Items that are developed to help you finish your S005317 course project

- For each of the following applications, outline:
 - 1) What would you calculate if you were asked to model the component for a design application?
 - 2) What level of detail is required in modeling the geometry of the solid?
 - 3) How would you model loading applied to the solid?
 - 4) Would you conduct a static or dynamic analysis? Is it necessary to account for thermal stresses? Is it necessary to account for temperature variation as a function of time?
 - 5) What constitutive law would you use to model the material behavior?
 - \checkmark A load cell intended to model forces applied to a specimen in a tensile testing machine
 - \checkmark The seat-belt assembly in a vehicle
 - \checkmark The solar panels on a communications satellite.
 - \checkmark A compressor blade in a gas turbine engine
 - ✓ A MEMS optical switch
 - ✓ An artificial knee joint
 - ✓ A solder joint on a printed circuit board
 - ✓ An entire printed circuit board assembly
 - \checkmark The metal interconnects inside a microelectronic circuit
- What is the difference between a linear elastic stress-strain law and a hyperelastic stress-strain law? Think about examples of representative applications for both material models.
- What is the difference between a rate-dependent (viscoplastic) and rate independent plastic constitutive law? Think about examples of representative applications for both material models.
- Choose a recent publication describing an application of theoretical or computational solid mechanics from one of the following journals:
 - ✓ Journal of the Mechanics and Physics of Solids

- ✓ International Journal of Solids and Structures
- ✓ Mechanics of Materials
- ✓ Modeling and Simulation in Materials Science and Engineering
- ✓ Computer Methods in Applied Mechanics and Engineering
- ✓ European Journal of Mechanics A
- ✓ Acta Mechanica
- ✓ Mathematics and Mechanics of Solid
- ✓ Journal of Mechanics of Materials and Structures
- **√** ...

Write a summary of the paper stating: (i) the goal of the paper; (ii) the problem that was solved, including idealizations and assumptions involved in the analysis; (iii) the method of analysis; and (iv) the main results; and (v) the conclusions of the study.

- Computing project
 - 1) Choose a problem to solve.
 - 2) Write a short proposal that defines the problem to be solved, describes what will be calculated, outlines briefly how the calculation will be done.
 - 3) Submit the proposal via email and obtain approval from the instructor.
 - 4) Set up a finite element model and perform the calculations.
 - 5) Write a formal report no more than 10 pages that summarizes the results.
 - 6) Give a short oral presentation to the rest of the class.