1. Determine the equations of the elastic curve for the beam using the x_{1} and x_{2} coordinates. Specify the beam's maximum deflection. $E I$ is constant.

2. Determine the equations of the elastic curve for the shaft using the x_{1} and x_{3} coordinates. Specify the slope at A and the deflection at the center of the shaft. $E I$ is constant.

3. A picture is taken of a man performing a pole vault, and the minimum radius of curvature of the pole is estimated by measurement to be 4.5 m . If the pole is 40 mm in diameter and it is made of a glass-reinforced plastic for which $E_{\mathrm{g}}=131 \mathrm{GPa}$, determine the maximum bending stress in the pole.

4. The two wooden meter sticks are separated at their centers by a smooth rigid cylinder having a diameter of 50 mm . Determine the force F that must be applied at each end in order to just make their ends touch. Each stick has a width of 20 mm and thickness of $5 \mathrm{~mm} . E_{w}=11 \mathrm{GPa}$.

