
the mixed boundary-value problem

@3 

@z3

= �µ↵(1 + ⌫)Q
(1� ⌫)K

; 0  r < a (31.27)

@2 

@z2

= 0 ; r > a . (31.28)

We require that the temperature and hence @2 /@z2 be continuous at
r=a, z=0 and hence in view of the arguments of §30.3, we choose to satisfy
(31.28) using the function �

3

— i.e.

@ 

@z
= =

Z a

0

g
3

(t)F (r, z, t)dt . (31.29)

3 This problem was first solved by A.L.Florence and J.N.Goodier, The linear ther-
moelastic problem of uniform heat flow disturbed by a penny-shaped insulated
crack, International Journal of Engineering Science, Vol. 1 (1963), pp.533–540.
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Condition (31.27) then defines the Abel equation

1
r

d

dr

Z r

0

tg
3

(t)dtp
r2 � t2

= �µ↵(1 + ⌫)Q
(1� ⌫)K

; 0  r < a , (31.30)

which has the solution

g
3

(t) = �2µ↵(1 + ⌫)Qt

⇡(1� ⌫)K
. (31.31)

This defines a particular thermoelastic solution. We recall from Chapter
14 that the homogeneous solution corresponding to thermoelasticity is the
general solution of the isothermal problem. Thus we now must superpose a
suitable isothermal stress field to satisfy the mechanical boundary conditions
of the problem.

The mechanical boundary conditions are that (i) the surfaces of the crack
be traction-free and (ii) the stress field should decay to zero at infinity. How-
ever, the antisymmetry of the problem once again permits us to define bound-
ary conditions on the half-space z>0 which are

�zz = �zr = 0 ; 0  r < a, z = 0 (31.32)
�zz = 0 ; ur = 0 ; r > a, z = 0 . (31.33)

Equations (31.32) state that the crack surfaces are traction-free and (31.33)
are symmetry conditions.

We notice that taken together, these conditions imply that �zz =0 through-
out the plane z =0. This is therefore a global condition and can be satisfied
by the choice of form. It is already satisfied by the particular solution (see
Table 20.1) and hence it must also be satisfied by the additional isothermal
solution, for which we therefore use Solution G of Table 21.3.

The complete solution is therefore obtained by superposing Solutions P
and G, the surface values of �zr and ur being

�zr =
@2�

@r@z
(31.34)

2µur = 2(1� ⌫)
✓

@ 

@r
+
@�

@r

◆

. (31.35)

The mixed conditions in (31.32, 31.33) then require

@2�

@r@z
= 0 ; 0  r < a, z = 0 (31.36)

@ 

@r
+
@�

@r
= 0 ; r > a, z = 0 . (31.37)

We can satisfy (31.37) by defining � such that

� = � + <
Z a

0

g
1

(t)F (r, z, t)dt , (31.38)
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with the auxiliary condition
Z a

0

g
1

(t)dt = 0 , (31.39)

(see Table 30.1).
The other boundary condition (31.36) can then be integrated to give

@�

@z
= C ; 0  r < a, z = 0 , (31.40)

where C is an arbitrary constant of integration, and hence
Z r

0

g
1

(t)dtp
r2 � t2

=
@ 

@z
+ C ; 0  r < a , (31.41)

using (31.38) and Table 30.1.
To solve for g

1

(t), we use the result

1
r

d

dr
r

d

dr

✓

@ 

@z

◆

= �@
3 

@z3

=
µ↵(1 + ⌫)Q
(1� ⌫)K

(31.42)

(see equation (30.27)), which can be integrated in the plane z = 0 to give

@ 

@z
=

µ↵(1 + ⌫)Qr2

4(1� ⌫)K
+ B ; 0  r < a, z = 0 , (31.43)

where B is an arbitrary constant4.
Substituting (31.43) into (31.41) and solving the resulting Abel integral

equation using Table 30.2, we obtain

g
1

(x) =
2
⇡

✓

B + C +
µ↵(1 + ⌫)Qx2

2(1� ⌫)K

◆

. (31.44)

Since B and C are two arbitrary constants and occur as a sum, there is
no loss in generality in setting B to zero. The auxiliary condition (31.39) can
then be used to determine C giving

C = �µ↵(1 + ⌫)Qa2

6(1� ⌫)K
. (31.45)

Finally, we can recover the expression for the stress �zr on r > a, z = 0,
which is

�zr =
@2�

@z@r
=

d

dr

Z a

0

g
1

(t)dtp
r2 � t2

+
1
r

Z a

0

tg
3

(t)dtp
r2 � t2

(31.46)

= � 2µ↵(1 + ⌫)Qa3

3⇡(1� ⌫)Kr
p

r2 � a2

, (31.47)

4 The other constant of integration leads to a term which is singular at the origin
and has therefore been set to zero.
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from Table 30.1 and equations (31.31, 31.44, 31.45).
Notice that the antisymmetry of the problem ensures that the crack tip is

loaded in shear only — we argued earlier that �zz would be zero throughout
the plane z=0. It also follows from a similar argument that the crack remains
closed — there is a displacement uz at the crack plane, but it is the same on
both sides of the crack.

The stress intensity factor is of mode II (shear) form and is

KII = lim
r!a+

�zr

p

2⇡(r � a) = �2µ↵(1 + ⌫)Qa3/2

3
p
⇡(1� ⌫)K

. (31.48)

PROBLEMS

1. An infinite homogeneous body contains an axisymmetric external crack —
i.e. the crack extends over the region r >a, z =0. Alternatively, the external
crack can be considered as two half-spaces bonded together over the region
0r<a, z=0.

The body is loaded in tension, such that the total tensile force transmitted
is F . Find an expression for the stress field and in particular determine the
mode I stress intensity factor KI .

2. An infinite homogeneous body containing a penny-shaped crack is subjected
to torsional loading �z✓ =Cr, R!1, where C is a constant5. Use Solution E
(Table 21.1) to formulate the problem and solve the resulting boundary-value
problem using the methods of §30.2.

3. The axisymmetric external crack of radius a (see Problem 31.1) is unloaded,
but is subjected to the steady-state thermal conditions

T (r, z) ! T
1

; z !1
! T

2

; z ! �1
qz(r, 0) = 0 ; r > a .

In other words the extremities of the body are maintained at di↵erent tem-
peratures T

1

, T
2

causing heat to flow through the ligament z=0, 0r<a and
the crack faces are insulated.

Find the mode II stress intensity factor KII .

4. The antisymmetry of the thermoelastic penny-shaped crack problem of
§31.2 implies that there is no crack-opening displacement and hence the as-
sumption of insulation (31.21) is arguably rather unrealistic. A more realistic
assumption might be that the heat flux across the crack faces is proportional
to the local temperature di↵erence — i.e.
5 This is known as the Reissner-Sagoci problem.
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qz(r, 0) = h
�

T (r, 0�)� T (r, 0+)
�

; 0  r < a .

Use the methods of Chapter 30 to formulate the heat conduction problem. In
particular, express the temperature in terms of one of the forms (30.21) and
find the Abel integral equation which must be satisfied by the function g

3

(t).
Do not attempt to solve this equation.

5. A long rectangular beam defined by the cross-section �c<x<c, �d<y<d
transmits a bending moment M about the positive x-axis. The beam contains
a small penny-shaped crack of radius a in the cross-sectional plane z = 0
with its centre at the point (0, b, 0) — i.e. the crack surface is defined by
0 px2+(y�b)2 < a ; z = 0. Assuming that the crack opens completely
and that c, d, d� b are all large compared with a, find the variation of KI

around the crack edge and hence determine the minimum value of b for the
open-crack assumption to be valid. Find also the crack-opening displacement
as a function of position within the crack.

Notice that the corrective problem involves both axisymmetric and non-
axisymmetric terms. For the latter, you will need to apply the methods intro-
duced in §30.3.
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THE INTERFACE CRACK

The problem of a crack at the interface between dissimilar elastic media is of
considerable contemporary importance in Elasticity, because of its relevance
to the problem of debonding of composite materials and structures. Figure
32.1 shows the case where such a crack occurs at the plane interface between
two elastic half-spaces. We shall use the su�ces 1,2 to distinguish the stress
functions and mechanical properties for the lower and upper half-spaces, z>0,
z<0, respectively.

Figure 32.1: The plane interface crack.

The di↵erence in material properties destroys the symmetry that we ex-
ploited in the previous chapter and we therefore anticipate shear stresses as
well as normal stresses at the interface, even when the far field loading is a

same methods to reduce the problem to a mixed boundary-value problem for
the half-space.

32.1 The uncracked interface

The presence of the interface causes the problem to be non-trivial, even if
there is no crack and the two bodies are perfectly bonded.

 J.R. Barber, Elasticity, Solid  Mechanics and Its Applications 172, 487

state of uniform tension. However, we shall show that we can still use the

DOI 10.1007/978-90-481-3809-8_32, © Springer Science+Business Media B.V. 2010 
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Consider the tensile loading of the composite bar of Figure 32.2(a).

Figure 32.2: The composite bar in tension.

If we assume a state of uniform uniaxial tension �zz = S exists through-
out the bar, the Poisson’s ratio strains, exx = eyy = �⌫iS/Ei will imply
an inadmissible discontinuity in displacements ux, uy at the interface, unless
⌫
1

/E
1

= ⌫
2

/E
2

. In all other cases, a locally non-uniform stress field will be
developed involving shear stresses on the interface and the bar will deform as
shown in Figure 32.2(b). Indeed, for many material combinations, there will
be a stress singularity at the edges A,B, which can be thought of locally as
two bonded orthogonal wedges1 and analyzed by the method of §11.2.

We shall not pursue the perfectly-bonded problem here — a solution for the
corresponding two-dimensional problem is given by Bogy2 — but we note that
as long as the solution for the uncracked interface is known, the corresponding
solution when a crack is present can be obtained as in §§13.3.2, 31.1, by
superposing a corrective solution in which tractions are imposed on the crack
face, equal and opposite to those transmitted in the uncracked state, and the
distant boundaries of the body are traction-free. Furthermore, if the crack
is small compared with the other linear dimensions of the body — notably
the distance from the crack to the free boundary — it can be conceived as
occurring at the interface between two bonded half-spaces, as in Figure 32.1.
1 D.B.Bogy, Edge-bonded dissimilar orthogonal elastic wedges under normal and

shear loading, ASME Journal of Applied Mechanics, Vol. 35 (1968), pp.460–466.
2 D.B.Bogy, The plane solution for joined dissimilar elastic semistrips under ten-

sion, ASME Journal of Applied Mechanics., Vol. 42 (1975), pp.93–98.
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32.2 The corrective solution

If we assume that the loading conditions are such as to cause the crack to
open fully and therefore to be traction-free, the corrective solution will be
defined by the boundary conditions

�xz1

(x, y, 0+) = �xz2

(x, y, 0�) = �S
1

(x, y) (32.1)
�yz1

(x, y, 0+) = �yz2

(x, y, 0�) = �S
2

(x, y) (32.2)
�zz1

(x, y, 0+) = �zz2

(x, y, 0�) = �S
3

(x, y) , (32.3)

for (x, y) 2 A and

�xxi,�yyi,�zzi,�xyi,�yzi,�zxi ! 0 ; R!1 , (32.4)

where A is the region of the interfacial plane z=0 occupied by the crack and
S

1

, S
2

, S
3

are the tractions that would be transmitted across the interface in
the absence of the crack.

We shall seek a potential function solution of the problem in the half-space,
so we supplement (32.1–32.4) by the continuity and equilibrium conditions

�xz1

(x, y, 0+) = �xz2

(x, y, 0�) (32.5)
�yz1

(x, y, 0+) = �yz2

(x, y, 0�) (32.6)
�zz1

(x, y, 0+) = �zz2

(x, y, 0�) (32.7)
ux1

(x, y, 0+) = ux2

(x, y, 0�) (32.8)
uy1

(x, y, 0+) = uy2

(x, y, 0�) (32.9)
uz1

(x, y, 0+) = uz2

(x, y, 0�) , (32.10)

in A — i.e. the uncracked part of the interface3.
It is clear from (32.1–32.3) that (32.5–32.7) apply throughout the interface

and are therefore global conditions. We can exploit this fact by expressing the
fields in the two bonded half-spaces by separate sets of stress functions and
then developing simple symmetric relations between the sets.

32.2.1 Global conditions

The global conditions involve the three stress components �zx,�zy,�zz at the
surface z =0, so it is convenient to choose a formulation in which these com-
ponents take simple forms at the surface and are as far as possible uncoupled.
This can be achieved by superposing Solutions E,F,G of Chapter 21, for which
3 Notice that only those stress components that act on the interface (and hence

have a z-su�x) are continuous across the interface, because of the equilibrium
requirement. The remaining three components will generally be discontinuous
because of (32.8–32.10) and the dissimilar elastic properties.
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�zxi(x, y, 0) =
@2 i

@y@z
+

@2�i

@x@z
(32.11)

�zyi(x, y, 0) = � @2 i

@x@z
+

@2�i

@y@z
(32.12)

�zzi = �@
2'i

@z2

, (32.13)

from Tables 21.1, 21.3, where the su�x i takes the value 1,2 for bodies 1,2
respectively.

The global condition (32.7) now reduces to

@2'
1

@z2

(x, y, 0+) =
@2'

2

@z2

(x, y, 0�) (32.14)

and, remembering that '
1

is defined only in z > 0 and '
2

only in z < 0, we
can satisfy it by imposing the symmetry relation

'
1

(x, y, z) = '
2

(x, y,�z) ⌘ '(x, y, z) (32.15)

throughout the half-spaces. In the same way4, the two remaining global con-
ditions can be satisfied by demanding

 
1

(x, y, z) = � 
2

(x, y,�z) ⌘  (x, y, z) (32.16)
�

1

(x, y, z) = ��
2

(x, y,�z) ⌘ �(x, y, z) , (32.17)

where the negative sign in (32.16, 32.17) arises from the fact that symmetry
of the derivatives @ /@z, @�/@z implies antisymmetry of  ,�.

32.2.2 Mixed conditions

We can now use the remaining boundary conditions (32.1–32.3) and (32.8–
32.10) to define a mixed boundary-value problem for the three potentials
', ,� in the half-space z>0.

For example, using the expressions from Tables 21.1, 21.3 and the defini-
tions (32.15–32.17), the boundary condition (32.8) reduces to

1
µ

1

@ 

@y
+

(1� 2⌫
1

)
2µ

1

@'

@x
+

(1� ⌫
1

)
µ

1

@�

@x
= � 1

µ
2

@ 

@y
+

(1� 2⌫
2

)
2µ

2

@'

@x
� (1� ⌫

2

)
µ

2

@�

@x
(32.18)

in A, z=0.
4 This idea can also be extended to steady-state thermoelastic problems by adding

in Solution P of Table 22.1, which leaves the expressions (32.11–32.13) for the
interface stresses unchanged and requires a further symmetry relation between
 1, 2 to satisfy the global condition of continuity of heat flux, q

z1(x, y, 0+) =
q

z2(x, y, 0�).
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Rearranging the terms and dividing by the non-zero factor {(1�⌫
1

)/µ
1

+
(1�⌫

2

)/µ
2

} (which is A/4 in the terminology of equation (12.69) for plane
strain), we obtain

�
@ 

@y
+ �

@'

@x
+
@�

@x
= 0 ; in A , (32.19)

where � is Dundurs’ constant (see §§4.4.3, 12.7) and

� =
✓

1
µ

1

+
1
µ

2

◆�✓

(1� ⌫
1

)
µ

1

+
(1� ⌫

2

)
µ

2

◆

. (32.20)

A similar procedure applied to the boundary conditions (32.9, 32.10) yields

�� @ 
@x

+ �
@'

@y
+
@�

@y
= 0 (32.21)

@'

@z
+ �

@�

@z
= 0 , (32.22)

in A.
In addition to (32.19, 32.21, 32.22), three further conditions are obtained

from (32.1–32.3), using (32.11–32.13) and (32.15–32.17). These are

@2 

@y@z
+

@2�

@x@z
= �S

1

(x, y) (32.23)

� @2 

@x@z
+

@2�

@y@z
= �S

2

(x, y) (32.24)

�@
2'

@z2

= �S
3

(x, y) , (32.25)

in A. The six conditions (32.19, 32.21–32.25) define a well-posed boundary-
value problem for the three potentials ', ,�, when supplemented by the
requirements that (i) displacements should be continuous at the crack bound-
ary (between A and Ā) and (ii) the stress and displacement fields should decay
as R!1 in accordance with (32.4).

The two boundary conditions (32.19, 32.21) involve only two independent
functions  and (�'+�) and hence we can eliminate either by di↵erentiation
with the result

@2 

@x2

+
@2 

@y2

= �@
2 

@z2

= 0 (32.26)
✓

@2

@x2

+
@2

@y2

◆

(�'+ �) = �� @
2'

@z2

� @2�

@z2

= 0 (32.27)

in A, where we have used the fact that the potential functions are all harmonic
to express the boundary conditions in terms of a single derivative normal to
the plane.

In the same way, (32.23, 32.24) yield
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@3 

@z3

=
@S

1

@y
� @S

2

@x
(32.28)

@3�

@z3

=
@S

1

@x
+
@S

2

@y
, (32.29)

in A.
Equations (32.26, 32.28) now define a two-part boundary-value problem

for  , similar to those solved in Chapter 30 for the axisymmetric geometry.
It should be noted however that it is not necessary, nor is it generally possi-
ble, to satisfy the requirement of continuity of in-plane displacement ux, uy at
the crack boundary in the separate contributions from the potential functions
', ,�, as long as the superposed fields satisfy this requirement. Thus, the ho-
mogeneous problem for  obtained by setting the right-hand side of (32.28) to
zero has non-trivial solutions which are physically unacceptable in isolation,
since they correspond to displacement fields which are discontinuous at the
crack boundary, but they are an essential component of the solution of more
general problems, where they serve to cancel similar discontinuities resulting
from the fields due to ',�. This problem also arises for the crack in a homo-
geneous medium with shear loading5 and in non-axisymmetric thermoelastic
problems6

The remaining boundary conditions define a coupled two-part problem for
',�. As in the two-dimensional contact problems of Chapter 12, the coupling
is proportional to the Dundurs’ constant �. If the material properties are
such that � = 0 (see §12.7), the problems of normal and shear loading are
independent and (for example) the crack in a shear field has no tendency to
open or close.

32.3 The penny-shaped crack in tension

We now consider the special case of the circular crack 0r<a, subjected to
uniform tensile loading S

3

=S, S
1

=S
2

=0. The boundary-value problem for
',� is then defined by the conditions7

5 See for example J.R.Barber, The penny-shaped crack in shear and related contact
problems, International Journal of Engineering Science, Vol. 13, (1975), pp.815–
832.

6 L.Rubenfeld, Non-axisymmetric thermoelastic stress distribution in a solid con-
taining an external crack, International Journal of Engineering Science, Vol. 8
(1970), pp.499–509, J.R.Barber, Steady-state thermal stresses in an elastic solid
containing an insulated penny-shaped crack, Journal of Strain Analysis, Vol. 10
(1975), pp.19–24.

7 This problem was first considered by V.I.Mossakovskii and M.T.Rybka, General-
ization of the Gri�th-Sneddon criterion for the case of a non-homogeneous body,
Journal of Applied Mathematics and Mechanics, Vol. 28 (1964), 1277–1286, and
by F.Erdogan, Stress distribution on bonded dissimilar materials containing circu-
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@3�

@z3

= 0 ; z = 0, 0  r < a (32.30)

@2'

@z2

= S ; z = 0, 0  r < a (32.31)

@'

@z
+ �

@�

@z
= 0 ; z = 0, r > a (32.32)

�
@2'

@z2

+
@2�

@z2

= 0 ; z = 0, r > a . (32.33)

From Table 30.1, we see that we can satisfy (32.32, 32.33) by writing8

�'+ � = �
1

, '+ �� = �
3

(32.34)

— i.e.
' =

�
3

� ��
1

(1� �2)
, � =

�
1

� ��
3

(1� �2)
, (32.35)

where �
1

,�
3

are defined by equation (30.21).
The remaining boundary conditions then define two coupled integral equa-

tions of Abel-type for the unknown functions g
1

(t), g
3

(t) in the range 0 t<a.
To develop these equations, we first note that the condition r2�=0 and the
fact that the solution is axisymmetric enable us to write (32.30) in the form

1
r

d

dr
r

d

dr

@�

@z
(r, 0) = 0 ; z = 0, 0  r < a . (32.36)

This can be integrated within the plane z=0 to give

@�

@z
= C ; z = 0, 0  r < a , (32.37)

where C is a constant which will ultimately be chosen to ensure continuity of
displacements at r=a and we have eliminated a logarithmic term to preserve
continuity of displacements at the origin.

Table 30.1 and (32.35, 32.37) now enable us to write
Z r

0

g
1

(t)dtp
r2 � t2

+ �

Z a

r

g
3

(t)dtp
t2 � r2

= (1� �2)C ; 0  r < a , (32.38)

whilst (32.31, 32.35) and Table 30.1 give

1
r

d

dr

Z r

0

tg
3

(t)dtp
r2 � t2

� �

r

d

dr

Z a

r

tg
1

(t)dtp
t2 � r2

= (1� �2)S ; 0  r < a , (32.39)

lar or ring-shaped cavities, ASME Journal of Applied Mechanics, Vol. 32 (1965),
pp.829–836. A formulation for the penny-shaped crack with more general load-
ing was given by J.R.Willis, The penny-shaped crack on an interface,Quarterly
Journal of Mechanics and Applied Mathematics, Vol. 25 (1972), pp.367–382.

8 This method would fail for the special case � =±1, but materials with positive
Poisson’s ratio are restricted by energy considerations to values in the range
�

1
2 �

1
2 .
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which can be integrated to give
Z r

0

tg
3

(t)dtp
r2 � t2

� �

Z a

r

tg
1

(t)dtp
t2 � r2

=
(1� �2)Sr2

2
+ B ; 0  r < a , (32.40)

where B is an arbitrary constant.
We now treat (32.38) as an Abel equation for g

1

(t), carrying the g
3

integral
onto the right-hand side and using the inversion rules (Table 30.2) to obtain

g
1

(x) =
2�
⇡

Z a

0

tg
3

(t)dt

(x2 � t2)
+

2C(1� �2)
⇡

, (32.41)

where we have simplified the double integral term in g
3

by changing the order
of integration and performing the resulting inner integral.

In the same way, treating (32.40) as an equation for tg
3

(t), we obtain

xg
3

(x) = �2�
⇡

Z a

0

t2g
1

(t)dt

(x2 � t2)
+

2B

⇡
+

2S(1� �2)x2

⇡
. (32.42)

The function g
3

(x) must be bounded at x=0 and hence B must be chosen
so that

B = ��
Z a

0

g
1

(t)dt . (32.43)

Thus, (32.42) reduces to

g
3

(x) = �2�x

⇡

Z a

0

g
1

(t)dt

(x2 � t2)
+

2S(1� �2)x
⇡

. (32.44)

32.3.1 Reduction to a single equation

We observe from equations (32.41, 32.44) that g
1

is an even function of x,
whereas g

3

is odd. Using this result and expanding the integrands as partial
fractions, we arrive at the simpler expressions9

g
1

(x) =
�

⇡

Z a

�a

g
3

(t)dt

(x� t)
+

2C(1� �2)
⇡

; �a < x < a (32.45)

g
3

(x) = ��
⇡

Z a

�a

g
1

(t)dt

(x� t)
+

2S(1� �2)x
⇡

; �a < x < a . (32.46)

Two methods are available for reducing (32.45, 32.46) to a single equa-
tion. The most straightforward approach is to use (32.46) (for example) to
substitute for g

3

in (32.45), resulting after some manipulations in the integral
equation
9 cf. equation (30.26) and the associated discussion.
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a + x
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◆

+
2C

⇡
; �a < x < a . (32.47)

The kernel of this equation is bounded at t = x, the limiting form being
obtainable by L’Hôpital’s rule as 2a/(x2�a2). Equations of this kind with
definite integration limits and bounded kernels are known as Fredholm integral

equations

10.
However, the identity of kernel and range of integration in equations (32.45,

32.46) permits a more direct approach. Multiplying (32.46) by ı and adding
the result to (32.45), we find that both equations are contained in the complex
equation

g(x) +
ı�

⇡

Z a

�a

g(t)dt

(x� t)
=

2(1� �2)
⇡

(C + ıSx) , (32.48)

where g(x) ⌘ g
1

(x) + ıg
3

(x). Furthermore, this equation can be inverted ex-
plicitly11 in the form of an integral of the right-hand side, leading to a closed-
form solution for g(x). The tractions at the interface can then be recovered
by separating g(x) into its real and imaginary parts and substituting into the
expressions

�zr =
1

(1� �2)
d

dr

Z a

0

g
1

(t)dtp
r2 � t2

; z = 0, r > a (32.49)

�zz = � 1
(1� �2)r

d

dr

Z a

0

tg
3

(t)dtp
r2 � t2

; z = 0, r > a . (32.50)

32.3.2 Oscillatory singularities

An asymptotic analysis of the integrals (32.49, 32.50) at r=a+s, s⌧a, shows
that they have the form

�zz + ı�zr = SK
⇣ s

2a

⌘� 1
2+ı✏

+ O(1) (32.51)

= SK
⇣ s
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⌘� 1
2
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⇣

✏ ln
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⌘

+ ı sin
⇣

✏ ln
s
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⌘i

+ O(1) ,

(32.52)

where
✏ =

1
2⇡

ln
✓

1 + �

1� �

◆

(32.53)

10 F.G.Tricomi, Integral Equations, Interscience, New York, 1957, Chapter 2.
11 N.I.Muskhelishvili, Singular Integral Equations, (English translation by

J.R.M.Radok, Noordho↵, Groningen, 1953)
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and Kassir and Bregman12 have found the complex constant K to be

K =
1p
⇡

� (2 + ı✏)
� ( 1

2

+ ı✏)
. (32.54)

Equation (32.52) shows that the stresses are square-root singular at the
crack tip, but that they also oscillate with increasing frequency as r approaches
a and ln(s/2a)!�1. This behaviour is common to all interface crack prob-
lems for which � 6=0 and can be predicted from an asymptotic analysis similar
to that of §11.2.2, from which a complex leading singular eigenvalue �= 1

2

±ı✏
is obtained.

32.4 The contact solution

A more disturbing feature of this behaviour is that the crack opening dis-
placement, (uz1

(r, 0)�uz2

(r, 0)), also oscillates as r!a� and hence there are
infinitely many regions of interpenetration of material near the crack tip.

This di�culty was first resolved by Comninou13 for the case of the plane
crack, by relaxing the superficially plausible assumption that the crack will be
fully open and hence have traction-free faces in a tensile field, using instead the
more rigorous requirements of frictionless unilateral contact — i.e. permitting
contact to occur, the extent of the contact zones (if any) to be determined
by the inequalities (29.11, 29.12). She found that a very small contact zone
is established adjacent to each crack tip, the extent of which is of the same
order of magnitude as the zone in which interpenetration is predicted for the
original ‘open crack’ solution. At the closed crack tip, only the shear stresses in
the bonded region are singular, leading to a ‘mode II’ (shear) stress intensity
factor, by analogy with equation (13.45). However, the contact stresses show
a proportional compressive singularity in r!a�. Both singularities are of the
usual square-root form, without the oscillatory character of equations (32.52).

Solutions have since been found for other interface crack problems with
contact zones, including the plane crack in a combined tensile and shear field14.
These original solutions of the interface crack problem used numerical meth-
ods to solve the resulting integral equation, but more recently an analytical
solution has been found by Gautesen and Dundurs15.
12 M.K.Kassir and A.M.Bregman, The stress-intensity factor for a penny-shaped

crack between two dissimilar materials, ASME Journal of Applied Mechanics,
Vol. 39 (1972), pp.308–310.

13 M.Comninou, The interface crack, ASME Journal of Applied Mechanics, Vol. 44
(1977), pp.631–636.

14 M.Comninou and D.Schmueser, The interface crack in a combined tension-
compression and shear field, ASME Journal of Applied Mechanics, Vol. 46 (1979),
pp.345–358.

15 A.K.Gautesen and J.Dundurs, The interface crack in a tension field, ASME Jour-
nal of Applied Mechanics, Vol. 54 (1987), pp.93–98; A.K.Gautesen and J.Dundurs,
The interface crack under combined loading, ibid., Vol. 55 (1988), pp.580–586.
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The problem of §32.3 — the penny-shaped crack in a tensile field — was
solved in a unilateral contact formulation by Keer et al.

16. They found a small
annulus of contact b<r<a adjacent to the crack tip. In fact, the formulation
of §32.3 is easily adapted to this case. We note that the crack opening dis-
placement must be zero in the contact zone, so the range of equation (32.32) is
extended inwards to b<r, whilst (32.31) — setting the total normal tractions
at the interface to zero — now only applies in the open region of the crack
0r<b. This can be accommodated by replacing a by b in the definitions of
�

3

, so that (32.38, 32.39) are replaced by
Z r

0

g
1

(t)dtp
r2 � t2

+ �
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r
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3

(t)dtp
t2 � r2

= (1� �2)C ; 0  r < a (32.55)
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r
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= (1� �2)S ; 0  r < b , (32.56)

and (32.45, 32.46) by

g
1

(x) =
�

⇡
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�b
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3

(t)dt

(x� t)
+

2C(1� �2)
⇡

; �a < x < a (32.57)

g
3

(x) = ��
⇡

Z a

�a

g
1

(t)dt

(x� t)
+

2S(1� �2)x
⇡

; �b < x < b . (32.58)

The di↵erence in range in the integrals in (32.57, 32.58) now prevents us
from combining them in a single complex equation, but it is still possible
to develop a Fredholm equation in either function17 by substitution, as in
equation (32.47).

32.5 Implications for Fracture Mechanics

When an interface crack is loaded in tension, the predicted contact zones are
very much smaller than the crack dimensions and it must therefore be possible
to characterize all features of the local crack-tip fields, including the size of the
contact zone, in terms of features of the elastic field further from the crack tip,
where the open and contact solutions are essentially indistinguishable. Hills
and Barber18 have used this argument to derive the contact solution from the
simpler ‘open-crack’ solution for a plane crack loaded in tension.
16 L.M.Keer, S.H.Chen and M.Comninou, The interface penny-shaped crack recon-

sidered, International Journal of Engineering Science, Vol. 16 (1978), pp.765–772.
17 The best choice here is to eliminate g1(x), since the opposite choice will lead to

an integral equation on the range �a<x<a, which might have discontinuities in
at the points x =±b. These could cause problems with convergence in the final
numerical solution.

18 D.A.Hills and J.R.Barber, Interface cracks, International Journal of Mechanical
Sciences, Vol. 35 (1993), pp.27–37.
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The contact zones may also be smaller than the fracture process zone de-
fined in §13.3.1, in which case the conditions for fracture must also be capable
of characterization in terms of the open-crack asymptotic field. If the Gri�th
fracture criterion applies, fracture will occur when the strain energy release
rate G of §13.3.3 exceeds a critical value for the material. For a homogeneous
material under in-plane loading, the energy release rate is given by equation
(13.56) and is proportional to K2

1

+K2

II . For the open solution of the inter-
face crack, the oscillatory behaviour prevents the stress intensity factors being
given their usual meaning, but the energy release rate depends on the asymp-
totic behaviour of �2

zr +�2

zz, which is non-oscillatory. The contact solution
gives almost the same energy release rate, as indeed it must do, since the two
solutions only di↵er in a very small region at the tip.

Experiments with homogeneous materials show that the energy release
rate required for fracture varies significantly with the ratio KII/KI , which is
referred to as the mode mixity

19. This is probably more indicative of our over-
idealization of the crack geometry than of any limitation on Gri�th’s theory,
since real cracks are seldom plane and the attempt to shear them without
significant opening will probably lead to crack face contact and consequent
frictional forces.

It is di�cult to extend the concept of mode mixity to the open interface
crack solution, since, for example, the ratio �zr/�zz passes through all values,
positive and negative, in each cycle of oscillation. However, the change in the
ratio with s is very slow except in the immediate vicinity of the crack tip,
leading Rice20 to suggest that some specific distance from the tip be agreed
by convention at which the mode mixity be defined.

An interesting feature of the asymptotics of the open solution is that, in
contrast to the case � = 0 (including the crack in a homogeneous material),
all possible fields can be mapped into each other by a change in length scale
and in one linear multiplier (e.g. the square root of the energy release rate).
Thus, an alternative way of characterizing the conditions at the tip for fracture
experiments would be in terms of the energy release rate and a characteristic
length, which could be taken as the maximum distance from the tip at which
the open solution predicts interpenetration. Conditions approach most closely
to the classical mode I state when this distance is small.

It must be emphasised that these arguments are all conditional upon the
characteristic length being small compared with all the other dimensions of
the system, including the anticipated process zone dimension. If this condition
is not satisfied, it is essential to use the unilateral contact formulation.

19 See for example, H.A.Richard, Examination of brittle fracture criteria for over-
lapping mode I and mode II loading applied to cracks, in G.C.Sih, E.Sommer and
W.Dahl, eds., Application of Fracture Mechanics to Structures, Martinus Nijho↵,
The Hague, 1984, pp.309–316.

20 J.R.Rice, Elastic fracture mechanics concepts for interfacial cracks, ASME Jour-
nal of Applied Mechanics, Vol. 55 (1988), pp.98–103.
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VARIATIONAL METHODS

Energy or variational methods have an important place in Solid Mechan-
ics both as an alternative to the more direct method of solving the governing
partial di↵erential equations and as a means of developing convergent approx-
imations to analytically intractable problems. They are particularly useful in
situations where only a restricted set of results is required — for example, if
we wish to determine the resultant force on a cross-section or the displacement
of a particular point, but are not interested in the full stress and displacement
fields. Indeed, such results can often be obtained in closed form for problems
in which a solution for the complete fields would be intractable.

From an engineering perspective, it is natural to think of these methods
as a consequence of the principle of conservation of energy or the first law of
thermodynamics. However, conservation of energy is in some sense guaranteed
by the use of Hooke’s law and the equilibrium equations. Once these physical
premises are accepted, the energy theorems we shall present here are purely
mathematical consequences. Indeed, the finite element method, which is one
of the more important developments of this kind, can be developed simply by
applying arguments from approximation theory (such as a least-squares fit) to
the governing equations introduced in previous chapters. For this reason, these
techniques are now more often referred to as Variational Methods, meaning
that instead of seeking to solve the governing partial di↵erential equations
directly, we seek to define a scalar function of the physical parameters which

variations about the solution.
In this chapter, we shall introduce only the principal theorems of this kind

and indicate some of their applications1. We shall present most of the deriva-
tions in the context of general anisotropy, using the index notation of §1.1.2,
1 For a more comprehensive review of variational methods in elasticity, the reader is

referred to S.G.Mikhlin, Variational Methods in Mathematical Physics, Pergamon,
New York, 1964 and S.P.Timoshenko and J.N.Goodier, loc. cit., Chapter 8.
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is stationary (generally maximum or minimum) in respect to infinitesimal
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since this leads to a more compact presentation as well as demonstrating the
generality of the results.

33.1 Strain energy

When a body is deformed, the external forces move through a distance asso-
ciated with the deformation and hence do work. The fundamental premise of
linear elasticity is that the deformation is linearly proportional to the load,
so if the load is now removed, the deformation must pass through the same
sequence of states as it did during the loading phase. It follows that the work
done during loading is exactly recovered during unloading and must therefore
be stored in the deformed body as strain energy.

Suppose that the body ⌦ with boundary � is subjected to a body force
distribution pi and boundary tractions ti = �ijnj (1.21), where nj defines a
unit vector in the direction of the local outward normal to � . If the loads are
applied su�ciently slowly for inertia e↵ects to be negligible2, and if the final
elastic displacements are ui, the stored strain energy U in the body in the
loaded state will be equal to the work W done by the external forces during
loading, which is

U = W =
1
2

Z Z Z

⌦

piuid⌦ +
1
2

Z Z

�

tiuid� . (33.1)

33.1.1 Strain energy density

The same principle can be applied to determine the strain energy in an in-
finitesimal rectangular element of material subjected to a uniform state of
stress �ij . We conclude that the strain energy density — i.e. the strain energy
stored per unit volume — is given by

U
0

=
1
2
�ijeij . (33.2)

Substituting for the stress or strain components from the generalized Hooke’s
law (1.55, 1.57), we obtain the alternative expressions

U
0

=
1
2
cijkleijekl =

1
2
cijkl

@ui

@xj

@uk

@xl
=

1
2
sijkl�ij�kl . (33.3)

Notice incidentally that U
0

must be positive for all possible states of stress
or deformation and this places some inequality restrictions on the elasticity
tensors cijkl, sijkl.
2 This implies that the stress field is always quasi-static in the sense of Chapter 7

and hence that all the work done by the external loads appears as elastic strain
energy in the body, rather than partially as kinetic energy.
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If the material is isotropic, these expressions reduce to

U
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=
1
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h
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xx + �2

yy + �2

zz

�� 2⌫(�yy�zz + �zz�xx + �xx�yy)
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⌫e2

(1� 2⌫)
+ e2

xx + e2

yy + e2

zz + 2e2

yz + 2e2

zx + 2e2

xy

�

. (33.4)

33.2 Conservation of energy

The strain energy U stored in the entire body ⌦ can be obtained by summing
that stored in each of its individual particles, giving

U =
Z Z Z

⌦

U
0

d⌦ . (33.5)

This expression and equation (33.1) must clearly yield the same result and
hence

1
2

Z Z Z

⌦

piuid⌦ +
1
2

Z Z

�

tiuid� =
Z Z Z

⌦

U
0

d⌦ . (33.6)

This argument appeals to the principle of conservation of energy, but this
principle is implicit in Hooke’s law, which guarantees that the loading is re-
versible. Thus, (33.6) can be derived from the governing equations of elasticity
without explicitly invoking conservation of energy. To demonstrate this, we
first substitute (1.21) into the second term on the left-hand side of (33.6) and
apply the divergence theorem, obtaining

1
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@ui

@xj
d⌦ . (33.8)

Finally, we use the equilibrium equation (2.5) in the first term on the right-
hand side of (33.8) and Hooke’s law (1.57) in the second term to obtain

1
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Z Z

�

tiuid� = �1
2

Z Z Z

⌦

piuid⌦ +
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2

Z Z Z

⌦
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d⌦ , (33.9)

from which (33.6) follows after using (33.2) in the last term.

33.3 Potential energy of the external forces

We can also construct a potential energy of the external forces which we de-
note by V . The reader is no doubt familiar with the concept of potential
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energy as applied to gravitational forces, but the definition can be extended
to more general force systems as the work that the forces would do if they were

allowed to return to their reference positions. For a single concentrated force
F displaced through u this is defined as

V = �F · u = �Fiui . (33.10)

It follows by superposition that the potential energy of the boundary tractions
and body forces is given by

V = �
Z Z

�t

tiuid� �
Z Z Z

⌦

piuid⌦ , (33.11)

where �t is that part of the boundary over which the tractions are prescribed.
We can then define the total potential energy ⇧ as the sum of the stored strain
energy and the potential energy of the external forces — i.e.

⇧ = U + V =
1
2

Z Z Z
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(33.12)

33.4 Theorem of minimum total potential energy

Suppose that the displacement field ui satisfies the equilibrium equations
(2.13) for a given set of boundary conditions and that we then perturb this
state by a small variation �ui. The corresponding perturbation in ⇧ is

�⇧ =
Z Z Z
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@�ui
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@xl
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Z Z
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ti�uid� �
Z Z Z
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pi�uid⌦ , (33.13)

from (33.12). Notice that �ui =0 in any region �u of � in which the displace-
ment is prescribed and hence the domain of integration �t in the second term
on the right-hand side of (33.12) can be replaced by � =�u+�t.

Substituting for ti from (1.21) into the second term on the right-hand side
of (33.13) and then applying the divergence theorem, we have
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=
Z Z Z

⌦

@�ij

@xj
�uid⌦ +

Z Z Z

⌦

@�ui

@xj
�ijd⌦ . (33.14)

Finally, using the equilibrium equation (2.5) in the first term and Hooke’s law
(1.57) in the second, we obtain

Z Z

�

ti�uid� = �
Z Z Z

⌦

pi�uid⌦ +
Z Z Z

⌦

cijkl
@�ui

@xj

@uk

@xl
d⌦ , (33.15)
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and comparing this with (33.13), we see that �⇧ = 0. In other words, the
equilibrium equation requires that the total potential energy must be station-
ary with regard to any kinematically admissible3 small variation �ui in the
displacement field ui, or

@⇧

@ui
= 0 . (33.16)

A more detailed second order analysis shows that the total potential energy
must in fact be a minimum and this is intuitively reasonable, since if some
variation �ui from the equilibrium state could be found which reduced ⇧, the
surplus energy would take the form of kinetic energy and the system would
therefore generally accelerate away from the equilibrium state. However, we
emphasise that the above derivation of equation (33.16) makes no appeal to
the principle of conservation of energy.

33.5 Approximate solutions — the Rayleigh-Ritz method

We remarked in Chapter 2 that the problem of elasticity is to determine
a stress field satisfying appropriate boundary conditions such that (i) the
stresses satisfy the equilibrium equations (2.5) and (ii) the corresponding elas-
tic strains satisfy the compatibility conditions (2.10). The compatibility con-
ditions can be satisfied by defining the problem in terms of the displacements
ui and we have just shown that the equilibrium equations are equivalent to the
principal of minimum total potential energy. Thus, an alternative formulation
is to seek a kinematically admissible displacement field ui such that the total
potential energy ⇧ is a minimum.

This approach is particularly useful as a method of generating approxi-
mate solutions to problems that might otherwise be analytically intractable.
Suppose that we approximate the displacement field in the body by the finite
series

ui(x1

, x
2

, x
3

) =
n
X

k=1

Akf (k)

i (x
1

, x
2

, x
3

) , (33.17)

where the f (k)

i are a set of approximating functions and Ak are arbitrary con-
stants constituting the degrees of freedom in the approximation. The f (k)

i must
be continuous and single-valued and must also be chosen to satisfy any dis-
placement boundary conditions of the problem, but are otherwise unrestricted
as to form.

We can then substitute (33.17) into (33.12) and perform the integrals over
⌦, obtaining the total potential energy as a quadratic function of the Ak. The
theorem (33.16) demands that
3 i.e. any perturbation that is a continuous function of position within the body

and is consistent with the displacement boundary conditions.
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@⇧

@Ak
= 0 ; k = 1, n , (33.18)

which defines n linear equations for the n unknown degrees of freedom Ak. The
corresponding stress components can then be found by substituting (33.17)
into Hooke’s law (1.57).

If the approximating functions f (k)

i are defined over the entire body ⌦,
this typically leads to series solutions (e.g. power series or Fourier series) and
the method is known as the Rayleigh-Ritz method. It is particularly useful in
structural mechanics applications such as beam problems, where the displace-
ment is a function of a single spatial variable, but it can also be applied (e.g.)
to the problem of a rectangular plate, using double Fourier series or power
series.

Example

To illustrate the method, we consider the problem of a rectangular plate �a<
x < a,�b < y < b which makes frictionless contact with fixed rigid planes at
y=±b and which is loaded by compressive tractions

�xx(±a, y) = �Sy2

b2

at x=±a. The problem is symmetric about both axes, so ux must be odd in
x and even in y, whilst uy is even in x and odd in y. Also, the displacement
boundary condition requires that uy = 0 at y =±b. The most general third
order polynomial approximation satisfying these conditions is

ux = A
1

x3 + A
2

xy2 + A
3

x ; uy = A
4

(b2 � y2)

and the corresponding strains are

exx =
@ux

@x
= 3A

1

x2 + A
2

y2 + A
3

eyy =
@uy

@y
= �2A

4

y

exy =
1
2

✓

@uy

@x
+
@ux

@y

◆

= A
2

xy .

Substituting these results into (33.4) and then evaluating the integral (33.5),
we obtain

U =
Z b

�b

Z a

�a

U
0

(x, y)dxdy =
4µab(1� ⌫)
15(1� 2⌫)

h

(27A2

1

a4 + 3A2

2

b4 + 15A2

3

+ 20A2

4

b2

+ 10A
2

A
3

b2 + 30A
1

A
3

a2 + 10A
1

A
2

a2b2)
i

+
8µA2

2

a3b3

9
.
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The potential energy of the tractions on the boundaries x = ±a is

V = 2
Z b

�b

Sy2(A
1

a3 + A
2

ay2 + A
3

a)
b2

dy = 4Sab

✓

A
1

a2

3
+

A
2

b2

5
+

A
3

3

◆

,

where the factor of 2 results from there being identical expressions for each
boundary. Calculating ⇧=U +V and imposing the condition (33.18) for each
degree of freedom Ai, i=1, 4, we obtain four linear equations whose solution
is

A
1

= 0 ; A
2

= � S(1� 2⌫)
µ[5(1� 2⌫)a2 + 2(1� ⌫)b2]

A
3

= � 5Sa2(1� 2⌫)2

6µ(1� ⌫)[5(1� 2⌫)a2 + 2(1� ⌫)b2]
; A

4

= 0 .

Rayleigh-Ritz solutions are conceptually straightforward, but they tend to
generate lengthy algebraic expressions, as illustrated in this simple example.
However, this is no bar to their use provided the algebra is performed in
Mathematica or Maple. Also, if Fourier series are used in place of power series,
the orthogonality of the corresponding integrals will often lead to significant
simplifications.

However, if high accuracy is required it is often more e↵ective to use a set
of piecewise continuous functions for the f (k)

i (x
1

, x
2

, x
3

) of equation (33.17).
The body is thereby divided into a set of elements and the displacement
in each element is described by one or more shape functions multiplied by
degrees of freedom Ak. Typically, the shape functions are defined such that
the Ak represent the displacements at specified points or nodes within the
body and the f (k)

i are zero except in those elements contiguous to node k.
They must also satisfy the condition that the displacement be continuous
between one element and the next for all Ak. Once the approximation is
defined, equation (33.18) once again provides n linear equations for the n
nodal displacements. This is the basis of the finite element method

4. Since the
theorem of minimum total potential energy is itself derivable from Hooke’s law
and the equilibrium equation, an alternative derivation of the finite element
method can be obtained by applying approximation theory directly to these
equations. To develop a set of n linear equations for the Ak, we substitute
the approximate form (33.17) into the equilibrium equations, multiply by n
weight functions, integrate over the domain ⌦ and set the resulting n linear
functions of the Ak to zero. The resulting equations will be identical to (33.18)
if the weight functions are chosen to be identical to the shape functions.
4 For more detailed discussion of the finite element method, see O.C.Zienkiewicz,

The Finite Element Method, McGraw-Hill, New York, 1977, K.J.Bathe, Finite
Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cli↵s, NJ,
1982, T.J.R.Hughes, The Finite Element Method, Prentice Hall, Englewood Cli↵s,
NJ, 1987.
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33.6 Castigliano’s second theorem

The strain energy U can be written as a function of the stress components,
using the final expression in (33.3). We obtain

U =
1
2

Z Z Z

⌦

sijkl�ij�kld⌦ . (33.19)

We next consider the e↵ect of perturbing the stress field by a small variation
��ij , chosen so that the perturbed field �ij +��ij still satisfies the equilibrium
equation (2.5) — i.e.

@�ij

@xj
+ pi = 0 and

@

@xj
(�ij + ��ij) + pi = 0 . (33.20)

The corresponding perturbation in U will be

�U =
Z Z Z

⌦

sijkl�kl��ijd⌦ =
Z Z Z

⌦

@ui

@xj
��ijd⌦ . (33.21)

The divergence theorem gives
Z Z

�

ui��ijnjd� =
Z Z Z

⌦

@

@xj
(ui��ij) d⌦

=
Z Z Z

⌦

@ui

@xj
��ijd⌦ +

Z Z Z

⌦

@��ij

@xj
uid⌦ (33.22)

and by taking the di↵erence between the two equations (33.20), we see that
the second term on the right-hand side must be zero. Using (33.21, 33.22) and
��ijnj =�ti, we then have

�U =
Z Z

�u

ui��ijnjd� =
Z Z

�u

ui�tid� , (33.23)

where the integral is taken only over that part of the boundary �u in which
displacement ui is prescribed, since no perturbation in traction is permitted
in �t where ti is prescribed. It follows that the complementary energy

C = U �
Z Z

�u

uitid� (33.24)

must be stationary with respect to all self-equilibrated variations of stress
��ij , or

@C

@�ij
= 0 . (33.25)

This is Castigliano’s second theorem. It enables us to state a second alterna-
tive formulation of the elasticity problem as the search for a state of stress
satisfying the equilibrium equation (2.5), such that the complementary en-
ergy C is stationary. It is interesting to note that the theorem of minimum
potential energy and Castigliano’s second theorem each substitutes for one of
the two conditions equilibrium and compatibility identified in Chapter 2.
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33.7 Approximations using Castigliano’s second theorem

We recall that both the Airy stress function of Chapters 5–13 and the Prandtl
stress function of Chapters 15–17 satisfy the equilibrium equations identically.
In fact, these representations define the most general states of in-plane and
antiplane stress respectively that satisfy the equilibrium equations without
body force. Thus, if we describe the solution in terms of such a stress func-
tion, Castigliano’s second theorem reduces the problem to the search for a
stress function satisfying the boundary conditions and equation (33.25). This
leads to a very e↵ective approximate method for both in-plane and antiplane
problems in which the stress function � is represented in the form

�(x, y) =
n
X

k=1

Akfk(x, y) , (33.26)

by analogy with (33.17). Also, the traction boundary conditions can generally
be fairly easily satisfied by (33.26), making use of the mathematical descrip-
tion of the boundary line � . We shall start the discussion by considering
the torsion problem of Chapter 16, for which this procedure is particularly
straightforward. We shall then adapt it for the in-plane problem in §33.7.2.

33.7.1 The torsion problem

If the torsion problem is described in terms of Prandtl’s stress function ',
the traction-free boundary condition for a simply connected region ⌦ can be
satisfied by requiring that '=0 on the boundary � . Suppose this boundary
is defined by a set of m line segments fi(x, y) = 0, i = 1,m. Then the stress
function

' = f
1

(x, y)f
2

(x, y)...fm(x, y)g(x, y) (33.27)

will go to zero at all points on � for any function g(x, y). We can therefore
choose a function g(x, y) with an appropriate number of arbitrary constants
Ak, k=1, n and then use Castigliano’s second theorem to develop n equations
for the n unknowns. For example, the equations x = 0 and x2 +y2�a2 = 0
define the boundaries of a semicircular bar of radius a whose centre is at the
origin. Thus, the stress function

' = x(x2 + y2 � a2)(A
1

+ A
2

x) (33.28)

satisfies the traction-free condition at all points on the boundary and contains
two degrees of freedom, A

1

, A
2

.
Once a function with an appropriate number of degrees of freedom has

been chosen, we calculate the stress components

�zx =
@'

@y
; �zy = �@'

@x
, (33.29)
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from (16.8) and hence the strain energy density from (33.4), which in this case
reduces to

U
0

=
�2

zx + �2

zy

2µ
=

1
2µ

"

✓

@'

@x

◆

2

+
✓

@'

@y

◆

2

#

. (33.30)

The torque corresponding to this stress distribution is given by equation
(16.14) as

T = 2
Z Z

⌦

'd⌦ (33.31)

and hence the complementary energy per unit length of bar is

C =
Z Z

⌦

U
0

d⌦ � T�

=
1
2µ

Z Z

⌦

"

✓

@'

@x

◆

2

+
✓

@'

@y

◆

2

� 4µ�'

#

d⌦ , (33.32)

where � is the twist per unit length. Substitution in (33.25) then provides a
set of equations for the unknown constants Ak.

Example

To illustrate the method, we consider a bar of square cross-section defined
by �a < x < a, �a < y < a. The boundaries are defined by the four lines
x± a=0, y ± a=0 and the simplest function of the form (33.27) is

' = A(x2 � a2)(y2 � a2) , (33.33)

which has just one degree of freedom — the multiplying constant A. Substi-
tuting into equation (33.32) and evaluating the integrals, we have

C =
1
2µ



256A2a8

45
� 64µ�Aa6

9

�

. (33.34)

To determine A, we impose the condition

@C

@A
= 0 giving A =

5µ�

8a2

, (33.35)

after which the torque is recovered from (33.31) as

T =
20µ�a4

9
. (33.36)

The exact result can be obtained by substituting b = a in equation (16.50)
and summing the series. The present one-term approximation underestimates
the exact value by only about 1.3%. Closer approximations can be obtained
by adding a few extra degrees of freedom, preserving the symmetry of the
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system with respect to x and y. For example, Timoshenko and Goodier5 give
a solution of the same problem using the two degree of freedom function

' = (x2 � a2)(y2 � a2)[A
1

+ A
2

(x2 + y2)] ,

which gives a result for the torque within 0.15% of the exact value.

33.7.2 The in-plane problem

We showed in Chapter 4 that the most general in-plane stress field satisfying
the equations of equilibrium (2.5) in the absence of body force can be expressed
in terms of the scalar Airy stress function � through the relations

�xx =
@2�

@y2

; �xy = � @2�

@x@y
; �yy =

@2�

@x2

. (33.37)

We also showed in §4.4.3 that the traction boundary-value problem — i.e. the
problem of a two-dimensional body with prescribed tractions on the bound-
aries — has a solution in which the stress components are independent of
Poisson’s ratio. We can therefore simplify the following treatment by consid-
ering the special case of plane stress (�zx =�zy =�zz =0) with ⌫=0 for which
equation (33.4:i) reduces to

U
0

=
�

�2

xx + �2

yy

�

4µ
+
�2

xy

2µ

=
1
4µ

"

✓

@2�

@x2

◆

2

+
✓

@2�

@y2

◆

2

+ 2
✓

@2�

@x@y

◆

2

#

. (33.38)

We express the trial stress function � in the form

� = �P + �H , (33.39)

where �P is any particular function of x, y that satisfies the traction boundary
conditions and �H is a function satisfying homogeneous (i.e. traction-free)
boundary conditions and that contains one or more degrees of freedom Ak.
The stress components (33.37) will define a traction-free boundary if

� = 0 and
@�

@n
= 0 , (33.40)

on the boundary, where n is the local normal. In order to satisfy these con-
ditions, we note that if fi(x, y) = 0 defines a line segment that is part of
the boundary � , and if fi is a continuous function in the vicinity of the line
segment, then we can perform a Taylor expansion about any point on the
5 loc. cit. Art.111.
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boundary. It then follows that the function [fi(x, y)]2 will satisfy both con-
ditions (33.40), since the first non-zero term in its Taylor expansion at the
boundary will be quadratic. Thus, the conditions on �H can be satisfied by
defining

�H = [f
1

(x, y)f
2

(x, y)...fm(x, y)]2 g(x, y) (33.41)

where fi(x, y) = 0 i = 1,m define line segments comprising the boundary �
and g(x, y) is any function containing one or more degrees of freedom.

Example

Consider the semicircular plate of Figure 33.1 subjected to the self-equilibrated
tractions

�xx = S

✓

1� 3y2

a2

◆

on the straight boundary x=0, the curved boundary r2�a2 =x2 +y2�a2 =0
being traction-free.

Figure 33.1: The semi-circular plate.

A particular solution maintaining the traction-free condition on the circle
can be written

�P = A(r2 � a2)2 = A(x4 + y4 + 2x2y2 � 2a2x2 � 2a2y2 + a4) .

The stress components

�xx =
@2�P

@y2

= A(12y2 + 4x2 � 4a2) ; �xy = �@
2�P

@x@y
= �8Axy

and on the boundary x=0,

�xx = 4A(3y2 � a2) ; �xy = 0 .

Thus, the boundary conditions can be satisfied by the choice

O

a

x

y
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A = � S

4a2

; �P = � S

4a2

(r2 � a2)2 .

Notice that if the tractions on x=0 had been higher order polynomials in y,
we could have found an appropriate particular solution satisfying the traction-
free condition on the curved edge using the form �P =(r2�a2)2g(x, y), where
g(x, y) is a polynomial in x, y of appropriate order.

The stress function �P provides already a first order approximation to the
stress field, but to improve it we can add the homogeneous term

�H = A
1

x2(r2 � a2)2 =
A

1

r2(r2 � a2)2(1 + cos 2✓)
2

,

which satisfies traction-free conditions on both straight and curved boundaries
in view of (33.41). The stress components in polar coördinates are

�rr = S

✓

1� r2

a2

◆

+ A
1

(3r4 � 4a2r2 + a4) + A
1

(r4 � a4) cos 2✓

�✓✓ = S

✓

1� 3r2

a2

◆

+ A
1

(15r4 � 12a2r2 + a4)(1 + cos 2✓) (33.42)

�r✓ = A
1

(5r4 � 6a2r2 + a4) sin 2✓

from (8.12, 8.13) and the total strain energy is then calculated as

U =
1
4µ

Z ⇡/2

�⇡/2

Z a

0

�

�2

rr + �2

✓✓ + 2�2

r✓

�

rdrd✓

=
⇡a2

30µ

�

14a8A2

1

� 5a4A
1

S + 5S2

�

(using Mathematica or Maple). There are no displacement boundary condi-
tions in this problem, so C = U and the degree of freedom A

1

is determined
from the condition

@C

@A
1

= 0 or A
1

=
5S

28a4

,

after which the stress field is recovered by substitution in (33.42).

33.8 Uniqueness and existence of solution

A typical elasticity problem can be expressed as the search for a displacement
field u satisfying the equilibrium equations (2.13), such that the stress com-
ponents defined through equations (1.57) and the displacement components
satisfy appropriate boundary conditions. Throughout this book, we have tac-
itly assumed that this is a well-posed problem — i.e. that if the problem is
physically well defined in the sense that we could conceive of loading a body
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of the given geometry in the laboratory, then there exists one and only one
solution.

To examine this question from a mathematical point of view, suppose
provisionally that the solution is non-unique, so that there exist two distinct
stress fields �

1

, �
2

, both satisfying the field equations and the same boundary
conditions. We can then construct a new stress field ��=�

1

� �
2

by taking
the di↵erence between these fields, which is a form of linear superposition.
The new field �� clearly involves no external loading, since the same external
loads were included in each of the constituent solutions ex hyp. We therefore
conclude from (33.1) that the corresponding total strain energy U associated
with the field �� must be zero. However, U can also be written as a volume
integral of the strain energy density U

0

as in (33.5), and U
0

must be everywhere
positive or zero. The only way these two results can be reconciled is if U

0

is zero
everywhere, implying that the stress is everywhere zero, from (33.3). Thus,
the di↵erence field �� is null, the two solutions must be identical contra hyp.

and only one solution can exist to a given elasticity problem.
The question of existence of solution is much more challenging and will not

be pursued here. A short list of early but seminal contributions to the subject
is given by Sokolniko↵ 6 who states that “the matter of existence of solutions
has been satisfactorily resolved for domains of great generality.” More recently,
interest in more general continuum theories including non-linear elasticity has
led to the development of new methodologies in the context of functional
analysis7.

33.8.1 Singularities

In §11.2.1, we argued that stress singularities are acceptable in the mathemat-
ical solution of an elasticity problem if and only if the strain energy in a small
region surrounding the singularity is bounded. In the two-dimensional case
(line singularity), this leads to equation (11.37) and hence to the conclusion
that the stresses can vary with ra as r!0 only if a>�1. We can now see the
reason for this restriction, since if there were any points in the body where
the strain energy was not integrable, the total strain energy (33.5) would be
ill-defined and the above proof of uniqueness would fail.

If these restrictions on the permissible strength of singularities are not im-
posed, the uniqueness theorem fails and it is quite easy to generate examples in
which a given set of boundary conditions permits multiple solutions. Consider
the flat punch problem of §12.5.2 for which the contact pressure distribution
is given by equation (12.47). If we di↵erentiate the stress and displacement
fields with respect to x, we shall generate a field in which the contact traction
is
6 I.S.Sokolniko↵, Mathematical Theory of Elasticity, McGraw-Hill, New York,

2nd.ed. 1956, §27.
7 See for example, J.E.Marsden and T.J.R.Hughes, Mathematical Foundations of

Elasticity, Prentice-Hall, Englewood Cli↵s, 1983, Chapter 6.
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p(x) =
d

dx

✓

� F

⇡
p

a2 � x2

◆

= � Fx

⇡(a2 � x2)3/2

; �a < x < a

and the normal surface displacement is

uy(x, 0) =
d

dx
(C) = 0 , ; �a < x < a

from (12.46). The traction-free condition is retained in |x|>a, y =0. We can
now add this di↵erentiated field to the solution of any frictionless contact
problem over the contact region �a<x<a without a↵ecting the satisfaction
of the displacement boundary condition (12.29), so solutions of such problems
become non-unique. However, the superposed field clearly involves stresses
varying with r3/2 near the singular points (±a, 0) and if (non-integrable) sin-
gularities of this strength are precluded, uniqueness is restored.

The three-dimensional equivalent of equation (11.37) would involve a stress
field that tends to infinity with Ra as we approach the point R = 0. In this
case, the integral in spherical polar coordinates centred on the singular point
would take the form

U =
1
2

Z

2⇡

0

Z ⇡

0

Z R

0

�ijeijR
2 sin�dRd�d✓ = C

Z R

0

R2a+2dR ,

where C is a constant. This integral is bounded if and only if a > �2.
In both two and three-dimensional cases, the limiting singularity corre-

sponds to that associated with a concentrated force F applied to the body,
either at a point on the boundary or at an interior point. An ‘engineering’
argument can be made that the real loading in such cases consists of a distri-
bution of pressure or body force over a small finite region A, that is statically
equivalent to F , in which case no singularity is involved. Furthermore, a unique
solution is obtained for each member of a regular sequence of such problems
in which A is progressively reduced. Thus, if we conceive of the point force
as the limit of this set of distributions, the uniqueness theorem still applies.
Saint-Venant’s principle §3.1.2 implies that only the stresses close to A will
be changed as A is reduced, so the concentrated force solution also represents
an approximation to the stress field distant from the loaded region when A is
finite. Sternberg and Eubanks8 proposed an extension of the uniqueness the-
orem to cover these cases. Similar arguments can be applied to the stronger
singularity due to a concentrated moment. However, there is now some ambi-
guity in the limit depending on the detailed sequence of finite states through
which it is approached9.
8 E.Sternberg and R.A.Eubanks, On the concept of concentrated loads and an

extension of the uniqueness theorem in the linear theory of elasticity, Journal of
Rational Mechanics and Analysis, Vol. 4 (1955), pp.135–168.

9 E.Sternberg and V.Koiter, The wedge under a concentrated couple: A paradox
in the two-dimensional theory of elasticity, ASME Journal of Applied Mechanics,
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PROBLEMS

1. For an isotropic material, find a way to express the strain energy density U
0

of equation (33.4) in terms of the stress invariants of equations (1.28–1.30).

2. An annular ring a<r <b is loaded by uniform (axisymmetric) shear trac-
tions �r✓ at r=a that are statically equivalent to a torque T per unit thickness.
By considering the equilibrium of the annular region a < r < s where s < b,
find the shear stress �r✓ as a function of radius and hence find the total strain
energy stored in the annulus. Use this result to determine the rotation of the
outer boundary relative to the inner boundary, assuming the material has a
shear modulus µ.

3. The isotropic semi-infinite strip �a < y < a, 0 < x < 1 is attached to
a rigid support at y = ±a, whilst the end x = 0 is subject to the antiplane
displacement

uz(0, y) = u
0

✓

1� y2

a2

◆

.

Since the resulting deformation will decay with x, approximate the displace-
ment in the form

uz(x, y) = u
0

✓

1� y2

a2

◆

e��x

and use the minimum total potential energy theorem to determine the optimal
value of the decay rate �.

4. The rectangular plate �a < x < a,�b < y < b is subject to the tensile
tractions

�xx = S

✓

1� y2

b2

◆

on the edges x = ±a, all the other tractions being zero. Using appropriate
third-order polynomials for the displacement components ux, uy, find an ap-
proximation for the displacement field and hence estimate the distribution of
the stress component �xx on the plane x=0. Comment on the way this result
is a↵ected by the aspect ratio b/a.

5. Use the Maple or Mathematica file ‘uxy’ or the method of §9.1 to find the
displacement field associated with the Airy stress function

� =
G

24
�

(y2 � b2)2 � (x2 � a2)2
�

.

Vol.25 (1958), pp.575–581, X.Markensco↵, Some remarks on the wedge paradox
and Saint Venant’s principle, ASME Journal of Applied Mechanics, Vol.61 (1994),
pp.519–523.
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Using this displacement field, find the value of the single degree of freedom G
that best approximates the stress field in the rectangular bar �a<x<a, �b<
y<b subjected only to the normal tractions

�xx = f(y) ; x = ±a .

6. A simple two-dimensional finite element mesh can be obtained by joining a
series of nodes (xi, yi) i=1, N by straight lines, forming a set of triangular ele-
ments. If the antiplane displacement uz takes the values ui at the three nodes
i=1, 2, 3, develop an expression for a linear function of x, y that interpolates
these nodal values. In other words determine the three constants A,B, C in

uz(x, y) = Ax + By + C

such that uz(xi, yi) = ui for i = 1, 2, 3. Hence determine the strain energy U
stored in the element as a function of ui and use the principle of stationary
potential energy to determine the element sti↵ness matrix k relating the nodal
forces Fi at the nodes to the nodal displacements through the equation

Fi = kijuj .

7. Use a one degree-of-freedom approximation and Castigliano’s second theo-
rem to estimate the twist per unit length � of a bar whose triangular cross-
section is defined by the three corners (0, 0), (a, 0), (0, a) and which is loaded
by a torque T . Also, estimate the location and magnitude of the maximum
shear stress.

8. Using the single degree of freedom stress function

' = Ax(a2 � x2 � y2) ,

estimate the torsional sti↵ness of the semicircular bar of radius a.

9. The rectangular plate �a<x<a,�b<y<b is subject to the tractions

�xx =
Sy2

b2

on the edges x = ±a, all the other tractions being zero. Find an approximate
solution for the stress field using Castigliano’s second theorem. An appropriate
particular solution is

�P =
Sy4

12b2

.

Use a single degree of freedom approximation of the form (33.41) for the
homogeneous solution.
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10. A plate defined by the region a<r<2a, �↵<✓<↵ is loaded only by the
uniform tensile tractions

�rr(a, ✓) =
F

2a↵
; �rr(2a, ✓) =

F

4a↵

on the curved edges r=a, 2a. Find an approximate solution for the stress field
using Castigliano’s second theorem. Use a single degree of freedom approxi-
mation of the form (33.41) for the homogeneous solution �H .
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THE RECIPROCAL THEOREM

in an elastic structure must be equal to the work done by the external loads, if
these are applied su�ciently slowly for inertia e↵ects to be negligible. Equation
(33.1) is based on the premise that the loads are all increased at the same
time and in proportion, but the final state of stress cannot depend on the
exact history of loading and hence the work done W must also be history-
independent. This conclusion enables us to establish an important result for
elastic systems known as the reciprocal theorem.

34.1 Maxwell’s Theorem

The simplest form of the theorem states that if a linear elastic body is kine-
matically supported and subjected to an external force F

1

at the point P ,
which produces a displacement u

1

(Q) at another point Q, then a force F
2

at
Q would produce a displacement u

2

(P ) at P where

F
1

·u
2

(P ) = F
2

·u
1

(Q) . (34.1)

To prove the theorem, we consider two scenarios — one in which the force
F

1 2

is applied slowly and
the other in which the order of application of the forces is reversed. Suppose
that the forces F

1

, F
2

produce the displacement fields u
1

,u
2

, respectively. If
we apply F

1

first, the work done will be

W
11

=
1
2
F

1

·u
1

(P ) . (34.2)

If we now superpose the second force F
2

causing additional displacements u
2

,
the additional work done will be W

12

+W
22

, where

W
12

= F
1

·u
2

(P ) (34.3)
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is applied slowly and then held constant whilst F
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In the previous chapter, we exploited the idea that the strain energy U stored
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is the work done by the loads F
1

‘involuntarily’ moving through the additional
displacement u

2

(P ) and

W
22

=
1
2
F

2

·u
2

(Q) (34.4)

is the work done by the force F
2

. Notice that there is no factor of 1

2

in W
12

,
since the force F

1

remains at its full value throughout the deformation. By
contrast, F

2

only increases gradually to its final value during the loading
process so that the work it does W

22

is the area under a load displacement
curve, which introduces a factor of 1

2

. The total work done in this scenario is

W
1

= W
11

+ W
12

+ W
22

=
1
2
F

1

·u
1

(P ) + F
1

·u
2

(P ) +
1
2
F

2

·u
2

(Q) (34.5)

Consider now a second scenario in which the force F
2

is applied first,
followed by force F

1

. Clearly the total work done can be written down from
equation (34.5) by interchanging the su�ces 1,2 and the locations P,Q — i.e.

W
2

= W
22

+ W
21

+ W
11

=
1
2
F

2

·u
2

(Q) + F
2

·u
1

(Q) +
1
2
F

1

·u
1

(P ) . (34.6)

In each case, since the forces were applied gradually, the work done will be
stored as strain energy in the deformed body. But the final state in each case
is the same, so we conclude that W

1

= W
2

. Comparing the two expressions,
we see that they will be equal if and only if W

12

=W
21

and hence

F
1

·u
2

(P ) = F
2

·u
1

(Q) , (34.7)

proving the theorem. Another way of stating Maxwell’s theorem is “The work

done by a force F
1

moving through the displacements u
2

due to a second force

F
2

is equal to the work done by the force F
2

moving through the displacements

u
1

due to F
1

.”

34.2 Betti’s Theorem

Maxwell’s theorem is useful in Mechanics of Materials, where point forces are
used to represent force resultants (e.g. on the cross-section of a beam), but in
elasticity, the reciprocal theorem is more useful in the generalized form due to
Betti, which relates the displacement fields due to two di↵erent distributions
of surface traction and/or body force.

Suppose that the surface tractions ti and body forces pi produce the dis-
placement fields ui, where i takes the values 1 and 2 respectively. Once again
we consider two scenarios, one in which the loads t

1

,p
1

are applied first, fol-
lowed by t

2

,p
2

and the other in which the order of loading is reversed. An
argument exactly parallel to that in §34.1 then establishes that “The work

done by the loads t
1

,p
1

moving through the displacements u
2

due to t
2

,p
2

is
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equal to the work done by the loads t
2

,p
2

moving through the displacements

u
1

due to t
1

,p
1

.”

The mathematical statement of Betti’s theorem for a body ⌦ with bound-
ary � is
Z Z

�

t
1

·u
2

d� +
Z Z Z

⌦

p
1

·u
2

d⌦ =
Z Z

�

t
2

·u
1

d� +
Z Z Z

⌦

p
2

·u
1

d⌦ . (34.8)

34.3 Use of the theorem

Betti’s theorem defines a relationship between two di↵erent stress and dis-
placement states for the same body. In most applications, one of these states
corresponds to the problem under investigation, whilst the second is an aux-

iliary solution, for which the tractions and surface displacements are known.
Often the auxiliary solution will be a simple state of stress for which the
required results can be written down by inspection.

Figure 34.1: Increase in volume of a body due to two colinear forces.

The art of using the reciprocal theorem lies in choosing the auxiliary solu-
tion so that equation (34.8) yields the required result. For example, suppose
we wish to determine the change in volume of a body ⌦ due to a pair of equal
and opposite colinear concentrated forces, as shown in Figure 34.1(a). Figure
34.1(b) shows an enlarged view of a region of the boundary in the deformed
and undeformed states, from which it is clear that the change in volume as-
sociated with some small region d� of the boundary is dV =u

1

·nd� , where
n is the unit vector defining the outward normal to the surface at d� . Thus,
the change in volume of the entire body is

�V
1

=
Z Z

�

u
1

·nd� . (34.9)

n

undeformed

deformed

dΓ

(b)(a)

A

B

F

F

Ω

u1

n.u1
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Now this expression can be made equal to the right-hand side of (34.8) if
we choose t

2

=n and p
2

=0. In other words, the auxiliary solution corresponds
to the case where the body is subjected to a purely normal (tensile) traction
of unit magnitude throughout its surface and there is no body force.

The solution of this auxiliary problem is straightforward, since the trac-
tions are compatible with an admissible state of uniform hydrostatic tension

�xx = �yy = �zz = 1 ; �xy = �yz = �zx = 0 (34.10)

throughout the body and the resulting strains are uniform and hence satisfy
all the compatibility conditions. The stress-strain relations then give

exx = eyy = ezz =
(1� 2⌫)

E
; exy = eyz = ezx = 0 (34.11)

and hence, in state 2, the body will simply deform into a larger, geometrically
similar shape, any linear dimension L increasing to L(1+(1�2⌫)/E).

It remains to calculate the left-hand side of (34.8), which we recall is the
work done by the tractions t

1

in moving through the surface displacements
u

2

. In this case, t
1

consists of the two concentrated forces, so the appropriate
work is F �

2

, where �
2

is the amount that the length L of the line AB shrinks
in state 2, permitting the points of application of the forces to approach each
other.

From the above argument,

�
2

= � (1� 2⌫)L
E

(34.12)

and hence we can collect results to obtain

�V
1

=
Z Z

�

u
1

·nd� =
Z Z

�

u
1

·t
2

d�

=
Z Z

�

u
2

·t
1

d� = F �
2

= �F (1� 2⌫)L
E

, (34.13)

which is the required expression for the change in volume.
Clearly the same method would enable us to determine the change in

volume due to any other self-equilibrated traction distribution t
1

, either by
direct substitution in the integral

RR

�
u

2

·t
1

d� or by using the force pair of
Figure 34.1(a) as a Green’s function to define a more general distribution
through a convolution integral. It is typical of the reciprocal theorem that it
leads to the proof of results of some generality.

34.3.1 A tilted punch problem

For any given auxiliary solution, Betti’s theorem will yield only a single result,
which can be the value of the displacement at a specific point, or more often, an
integral quantity such as a force resultant or an average displacement. Indeed,
when interest in the problem is restricted to such integrals, the reciprocal
theorem should always be considered first as a possible method of solution.
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Figure 34.2: The tilted punch problem

As a second example, we shall consider the two-dimensional plane stress
contact problem of Figure 34.2, in which a rectangular block with a slightly
irregular surface is pressed down by a frictionless flat rigid punch against a
frictionless rigid plane. We suppose that the force F is large enough to ensure
that contact is established throughout the end of the block and that the
line of action of the applied force passes through the mid-point of the block.
The punch will therefore generally tilt through some small angle, ↵, and the
problem is to determine ↵.

We suppose that the profile of the block is defined by an initial gap function
g
0

(y) when the punch is horizontal and hence, if the punch moves downward
a distance u

0

and rotates clockwise through ↵, the contact condition can be
stated as

g(y) = g
0

(y) + u
1

(y)� u
0

� ↵y = 0 , (34.14)

where u
1

(y) is the downward normal displacement of the block surface, as
shown in Figure 34.3(a). Since the punch is frictionless, the traction t

1

is also
purely normal, as shown.

The key to the solution lies in the fact that the line of action of F , which
is also the resultant of t

1

, passes through the centre of the block. Taking
moments about this point, we therefore have

Z b

�b

yt
1

(y)dy = 0 . (34.15)
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Figure 34.3: Tractions for the original and auxiliary problems for the tilted
punch.

We can make this expression look like the left-hand side of (34.8) by choos-
ing the auxiliary solution so that the normal displacement u

2

(y)=Cy, which
corresponds to a simple bending distribution with

t
2

(y) =
ECy

a
, (34.16)

as shown in Figure 34.3(b).
Betti’s theorem now gives

Z b

�b

ECyu
1

(y)dy

a
=
Z b

�b

Cyt
1

(y)dy = 0 (34.17)

and hence, treating (34.14) as an equation for u
1

(y) and substituting into
(34.17), we obtain

Z b

�b

{u
0

+ ↵y � g
0

(y)}ydy = 0 (34.18)

— i.e.

↵ =
3
b3

Z b

�b

yg
0

(y)dy , (34.19)

which is the required result.
This result is relevant to the choice of end conditions in the problem of

§9.1, since it shows that the end of the beam can be restored to a vertical
plane by a self-equilibrated purely normal traction if and only if

Z b

�b

yg
0

(y)dy = 0 , (34.20)

which is equivalent to condition of (9.21)
3

.
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However, unfortunately we cannot rigorously justify the complete set of
conditions (9.21) by this argument, since the full built-in boundary conditions
(9.16) also involve constraints on the local extensional strain eyy =@uy/@y. It
is clear from energy considerations that if these constraints were relaxed, any
resulting motion would involve the end load doing positive work and hence
the end deflection obtained with conditions (9.21) must be larger than that
obtained with the strong conditions1 (9.16).

In the above solution, we have tacitly assumed that the only contribution
to the two integrals in (34.8) comes from the tractions and displacements at
the top surface of the block. This is justified, since although there are also
normal tractions t

1

, t
2

at the lower surface, they make no contribution to
the work integrals because the corresponding normal displacements (u

2

, u
1

respectively) are zero. However, it is important to consider all surfaces of the
body in the application of the theorem, including a suitably distant boundary
in problems involving infinite or semi-infinite regions.

34.3.2 Indentation of a half-space

We demonstrated in §29.2 that the contact area A between a frictionless rigid
punch and an elastic half-space is that value which maximizes the total load
F (A) on the punch. Shield2 has shown that this can be determined without
solving the complete contact problem, using Betti’s theorem.

The total load on the punch is

F (A) =
Z Z

A

p
1

(x, y)dxdy , (34.21)

where p
1

(x, y) is the contact pressure. We can make the left-hand side of
(34.8) take this form by choosing the auxiliary solution such that the normal
displacement u

2

(x, y) in A is uniform and of unit magnitude.
The simplest result is obtained by using as auxiliary solution that corre-

sponding to the indentation of the half-space by a frictionless flat rigid punch
of plan-form A, defined by the boundary conditions

u
2

⌘ uz(x, y) = 1 ; (x, y) 2 A

p
2

⌘ ��zz(x, y) = 0 ; (x, y) 2 A

�xz = �yz = 0 ; (x, y) 2 A [A .

(34.22)

1 J.D.Renton, Generalized beam theory applied to shear sti↵ness, International
Journal of Solids and Structures, Vol. 27 (1991), pp.1955–1967, argues that the
correct shear sti↵ness for a beam of any cross-section should be that which equates
the strain energy associated with the shear stresses �

xz

,�
yz

and the work done
by the shear force against the shear deflection. For the rectangular beam of §9.1,
this is equivalent to replacing the multiplier on b2/a2 in (9.24b,c) by 2.4(1+⌫).
This estimate di↵ers from (9.24c) by at most 3%.

2 R.T.Shield, Load-displacement relations for elastic bodies, Zeitschrift für ange-
wandte Mathematik und Physik, Vol. 18 (1967), pp.682–693.
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Since the only non-zero tractions in both solutions are the normal pressures
in the contact area A, equation (34.8) reduces to

F (A) ⌘
Z Z

A

p
1

(x, y)dxdy =
Z Z

A

p
2

(x, y)u
1

(x, y)dxdy , (34.23)

where u
1

(x, y) is the normal displacement under the punch, which is defined
through the contact condition (29.3) in terms of the initial punch profile
u

0

(x, y) and its rigid-body displacement.
In problems involving infinite domains, it is important to verify that no

additional contribution to the work integrals in (34.8) is made on the ‘infi-
nite’ boundaries. To do this, we consider a hemispherical region of radius b
much greater than the linear dimensions of the loaded region A. The stress
and displacement fields in both solutions will become self-similar at large R,
approximating those of the point force solution (§23.2.1). In particular, the
stresses will tend asymptotically to the form R�2f(✓,↵) and the displacements
to R�1g(✓,↵).

If we now construct the integral
RR

t
1

·u
2

d� over the hemisphere surface,
it will therefore have the form

Z ⇡/2

0

Z

2⇡

0

b�2f
1

(✓,↵)b�1g
2

(✓,↵)b2d✓d↵ ,

which approaches zero with b�1 as b!1, indicating that the distant surfaces
make no contribution to the integrals in (34.8).

Of course, we can only use (34.23) to find F (A) if we already know the
solution p

2

(x, y) for the flat punch problem with plan-form A and exact so-
lutions are only known for a limited number of geometries, such as the circle,
the ellipse and the strip3. However, (34.23) does for example enable us to
write down the indenting force for a circular punch of arbitrary profile4 and
hence, using the above theorem, to determine the contact area for the general
axisymmetric contact problem.

34.4 Thermoelastic problems

We saw in §22.2 that the thermoelastic displacements due to a temperature
distribution T (x, y, z) can be completely suppressed if we superpose a body
3 An approximate solution to this problem for a punch of fairly general plan-form

is given by V.I.Fabrikant, Flat punch of arbitrary shape on an elastic half-space,
International Journal of Engineering Science, Vol. 24 (1986), pp.1731–1740. Fab-
rikant’s solution and the above reciprocal theorem argument are used as the bases
of an approximate solution of the general smooth punch problem by J.R.Barber
and D.A.Billings, An approximate solution for the contact area and elastic com-
pliance of a smooth punch of arbitrary shape, International Journal of Mechanical
Sciences, Vol. 32 (1990), pp.991–997.

4 R.T.Shield, loc. cit..
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force p and tractions t defined by equations (22.51, 22.52) respectively. It
follows that the displacements u

1

in an unloaded body due to this temperature
distribution are the same as those caused in a body at zero temperature by
body forces and tractions equal and opposite to p, t — i.e.

p
1

= �2µ(1 + ⌫)
(1� 2⌫)

↵rT ; t
1

=
2µ(1 + ⌫)
(1� 2⌫)

↵nT . (34.24)

We can use this equivalence to derive a thermoelastic reciprocal theorem,
relating the displacements u

1

and the temperature T through an auxiliary
isothermal solution p

2

, t
2

,u
2

. Substituting (34.24) into the left-hand side of
(34.8), we obtain

2µ(1 + ⌫)↵
(1� 2⌫)

✓

Z Z

�

Tu
2

·nd� �
Z Z Z

⌦

u
2

·rTd⌦

◆

=
Z Z

�

t
2

·u
1

d� +
Z Z Z

⌦

p
2

·u
1

d⌦ . (34.25)

From the divergence theorem, we have
Z Z

�

Tu
2

·nd� =
Z Z Z

⌦

div(Tu
2

)d⌦

=
Z Z Z

⌦

Tdiv u
2

d⌦ +
Z Z Z

⌦

u
2

·rTd⌦ , (34.26)

after di↵erentiating the integrand by parts. Using this result in (34.25), we
obtain

2µ(1 + ⌫)↵
(1� 2⌫)

Z Z Z

⌦

Tdiv u
2

d⌦ =
Z Z

�

t
2

·u
1

d� +
Z Z Z

⌦

p
2

·u
1

d⌦ , (34.27)

which is the required result5.
The thermoelastic reciprocal theorem can be used in exactly the same

way as Betti’s theorem to develop general expressions for quantities that are
expressible as integrals. For example, the change in the volume of a body
due to an arbitrary temperature distribution can be found using the auxiliary
solution (34.10, 34.11), for which t

2

=n and p
2

=0. From (34.11) we have

div u
2

= exx + eyy + ezz =
3(1� 2⌫)

E
=

3(1� 2⌫)
2µ(1 + ⌫)

(34.28)

and hence (34.27) reduces to

�V
1

=
Z Z

�

u
1

·nd� =
2µ(1 + ⌫)↵
(1� 2⌫)

Z Z Z

⌦

Tdiv u
2

d⌦

= 3↵
Z Z Z

⌦

Td⌦ . (34.29)

5 This proof was first given by J.N.Goodier, Proceedings of the 3rd U.S. National
Congress on Applied Mechanics, (1958), pp.343–345.
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In other words, the total change in volume of the body is the sum of that
which would be produced by free thermal expansion of all its constituent
particles if there were no thermal stresses. For additional applications of the
thermoelastic reciprocal theorem, see J.N.Goodier, loc. cit. or S.P.Timoshenko
and J.N.Goodier, loc. cit., §155.

PROBLEMS

1. Figure 34.4 shows an elastic cube of side a which just fits between two
parallel frictionless rigid walls. The block is now loaded by equal and opposite
concentrated forces, F , at the mid-point of two opposite faces, as shown.
‘Poisson’s ratio’ strains will cause the block to exert normal forces P on the
walls. Find the magnitude of these forces.

Figure 34.4: Loading of the constrained cube.

Would your result be changed if (i) the forces F were applied away from
the mid-point or (ii) if their common line of action was inclined to the vertical?

2. Use the method of §29.2, §34.3.2 to find the relations between the indenta-
tion force, F , the contact radius, a and the maximum indentation depth, d,
for a rigid frictionless punch with a fourth order profile u

0

=�Cr4 indenting
an elastic half-space.

3. The penny-shaped crack 0 r < a, z = 0 is opened by equal and opposite
normal forces F applied to the two crack faces at a radius r

1

. Find the volume
of the opened crack.

4. A long elastic cylinder of constant but arbitrary cross-sectional area and
length L rests horizontally on a plane rigid surface. Show that gravitational
loading will cause the cylinder to increase in length by an amount
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� =
⌫⇢gLh

E
,

where ⇢, E, ⌫ are the density, Young’s modulus and Poisson’s ratio respectively
of the material and h is the height of the centre of gravity of the cylinder above
the plane.

5. A pressure vessel of arbitrary shape occupies a space of volume V
1

and
encloses a hole of volume V

2

, so that the volume of solid material is VM =
V

1

�V
2

. If the vessel is now subjected to an external pressure p
1

and an internal
pressure p

2

, show that the total change in VM is

�VM =
p
2

V
2

� p
1

V
1

Kb
,

where Kb is the bulk modulus of equation (1.76).

6. The long rectangular bar 0<x<a,�b<y<b, a � b is believed to contain
residual stresses �xx that are functions of y only, except near the ends, the
other residual stress components being zero. To estimate the residual stress
distribution, it is proposed to clamp the bar at x=0, cut a groove as shown
in Figure 34.5, using laser machining, and measure the vertical displacement
uy (if any) of the end x=a due to the resulting stress relief.

Figure 34.5: Groove cut in a bar with residual stresses.

What would be the auxiliary problem we would need to solve to establish
an integral relation between the residual stress distribution and the displace-
ment uy, using the reciprocal theorem. (Do not attempt to solve the auxiliary
problem!)

7. By di↵erentiating the solution of the Hertz problem of §30.2.5 with respect
to x, show that the contact pressure distribution

p(r, ✓) =
Cr cos ✓p
a2 � r2

; 0  r < a
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produces the normal surface displacement

uz(r, ✓) =
⇡C(1� ⌫)r cos ✓

4µ
; 0  r < a, z = 0 .

Use this result and the reciprocal theorem to determine the angle through
which the punch in §34.3.2 will tilt about the y-axis if the force F is applied
along a line passing through the origin.

8. A long hollow cylinder of inner radius a and outer radius b has traction
free surfaces, but it is subjected to a non-axisymmetric temperature increase
T (r, ✓). Find the change in the cross-sectional area of the hole due to ther-
moelastic distortion.

9. The long solid cylinder 0 r <a, 0<z <L, L� a is built in at z =L and
all the remaining surfaces are traction free. If the cylinder is now heated to
an arbitrary non-uniform temperature T , find an integral expression for the
displacement uy at the free end.

10. A body ⌦ is raised to an arbitrary temperature field T (x, y, z), but the
boundaries are all free of traction. Show that the average value of the bulk
stress �̄ of equation (1.75) is zero — i.e.

Z Z Z

⌦

�̄d⌦ = 0 .
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USING MAPLE AND MATHEMATICA

The algebraic manipulations involved in solving problems in elasticity are rel-
atively routine, but they can become lengthy and complicated, particularly for
three-dimensional problems. There are therefore significant advantages in us-
ing a symbolic programming language such as Maple or Mathematica. Before
such programs were available, the algebraic complexity of manual calculations
often made it quicker to use a finite element formulation, even when it was
clear that an analytical solution could in principle be obtained. Apart from
the undoubted saving in time, Maple or Mathematica also make it easy to
plot stress distributions and perform parametric studies to determine opti-
mum designs for components. From the engineering perspective, this leads to
a significantly greater insight into the nature of the subject.

Using these languages e�ciently necessitates a somewhat di↵erent ap-
proach from that used in conventional algebraic solutions. Anyone with more
than a passing exposure to computer programs will know that it is almost
always quicker to try a wide range of possible options, rather than trying to
construct a logical series of steps leading to the required solution. This trial
and error process also works well in the computer solution of elasticity prob-
lems. For example, if you are not quite sure which stress function to use in
the problem, the easiest way to find out is to use your best guess, run the cal-
culation and see what stresses are obtained. Often, the output from this run
will make it clear that minor modifications or additional terms are required,
but this is easily done. Remember that it is extremely easy and quick to make
a small change in the problem formulation and then re-run the program. By
contrast, in a conventional algebraic solution, it is essential to be very careful
in the early stages because repeating a calculation with even a minor change
in the initial formulation is very time consuming.

The best way to learn how to use these programs is also by trial and error.
Don’t waste time reading a compendious instruction manual or following a
tutorial, since these will tell you how to do numerous things that you probably
will never need. On the web site www.elasticity.org we provide the source code
and the resulting output for the two-dimensional problem treated in §5.2.2.
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This file has su�cient embedded explanation to show what is being calculated
and you can easily copy the files and make minor changes to gain experience
in the use of the method. The web site also includes an explanation of the
commands you will need most often in the solution of elasticity problems and
electronic versions of the Tables in the present Chapters 21 and 22 and of the
recurrence relations for generating spherical harmonics.
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