1. Using index notation, explicitly verify the following identities:
a. $\quad \nabla^{2}(\phi \psi)=\left(\nabla^{2} \phi\right) \psi+\phi\left(\nabla^{2} \psi\right)+2 \nabla \phi \cdot \nabla \psi$
b. $\nabla \times(\phi \mathbf{u})=\nabla \phi \times \mathbf{u}+\phi(\nabla \times \mathbf{u})$
c. $\nabla \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot(\nabla \times \mathbf{u})-\mathbf{u} \cdot(\nabla \times \mathbf{v})$
d. $\nabla \times(\nabla \times \mathbf{u})=\nabla(\nabla \cdot \mathbf{u})-\nabla^{2} \mathbf{u}$
e. $\quad \mathbf{u} \times(\nabla \times \mathbf{u})=\frac{1}{2} \nabla(\mathbf{u} \cdot \mathbf{u})-\mathbf{u} \cdot \nabla \mathbf{u}$
2. a. Show that the volume V of the region bounded by a closed surface S is given by

$$
V=\frac{1}{3} \int_{S}(\mathbf{x} \cdot \mathbf{n}) d S,
$$

where \mathbf{n} is the outward unit normal to S and \mathbf{x} is the position vector in V.
b. For a constant vector a (independent of position \mathbf{x}), prove that

$$
2 \mathbf{a} V=\int_{S}(\mathbf{n} \times \mathbf{a} \times \mathbf{x}) d S .
$$

3. Verify Green's theorem for the line integral

$$
\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right],
$$

where C is the closed curve formed by $y=x^{2}$ and $y=x$.
4. Determine the forms of $\nabla \phi, \nabla^{2} \phi, \nabla \cdot \mathbf{u}, \nabla \times \mathbf{u}$ for three-dimensional cylindrical and spherical coordinates.

