张建

发布者:张爱芹发布时间:2018-12-07浏览次数:23309

  张 建


  博士,教授,博士生导师

  东南大学土木工程学院

  江苏省南京市九龙湖校区土木楼1409

  邮箱:jian@seu.edu.cn


张建,东南大学土木工程学院教授、博士生导师、副院长。担任智慧建造与运维国家地方工程中心副主任、江苏省工程力学分析重点实验室主任。先后入选国家青年****、交通部科技创新人才计划、江苏省双创人才计划、江苏省杰青项目、江苏省333中青年领军人才,牵头江苏省省优秀科技创新团队。长期从事结构健康监测研究及工程应用,发表中英文专著4部、第一/通讯作者期刊论文60(JCR一区48篇、二区9),授权发明专利19项(美国2项),主持国家自然基金、国家重点研发计划课题、江苏省杰青等项目,主参编标准6部,应用于苏通大桥、南沙大桥等30余项重大工程。担任计算机辅助土木基础设施(CACIE)、结构监测与控制(SCHM)等期刊编委,担任EVACES大会共同主席、ISHMII学会理事、大会主题/邀请报告20余次。获国家技术发明二等奖(排2)、江苏省科学技术一等奖2项(排26)、中国公路学会一等奖(排3)、日内瓦国际发明展金奖(排1)、Aftab Mufti奖章。


研究方向

  结构非接触式测量

  大数据与人工智能

  大型土木工程结构振动测试

  智能传感与智慧城市


代表性成果:


1.非接触式测量技术与设备开发

先进传感与监测是结构健康诊断的基础。在结构的智能化监测部分,课题组创新性引入信息科学的先进雷达技术,自主开发了基于微波干涉雷达的大型土木工程结构非接触式动态微变形测量技术与设备,可在1000m距离内,实现精度达0.01mm的高层建筑与大跨桥梁的微小动态变形测量。土木工程结构体型庞大、日常服役条件下变形微小,因此对雷达测距技术提出了测量距离远范围大、动态变形测量精准等高要求。如图所示为所开发技术应用于苏通长江大桥十周年“健康体检”中桥塔变形测量结果。

2.基于人工智能与无人机技术的结构智能检测

为实现快速、高精度的桥梁结构表面损伤检测,课题组针对结构表面损伤信息获取研发了一种新型爬壁无人机平台,借助无人机平台快速灵活地获取结构表面细致的损伤影像。针对海量检测资料中损伤信息的提取和量化分析,采用先进的人工智能和图像处理算法,实现了裂缝等病害的实时自动识别和快速量化分析。通过软件移植将算法移植于智能手机应用中,与爬壁无人机平台配合形成软硬件结合的实用化检测系统,如图所示。


3.桥梁快速测试与诊断理论及其一体化装置开发

如何实现国家公路网上为数众多中小桥梁的快速诊断与安全普查从而保证它们的健康安全是土木工程领域一项迫切需要解决的关键问题。课题组在近十年的研究基础上,提出并开发了基于冲击振动的桥梁快速测试方法及一体化装置。基本思想:一种桥梁快速检测车集成了桥梁冲击系统,传感器布置系统,一体化控制系统,全程数据分析系统,并进行桥梁全面参数的识别(包括深层次参数,柔度),能够快速可靠地实现桥梁结构的参数识别与承载能力评估。所开发的桥梁快速测试一体化装置能够实现桥梁的“随到随测,随测随走,高频高效”,大大提高了桥梁快速检测的效率,并降低了成本。有望实现公路网上广大桥梁的快速普查与评估。

课题组以一座三跨预应力混凝土连续箱型梁桥为例,验证了冲击振动测试理论与开发的冲击荷载产生装置应用于实桥测试的可靠性。分别对该桥进行了冲击振动测试和静载测试。在静载测试中,利用长标距应变传感器测试结构在静力荷载下的应变,结合改进的共轭梁方法反演结构在静力荷载下的变形;在冲击振动测试中,利用开发的冲击荷载产生装置对其进行多参考点冲击振动测试,结合冲击振动测试数据的柔度识别理论,识别结构的位移柔度矩阵并预测结构在指定静力荷载下的变形曲线,与静载实验得到的真实变形值比较,验证所提出测试方法及数据处理方法的有效性。


4.大型土木工程结构健康监测

在江阴大桥的应用案例中,利用信息几何、聚类分析、EEMD、小波等技术处理长达十年的江阴大桥监测数据,其中包括地震、船撞、雪灾、大雾中断交通等异常状况,为结构突发事故实时预警与长期性能研究奠定数据基础。通过长期的监测数据研究与分析,揭示了温度与应变、变形与索力等结构反应的映射关系,特别的是建立了不同结构形式下由所监测结构温度梯度与应变进行温度应力、边界约束刚度、温度变形计算的方法。基于此,课题组进一步提出了基于温度荷载(输入)及结构温度反应(输出)结构损伤评估方法,以及考虑温度应力的预警方法,并已应用和推广至江阴大桥等多座长大跨桥梁的现场健康监测系统。

基于长标距传感单元能直接关联长标距应变等局部参量和结构位移转角等宏观参量的特性,课题组建立了基于区域分布传感和共轭梁方法直接反演大型结构动静态变形分布的显示计算方法。因相互关系明晰,不产生累计误差,经试验与现场验证其变形精度可达0.01mm。课题组应用该方法到苏通大桥既有健康监测系统的升级改造工程,通过区域分布传感技术与所开发的显示计算方法首次实现了百米级刚构桥微小挠度分布的精确实时监测。

江苏大剧院建筑面积25万平方米,耗资40亿,如此大规模的工程,施工监测可以起到安全施工、及时预警、验证设计等方面的作用。本课题组利用长标距光纤传感器(结构表面布设类型),光纤自传感FRP筋(结构内部埋设类型)以及光纤解调技术与设备进行施工监控,并建立了基于截面纤维模型分析的复杂结构参数的全面剖析方。其基本思想是利用所监测区域分布应变,依据纤维模型建立应变和结构各参数的力平衡方程并揭示其内在联系,从而深度剖析得出结构关键区域(底环梁和柱脚节点)的复杂力学状况,如曲率、转角、变形、荷载等各类参数,为该超标超限类型结构的设计验证及施工阶段的安全保障提供了重要技术支撑。



代表性论文

[1] Jian Zhang (张建)*; SL Guo; QQ Zhang, Mobile impact test data integrating for flexibility identification with only a single reference, Computer-Aided Civil and Infrastructure Engineering, 2014.8.26,12(3): 1~12 (SCI/IF=5.786)

[2] Q Xia; Jian Zhang (张建)*; YD Tian; YF Zhang, Experimental study of thermal effects on a long span suspension bridge,ASCEJournal of Bridge Engineering, 2017.5, 22(7) (SCI/IF=1.476)

[3] Q Xia; YY Cheng; Jian Zhang (张建)*; FQ Zhu, In-service condition assessment of a long-span suspension bridge using temperature-induced strain data, ASCEJournal of Bridge Engineering, 2016.10, 22(3) (SCI/IF=1.476)

[4] Jian Zhang (张建); YY Cheng; Q Xia; ZS Wu, Change localization of a steel stringer bridge through long-gauge strain measurements, ASCEJournal of Bridge Engineering, 2016, 21(3): 1~11 (SCI/IF=1.476)

[5] Jian Zhang(张建); YD Tian; CQ Yang; BT Wu; X Zhang; LM Zhou; G Wu; ZS Wu, Vibration and deformation monitoring of a long-span rigid-frame bridge with distributed long-gauge sensors,ASCEJournal of Aerospace Engineering, 2016, 30(2) (SCI/IF=1.107)

[6] Jian Zhang (张建)*; J Prader; KA Grimmelsman; FL Moon; EA Aktan; A Sayama, Experimental Vibration Analysis for Structural Identification of a Long Span Suspension Bridge, (ASCE) Journal of Engineering Mechanics, 2013, 139(6): 748~759 (SCI/IF=1.764)

[7] WJ Zhao; SL Guo; Y Zhou; Jian Zhang(张建)*, A quantum-Inspired genetic algorithm-based optimization method for mobile impact test data integration, Computer-Aided Civil and Infrastructure Engineering , 2018, 33(5):411~422(SCI/IF=5.786)

[8] Jian Zhang (张建)*; CF Wan; T Sato, Advanced markov chain monte carlo approach for finite element calibration under uncertainty, Computer-Aided Civil and Infrastructure Engineering, 2013, 28(7):522~530(SCI/IF=5.786)

[9] YD Tian; Jian Zhang(张建)*; SS Yu; XY He, Human-excited Impact Testing and Identification of Footbridges using Computer Vision Technology, Computer-Aided Civil and Infrastructure Engineering2018(SCI/IF=5.786)Online Published

[10] Futao Ni; Jian Zhang (张建)*; Zhiqiang Chen, Zernike-moment Measurement of Thin-crack Width in Images Enabled by Dual-scale Deep Learning, Computer-Aided Civil and Infrastructure Engineering (SCI/IF=5.786)(Online Published)

[11] Jian Zhang(张建)*; SL Guo; X Chen, Theory of un-scaled flexibility identification from output-only data, Mechanical Systems and Signal Processing, 2014.3.11, 48(1-2): 232~246(SCI/IF=4.116)

[12] Z Chen; ZP Xie; Jian Zhang(张建)*, Measurement of vehicle-bridge-interaction force using dynamic tire pressure monitoring, Mechanical Systems and Signal Processing, 2018, 104: 370~383(SCI/IF=4.116)

[13] Jian Zhang (张建)*; Q Xia; YY Cheng; ZS Wu, Strain flexibility identification of bridges from long-gauge strain measurements, Mechanical System and Signal Processing, 2015.6.1, 62(0): 272~283(SCI/IF=4.116)

[14] PJ Li; ZZ Zhang; Jian Zhang(张建)*; Simultaneously Identifying Displacement and Strain Flexibility Using Long-gauge Fiber Optic Sensors, Mechanical System and Signal Processing,2019, 114:54-67 (SCI/IF=4.116)

[15] YD Tian; Jian Zhang(张建)*; YX Han; Structural Scaling Factor Identification from Output-only Data by a Moving Mass Technique, Mechanical System and Signal Processing, 2019,115:45-49 (SCI/IF=4.116)

[16] Jian Zhang(张建)*; T Sato; S Iai, Support vector regression for on-line health monitoring of large-scale structures, Structural Safety, 2006, 28(4): 392~406 (SCI/IF=2.990)

[17] Jian Zhang(张建)*; QQ Zhang; SL Guo; DW Xu; ZS Wu, Structural identification of short/middle span bridges by rapid impact testing: theory and verification, Smart materials and structures,2015, 24:1~12 (SCI/IF=2.909)

[18] Jian Zhang(张建)*; FL Moon, Novel structural flexibility identification in narrow frequency bands, Smart Materials and Structures, 2012, 21(12) (SCI/IF=2.909)

[19] Jian Zhang(张建)*; PJ Li; ZS Wu, A new flexibility-based damage index for structural damage detection, Smart Materials and Structures, 2013, 22(2):025037(SCI/IF=2.909)

[20] Jian Zhang(张建)*; FL Moon, A new impact testing method for efficient structural flexibility identification, Smart Materials and Structures, 2012.3.1, 21(21): 055~071(SCI/IF=2.909)

[21] YD Tian; PJ Li; Jian Zhang(张建)*, Ambient vibration test-based deflection prediction of a posttensioned concrete continuous box girder bridge, Structural Control & Health Monitoring , 2018, 25(2) (SCI/IF=2.355)

[22] QQ Zhang; Jian Zhang(张建)*; WH Duan; ZS Wu, Deflection distribution estimation of tied‐arch bridges using long‐gauge strain measurements, Structural Control & Health Monitoring, 2018, 25(3) (SCI/IF=2.355)

[23] Jian Zhang(张建)*; Sato T; S Iai, Novel support vector regression for structural system identification, Structural Control and Health Monitoring,2007.6, 14(4):609~626 (SCI/IF=2.355)

[24] Jian Zhang(张建)*; T Sato, Experimental verification of the support vector regression based structural identification method by using shaking table test data, Structural Control and Health Monitoring, 2008.6, 15(4): 505~517 (SCI/IF=2.355)

[25] Futao Ni; Jian Zhang(张建)*; Zhiqiang Chen, Pixel‐level crack delineation in images with convolutional feature fusion, Structural Control and Health Monitoring 2018,( SCI/IF=2.355)(Online Published)

[26] Jian Zhang(张建)*; SL Guo; ZS Wu; QQ Zhang, Structural identification and damage detection through long-gauge strain measurements, Engineering Structures, 2015, 99: 173~183(SCI/IF=2.258)

[27] YD Tian; Jian Zhang(张建)*; Q Xia; PJ Li, Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data, Engineering Structures, 2017, 146: 158~169(SCI/IF=2.258)

[28] Jian Zhang (张建)*; JC Xu; SL Guo; ZS Wu, Flexibility-based structural damage detection with unknown mass for IASC-ASCE benchmark studies, Engineering Structures, 2013, 48: 486~496 (SCI/IF=2.258)

[29] SL Guo; X Zhang; Jian Zhang(张建)*; Y Zhou; F Moon; A Aktan, Mobile impact testing of a simply-supported steel stringer bridge with reference-free measurement, Engineering Structures, 2018.3, 159(15): 66~74(SCI/IF=2.258)

[30] Jian Zhang(张建)*; T Sato; S Iai; TC Hutchinson, A pattern recognition technique for structural identification using observed vibration signals: linear case studies, Engineering Structures, 2008,30(5): 1439~1446(SCI/IF=2.258)


欢迎报考硕士生和博士生!