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2 



Assumptions 

• Body force density is given. 

• Prescribed boundary tractions and/or displacements 

• All displacements are small. This means that we can use 

the infinitesimal strain tensor to characterize 

deformation; we do not need to distinguish between 

stress measures, and we do not need to distinguish 

between deformed and undeformed configurations of the 

solid when writing equilibrium equations and boundary 

conditions. 

• The material is isotropic, elastic-perfectly plastic solid. 

• Neglect temperature changes.  
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Introduction 

• The elastic limit: This is the load required to initiate plastic flow in the solid. 

• The plastic collapse load: At this load, the displacements in the solid become 

infinite.  

• Residual stress: If a solid is loaded beyond the elastic limit and then unloaded, a 

system of self-equilibrated stress is established in the material. 

• Shakedown: If an elastic-plastic solid is subjected to cyclic loading and the 

maximum load during the cycle exceeds yield, then some plastic deformation 

must occur in the material during the first load cycle. However, residual stresses 

are introduced in the solid, which may prevent plastic flow during subsequent 

cycles of load. This process is known as “shakedown,” and the maximum load for 

which it can occur is known as the shakedown limit. The shakedown limit is often 

substantially higher than the elastic limit, so the concept of shakedown can often 

be used to reduce the weight of a design. 

• Cyclic plasticity: For cyclic loads exceeding the shakedown limit, a region in the 

solid will be repeatedly plastically deformed. 
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Summary of Governing Equations 

• Displacement-strain relation: 
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Cylindrically Symmetric Elastoplastic Solids 
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• Cylindrically symmetric geometry 

and loading (i.e. internal body 

forces, tractions or displacements 

BCs, nonuniform temperature 

distribution). 

• Cylindrical-polar bases: 

• Cylindrical-polar coordinates: 

• Position vector: 

• Displacement vector: 

• Body force vector: 

• Acceleration vector: 
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Cylindrically Symmetric Elastoplastic Solids 

• Cauchy stress: 
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• Strain-displacement relation: 

• Stress-strain relation in elastic region (plane strain or 

generalized plane strain): 

• von Mises yield criterion: 

• Infinitesimal strain: 
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Cylindrically Symmetric Elastoplastic Solids 

• Stress-strain relation in plastic region 
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• Traction BCs: 

• Equations of motion: 

   , .R a R ba b    

• Strain partition: 

• Elastic strain: 

• Flow rule: 

• BCs: 

• There is no clean, direct, and general method for integrating these 

equations. Instead, solutions must be found using a combination of 

physical intuition and some algebraic tricks. 
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Hollow Cylinder under Monotonic Pressure 

• We consider a long hollow cylinder. 

• The sphere is stress free before it is 

loaded. 

• No body forces act on the cylinder. 

• The cylinder has zero angular velocity. 

• The cylinder has uniform temperature. 

• The cylinder does not stretch parallel to 

its axis. 
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• The inner surface r = a is subjected to monotonically 

increasing pressure pa. 

• The outer surface r = b is traction free. 

• Strains are infinitesimal. 

• We aim to find…. 



Hollow Cylinder under Monotonic Pressure 

• Elastic solution 
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• von Mises effective stress: 

• We see that the hollow cylinder first reaches yield at r = a, 

with the elastic limit:  

• If the pressure is increased beyond yield, we anticipate that 

a region a < r < c will deform plastically, whereas a region 

c < r < b remains elastic. 
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Hollow Cylinder under Monotonic Pressure 

• In the plastic region a < r < c 

• To simplify the calculation, we assume: 

• This assumption turns out to be exact for ν = 0.5 but is 

approximate for other values of Poisson’s ratio. 

• The plastic flow rule shows that 

0, 0e p

z zd d  

   
1

0 +  
2

+
2

 
1

 z

p
p

z z r

Y

r

d
d  


   


  

 
     

 

• Yield criterion 
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Hollow Cylinder under Monotonic Pressure 

• In the plastic region a < r < c 

• Equation of static equilibrium 
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• Integrate and apply the BCs at R = a 
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• Elastic strain: 



Hollow Cylinder under Monotonic Pressure 
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• In the plastic region a < r < c 

• The plastic strains satisfy: 

• The elastic strains thus satisfy (plane strain condition): 

• Since the pressure is monotonically increasing, the 

incremental stress-strain relation can be integrated 
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Hollow Cylinder under Monotonic Pressure 
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• In the elastic region c < r < b 

• The elastic-plastic boundary is located by noting that the 

stress in the elastic region must just reach yield at r = c. 

• Form the radial stress in the plastic region, we obtain the 

pressure at the elastic-plastic boundary r = c 
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Hollow Cylinder under Monotonic Pressure 

• The constant of integration can be found by noting that the 

radial displacements in the elastic and plastic regimens 

must be equal at r = c. 
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• In the plastic region: 

• In the elastic region: 

• Enforcing the displacement continuity condition 
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Hollow Cylinder under Monotonic Pressure 
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• In the plastic region 

a < r < c 

• In the elastic region 

c < r < b 
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Hollow Cylinder under Monotonic Pressure 
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• In the plastic region 

a < r < c 

• In the elastic region 

c < r < b 
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Spherically Symmetric Elastoplastic Solids 
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• Spherically symmetric geometry 

and loading (i.e., internal body 

forces, tractions or displacements 

BCs, nonuniform temperature 

distribution). 

• Spherical-polar bases: 

 , ,R  • Spherical-polar coordinates: 

• Position vector: 

• Displacement vector: 

• Body force vector: 

RRx e
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• Cauchy stress tensor: 

      ,     .R R RR R R              σ e e e e e e



Spherically Symmetric Elastoplastic Solids 

• Infinitesimal strain tensor 

      ,     .R R RR R R              ε e e e e e e
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• Strain-displacement relation: 
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• von Mises yield criterion: 



Spherically Symmetric Elastoplastic Solids 

• Stress-strain relation in plastic region 
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• Traction BCs: 

• Equilibrium equations:  
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• Displacement BCs: 

• There is no clean, direct, and general method for integrating these 

equations. Instead, solutions must be found using a combination of 

physical intuition and some algebraic tricks. 



Hollow Sphere under Monotonically Increasing Pressure 

• We consider a pressurized 

spherical thick-walled sphere. 

• The sphere is stress free before it 

is loaded. 

• No body forces act on the sphere. 

• The sphere has uniform 

temperature. 
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• The inner surface R = a is subjected to monotonically 

pressure pa. 

• The outer surface R = b is traction free. 

• Strains are infinitesimal. 

• We aim to find…. 



Hollow Sphere under Monotonically Increasing Pressure 

• Elastic solution 
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• von Mises yield criterion: 

• We see that a pressurized elastic sphere first reaches yield 

at R = a, with the elastic limit:  

• If the pressure is increased beyond yield, we anticipate that 

a region a < R < c will deform plastically, whereas a region 

c < R < b remains elastic. 

 3 32 1 3.a Yp a b 



Hollow Sphere under Monotonically Increasing Pressure 

• In the plastic region a < R < c 

• von Mises yield criterion 
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• Equation of static equilibrium 
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• Integrate and apply the BCs at R = a 
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Hollow Sphere under Monotonically Increasing Pressure 
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• In the plastic region a < R < c 

• Elastic strain: 
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• The elastic strains thus satisfy 

• Since the pressure is monotonically increasing, the 

incremental stress-strain relation can be integrated 
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• The constant of integration, C, will be determined later. 



Hollow Sphere under Monotonically Increasing Pressure 
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• In the elastic region c < R < b 
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• The elastic-plastic boundary is located by noting that the 

stress in the elastic region must just reach yield at R = c. 

• Form the radial stress in the plastic region, we obtain the 

pressure at the elastic-plastic boundary R = c 
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Hollow Sphere under Monotonically Increasing Pressure 

• The constant of integration can be found by noting that the 

radial displacements in the elastic and plastic regimens 

must be equal at R = c. 
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• Enforcing the displacement continuity condition 
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Hollow Sphere under Monotonically Increasing Pressure 
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• In the plastic region 

a < R < c 

• In the elastic region 

c < R < b 
3 3

3 3

3 3

3 3

2
1 ,

3

2
1

3 2

Y
R

Y

c b

b R

c b

b R








 
   

 

 
  

 

3b a 

R a

   3 3 3 322
2ln 1 ,   2 ln 1

3 3

a Y
c a Y

Y

p
c a c b p p c a c b





      



Hollow Sphere under Monotonically Increasing Pressure 
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• In the plastic region 

a < R < c 

• In the elastic region 

c < R < b 
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Hollow Sphere under Monotonically Increasing Pressure 
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0.3,  3b a  

• At the interior 

surface R = a 

• In the plastic region 

a < R < c 
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Hollow Sphere under Cyclic Internal Pressure 

• The sphere is stress free before it 

is loaded. 

• No body forces act on the sphere. 

• The sphere has uniform 

temperature distribution 

• The outer surface R = b is 

traction free. 
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• The inner surface of the sphere R = a is repeatedly 

subjected to pressure pa and then unloaded to zero 

pressure. 

• The nature of the solution depends on the magnitude 

of the internal pressure. 



Hollow Sphere under Cyclic Internal Pressure 

• If  

• the maximum value of pa applied to the sphere does not 

exceed the elastic limit, the solid remains elastic 

throughout the loading cycle. 

• The sphere is stress free after unloading and remains 

elastic throughout all subsequent load cycles. 
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2 ln ,    2 lnR Y a Y a YR a p R a p        

• From the previous case study for monotonically 

increasing load, in the plastic region a < R < c 

• From the limiting case of a completely yielded shell (c 

= b), the collapse load can be determined 

  0 2 ln ,    2 lnR Y a a Yb b a p p b a      
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Hollow Sphere under Cyclic Internal Pressure 

• For pressures in this range, the region between R = a and 

R = c deforms plastically during the first application of 

pressure, whereas the region between c < R < b remains 

elastic. 

 

 

• In this case, the solid is permanently deformed. After 

unloading, its internal and external radii are slightly 

increased, and the sphere is in a state of residual stress. 

• The applied pressure pa cannot exceed the collapse load. 
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Hollow Sphere under Cyclic Internal Pressure 
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2 ln ,   2 lnR Y a Y a YR a p R a p        

• In the plastic region a < R < c 

• In the elastic region c < R < b 

• At the maximum pressure of the first cycle 

 3 32 1 3 2 lnY a Ya b p b a   • Practical pressure range: 

• If the residual stress is less than or just reaches the 

yield stress at R = a when the pressure is reduced to 

zero after the first unloading, i.e. for a < R < c  
3 33 3

3 3 3 3 3 3
2 ln ,   2 l1 n 1

2

a
R Y a Y Y

a
a

a p a pb b

b a R b a R
R a p R a p    

   
      

   
   




3 33 3

3 3 3 3

2 2
1 ,   1

3 3 2

Y Y
R

c cb b

b R b R


 
 

   
       

   



Hollow Sphere under Cyclic Internal Pressure 

• After unloading of the first cycle (at zero pressure) 

34 

• The maximum load is known as the shakedown limit. 
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• In this case (after unloading of the first cycle), stresses  

in the elastic region c < R < b are 
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Hollow Sphere under Cyclic Internal Pressure 
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• If  

• the cylinder deforms plastically during the first application 

of pressure. It then deforms elastically (no yield) while the 

pressure is removed. 

• During subsequent pressure cycles between zero and the 

maximum pressure, the cylinder deforms elastically. 

• Residual stresses introduced during the first loading cycle 

are protective and prevent additional plasticity. This 

behavior is known as shakedown. 
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Hollow Sphere under Cyclic Internal Pressure 

• If 

36 

 3 34 1 3 2 lnY a Ya b p b a   
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• In the plastic region a < R < c 

• In the elastic region c < R < b 

• At the maximum pressure of the first cycle 
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Hollow Sphere under Cyclic Internal Pressure 

• Consider residual stress that is larger than the yield 

stress for a < R < d (< c) when the pressure is reduced 

to zero after the first unloading. 

• Therefore, this is a plastic zone as the pressure is reduced 

to zero. During subsequent cycles of loading, this region is 

repeatedly plastically deformed, stretching in the hoop 

direction during increasing pressure and compressing as 

the pressure is reduced to zero. 
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• Anticipate the yield condition 



Hollow Sphere under Cyclic Internal Pressure 

• Equilibrium condition 

38 
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• In the shakedown region d < R < c 

• This region deforms plastically during the first cycle of 

pressure but remains elastic for all subsequent cycles. 

• This is a “shakedown region.” 

• The change in stress during unloading can be calculated 

by regarding the region d < R < b as a spherical shell, 

subjected to radial pressure at R = d. 

• At the maximum load:   2 ln .d R a Yp d p d a     



Hollow Sphere under Cyclic Internal Pressure 
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• We can simply add the elastic stress induced by this 

pressure change to the stress at maximum load. 
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• The boundary of the cyclic plastic zone is determined by 

the condition that the stress in the shakedown regime must 

just reach yield at R = d when the pressure reaches zero. 

• After unloading:   2 ln .d R Yp d d a   

• The change in pressure:  4 ln .d d d Y ap p p d a p    



Hollow Sphere under Cyclic Internal Pressure 

• With Δpd, the stress in the shakedown region (d < R < c) 

can further be simplified 
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• In the elastic region c < R < b 

• This region experiences elastic cycles of strain. The 

solution in this region is derived in the same way as the 

solution for the shakedown region, except that the stress at 

the maximum load is given by solutions for c < R < b. 
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• The change in stress during unloading can be calculated 

by regarding the region c < R < b as a spherical shell, 

subjected to radial pressure at R = c. 

• At the maximum load:  
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• The change in pressure at R = c  
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• We then add the elastic stress induced by this pressure 

change to the stress at the maximum load (c < R < b). 
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• With Δpc, the stress in the elastic region (c < R < b) can 

further be simplified 

• In the preceding discussion, we have assumed that the cylinder is 

thick enough to support an arbitrarily large pressure, without 

exceeding the collapse load 

• For thinner-walled spheres, some regimens will be inaccessible. 
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• The solution for c/a = 

1.25 is below the 

shakedown limit. 

• The residual stresses 

are predominantly 

compressive. 

• Bolt holes, pressure 

vessels, and gun barrels 

are often purposely 

pressurized above the 

elastic limit so as to 

prevent crack 

propagation. 43 
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Residual stress distributions after 

unloading, for various positions of 

the elastic/plastic boundary c/a. 

Cyclic plasticity 
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