1. A steel column has a length of 4 m and is pinned at both ends. If the cross sectional area has the dimensions shown, determine the critical load. $E=200 \mathrm{GPa}$.

2. A steel column has a length of 5 m and is fixed at both ends. If the cross-sectional area has the dimensions shown, determine the critical load. $E=200 \mathrm{GPa}$.

3. A steel column has a length of 9 m and is fixed at both ends. If the cross sectional area has the dimensions shown, determine the critical load. $E=200 \mathrm{GPa}$.

4. Determine the maximum load P the frame can support without buckling member $A B$.

Assume that $A B$ is made of steel and is pinned at its ends for $y-y$ axis buckling and fixed at its ends for the $x-x$ axis buckling. $E_{s t}=200 \mathrm{GPa}$.

