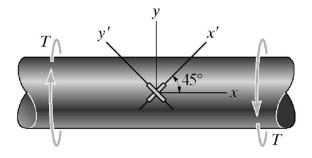
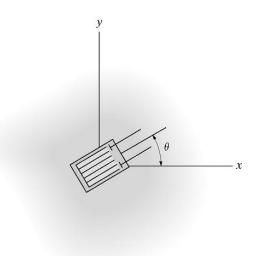
M20: Generalized Hooke's Law

1. Assume zero shear stresses ($\sigma_{xy} = \sigma_{yz} = \sigma_{zx} = 0$). For the case of plane stress ($\sigma_z = 0$), show that the generalized Hooke's law can be written as


 $\sigma_{x} = \frac{E}{1-v^{2}} \left(\varepsilon_{x} + v \varepsilon_{y} \right), \qquad \sigma_{y} = \frac{E}{1-v^{2}} \left(\varepsilon_{y} + v \varepsilon_{x} \right)$

2. Consider a circular rod made of aluminum. If it is subjected to a tensile load of 700 N and has a diameter of 20 mm, determine the principal strains at a point on the surface of the rod. E = 73.1 GPa.


Student ID:

Name:

3. The shaft has a radius of 15 mm and is made of steel. Determine the strains in the x' and y' directions if a torque $T = 2 \text{ kN} \cdot \text{m}$ is applied to the shaft. G = 75 GPa.

4. A material is subjected to principal stresses σ_x and σ_y. Determine the orientation θ of a strain gauge placed at the point so that its reading of normal strain responds only to σ_y and not to σ_x. The material constants are E and v.

