1. In class, we solved the problem of a thick-walled spherical shell subjected to a uniform pressure on both the inner and outer boundary. Resolve this problem by replacing the traction boundary condition on the outer radius b with a zero-displacement condition, i.e. $u_{r}(b)=0$.

2. For a half-space subjected to a uniform pressure q applied over a circular surface area of radius a, determine the vertical displacement at a depth h right below the circle center.
3. For a half-space subjected to a uniform pressure q applied over a rectangular surface area $a \times b$, determine the vertical displacement at the symmetry center and four corners of the rectangle.
4. For a concentrated force applied on a small spherical cavity inside an infinite 3-D medium, investigate that if the following Love Strain Potential yields the correct solution

$$
\varsigma=A R=A \sqrt{r^{2}+z^{2}}
$$

where A is a constant to be determined from force equilibrium condition.

