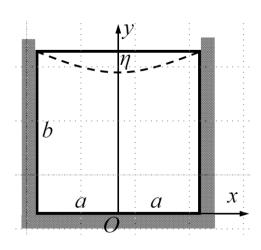

Name: Student ID: E16 Variation

1. Consider a square thin-plate that is clamped at all edges and subjected to a uniform body force field $F_x = 0$, $F_y = \rho g$. Using Ritz method determine the displacements and stresses for a trial displacement field

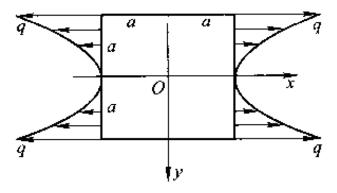
$$u = A_1 \left(1 - \frac{x^2}{a^2} \right) \left(1 - \frac{y^2}{a^2} \right) \frac{x}{a} \frac{y}{a}, \quad v = B_1 \left(1 - \frac{x^2}{a^2} \right) \left(1 - \frac{y^2}{a^2} \right).$$


To simplify the calculation, assume zero Poisson ratio ($\nu = 0$).

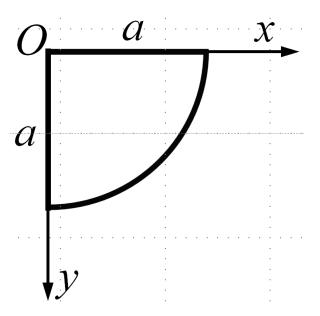
2. Consider a thin-plate that is clamped at three edges and subjected to displacement boundary conditions u = 0; $v = -\eta \left(1 - x^2/a^2\right)$ along its top edge. Using Galerkin method determine the displacements and stresses for a trial displacement field

$$u = A_{1} \left(1 - \frac{x^{2}}{a^{2}} \right) \frac{x}{a} \frac{y}{b} \left(1 - \frac{y}{b} \right), \quad v = -\eta \left(1 - \frac{x^{2}}{a^{2}} \right) \frac{y}{b} + B_{1} \left(1 - \frac{x^{2}}{a^{2}} \right) \frac{y}{b} \left(1 - \frac{y}{b} \right).$$

Assume zero body forces ($F_x = 0, F_y = 0$).



3. Consider a square thin-plate that is only subjected to traction boundary conditions


$$\sigma_{x}|_{x=\pm a} = q(y/a)^2$$
. Given the trial Airy stress function

$$\psi = \frac{qy^4}{12a^2} + qa^2 \left(1 - \frac{x^2}{a^2}\right)^2 \left(1 - \frac{y^2}{a^2}\right)^2 \left(A_1 + A_2 \frac{x^2}{a^2} + A_3 \frac{y^2}{a^2} + \cdots\right),$$

use the principle of stress variation to determine the stress field. Consider two cases: including (a) A_1 only and (b) A_1 , A_2 , A_3 . Assume zero body forces ($F_x = 0$, $F_y = 0$).

4. Given the trial Prandtl stress function $\psi = Axy(a^2 - x^2 - y^2)$, solve the torsion problem of a quarter of circular section by using the principle of stress variation.

