1. For the given matrix and vector

$$
a_{i j}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 4 & 2 \\
0 & 1 & 1
\end{array}\right], \quad b_{i}=\left\{\begin{array}{l}
1 \\
0 \\
2
\end{array}\right\}
$$

Compute the following quantities: $a_{i i}, a_{i j} a_{i j}, a_{i j} a_{j k}, a_{i j} b_{j}, a_{i j} b_{i} b_{j}, b_{i} b_{j}, b_{i} b_{i}$. For each quantity, point out whether the result is a scalar, vector, or matrix. Note that $a_{i j} b_{j}$ is actually the matrix product $[a]\{b\}$, while $a_{i j} a_{j k}$ is the product $[a][a]$.
2. Show the following results invovling Kronecker delta $\left(\delta_{i j}\right)$ and alternating or permutation symbol $\left(\varepsilon_{i j k}\right)$.
(a) $\delta_{i i}=3$
(b) $\delta_{i j} \delta_{i j}=3$
(c) $\varepsilon_{i j k} \varepsilon_{j k i}=6$
(d) $\varepsilon_{i j k} A_{j} A_{k}=0$
(e) $\delta_{i j} \delta_{j k}=\delta_{i k}$
(f) $\delta_{i j} \varepsilon_{i j k}=0$
3. Consider the two-dimensional coordinate transformation shown below. Through the counterclockwise rotation $\theta=30^{\circ}$, a new polar coordinate system is created. If $b_{i}=\left\{\begin{array}{l}b_{1} \\ b_{2}\end{array}\right\}, a_{i j}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ are the components of a first- and second-order tensor in the x_{1}, x_{2} system, calculate their components in the rotated polar coordinate system.

4. Determine the invariants, principal values, and directions of the matrix

$$
a_{i j}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Use the determined principal directions to establish a principal coordinate system and formally transform (rotate) the given matrix into the principal system to arrive at the appropriate diagonal form.
5. (Optional) A second-order symmetric tensor field is given by

$$
a_{i j}=\left[\begin{array}{ccc}
2 x & x & 0 \\
x & -6 x^{2} & 0 \\
0 & 0 & 5 x
\end{array}\right]
$$

Using MATLAB (or similar software), investigate the nature of the variation of the principal values and directions over the interval $1 \leq x \leq 2$. Formally plot the variation of the absolute value of each principal value over the range $1 \leq x \leq 2$.

