Structural Mechanics

Analytical and Numerical Approaches for Structural Analysis

Lingyi Lu[†]

School of Civil Engineering Southeast University, Nanjing, China

Junbo Jia

Aker Solutions, Bergen, Norway

Zhuo Tang National Wind Institute Texas Tech University, Lubbock, Texas, USA

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A SCIENCE PUBLISHERS BOOK First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data (applied for)

ISBN: 978-0-367-55912-0 (hbk) ISBN: 978-0-367-55915-1 (pbk) ISBN: 978-1-003-09569-9 (ebk)

DOI: 10.1201/9781003095699

Typeset in Times New Roman by Radiant Productions

In Memory of Professor Lingyi Lu

Preface

On 13th of July, 2019, I was informed about sad news of the passing away of Professor Lingyi Lu, after battling pancreatic cancer for more than half a year.

Just two days before this, I visited him at a hospital in Shanghai, and he informed me about the progress of this book and asked me to finalize it. Together with efforts of Dr. Zhuo Tang, a former PhD student of Prof. Lu, the book has finally been finished with a maximum preservation of Professor Lu's academic thoughts.

This book covers essential topics on structural mechanics and dynamics. It is mainly based on the contents of an undergraduate course in structural mechanics taught by Professor Lu at Southeast University, from the 1990s in the last century to 2019, and is an important contribution of Professor Lu's lifetime academic and pedagogic activities that he has been deeply engaged in, reflecting the forefront education status of structural mechanics in China during that period.

Modern structural mechanics originated from Galileo Galilei, Isaac Newton, and Robert Hooke. It is the computation of deformations, deflections, and internal forces or stresses within structures, either for design or for performance evaluation of existing structures. With the objective of providing principles of structural mechanics, topics covered in this book include both basic and advanced ones. Basic topics include geometric stability, internal forces and deflections of statically determinate structures, force and displacement method, and influence lines. Advanced topics include matrix displacement method for structural analysis, dynamics of structures, and limit load analysis.

The book serves as a classroom textbook in structural mechanics. It is written in such a way that it can be followed by anyone with a basic knowledge of classical and material mechanics.

While the book does not seek to promote any specific "school of thought," it inevitably reflects the authors' best practices and working habits. This is particularly apparent in the topics selected and the level of detail devoted to each of them, the choice of mathematical treatments and symbolic notations. It should not deter readers from seeking to find their own best practices and working habits.

Many individuals have provided valuable supports to finalize the book. Those contributions come from the family members of Professor Lu: his wife, Professor Hong Zhuang, and his daughter, Hongling Lu, and from his former students: Hongsheng Wang, Jie Zhang, Yuanzhi Liu, Min Chen, and Wensong Hu.

Preface v

Professor Gang Wu from Southeast University has inquired about the book status several times and expressed an inspiring encouragement on behalf of Southeast University.

When I visited Professor Lu in the hospital in his last stage, he had requested me to write a preface for this book, as both his friend and former undergraduate student, I came up with this preface with emotion, and with a deep memory of my undergraduate study at Southeast University, that has had a strong influence on my life and career after I left the University. Hope this book will be useful for both students and academic professionals.

Junbo Jia

Contents

Preface	iv
1. Geometric Stability and Types of Structures	1
1.1 Classifications of Structural Members and Connections	1
1.2 Introduction to Geometrically Stable and Unstable Systems	5
1.3 Rigid Degrees of Freedom and Constraints	6
1.4 Rules for Constructing Geometrically Stable Systems	9
1.4.1 Two-Body Rule	9
1.4.2 Three-Body Rule	11
1.4.3 The Dual-Link Rule	12
1.4.4 The Simply-Supported Rule	14
1.5 Examples of Geometric-Stability Analysis	16
2. Internal Forces in Statically Determinate Structures	22
2.1 Analysis of Beams and Frames	22
2.1.1 Properties of Moment Diagrams	22
2.1.2 Constructions of Moment Diagrams by the Superposition	24
Method in Segments	
2.1.3 Calculations of Internal Forces through Moment Diagrams	29
2.1.4 Analysis of Frames	30
2.2 Analysis of Trusses and Composite Structures	36
2.2.1 Introduction	36
2.2.2 Analysis of Statically Determinate Trusses	36
2.2.3 Analysis of Statically Composite Structures	39
2.3 Analysis of Statically Determinate Arches	40
2.3.1 Comparison of Internal Forces in Arches and the	40
Corresponding Beams 2.3.2 The Ideal Axis of Parabolic Arch	42
2.5.2 The Ideal Axis of Falabolic Alch	42
3. Deflections of Statically Determinate Structures	45
3.1 Virtual-Work Principle for Rigid Bodies and Its Applications	45
3.1.1 Work and Virtual Work	45
3.1.2 Principle of Virtual Displacements for Rigid Bodies	46
3.1.3 Principle of Virtual Forces for Rigid Bodies	49
3.2 Principle of Virtual Forces for Elastic Structures	51

|--|

3.	.3 Deflections Caused by External Loads	53
	3.3.1 Calculation of Structural Displacements to Loads by the Unit-Load Method	53
	3.3.2 Graphic Multiplication and Its Applications	56
4. F	orce Method	62
4	1 Statically Indeterminate Structures	62
	.2 General Procedure of the Force Method	63
4	3 Analysis of Statically Indeterminate Structures under Loads	66
4	4 Symmetric Structures and Their Half-Structures	68
	4.4.1 Symmetry of Structures, Loads and Responses	68
	4.4.2 Half-Structures of Symmetric Structures	71
4	5 Analysis of Statically Indeterminate Structures Having Thermal	78
	Changes, Fabrication Errors and Support Settlements	
4	6 Deflections of Statically Indeterminate Structures	80
5. D	Displacement Method	85
5.	1 Beams with Support Displacements and Slope-Deflection Equations	85
	2 Displacement Method for Analyzing Frames under Nodal Loads	87
	5.2.1 The Procedure Using Slope-Deflection Equations	87
	5.2.2 The Procedure Directly Using Primary Systems	88
	5.2.3 Unknown Degrees of Freedom of the Displacement Method	89
5	3 The Analysis of Frames Under In-Span Loading	93
	5.3.1 Fixed-End Forces	93
	5.3.2 Processing of In-Span Loads and Nodal Equivalent Loads	95
5.	4 Examples of Frames with In-Span Loads	98
5.	.5 Moment Distribution Approach	103
	5.5.1 Moment Distribution Approach for SDOF Structures	103
	5.5.2 Moment Distribution Approach for MDOF Beams	105
6. I	nfluence Lines for Statically Determinate Structures	112
6	1 Introduction	112
6	2 Influence Lines for Beams	112
	6.2.1 Constructing Influence Lines by the Principle of Virtual Displacements	113
6	3 Influence Lines for Trusses	115
6	4 Maximum Response at a Specific Point	116
	6.4.1 Maximum Response at a Point under Live Loads	116
	6.4.2 Maximum Response at a Point under a Set of Concentrated Moving Loads	117
6	5 Moment Envelopes and Absolute Maximum Moments of Members	119
	6.5.1 Definition of Moment Envelope	119
	6.5.2 Moment Envelopes of Beams under Moving Loads	120

7. Matrix Displacement Analysis	124
7.1 An Introductory Example	124
7.1.1 A Beam Element Type with Two Degree-of-Freedoms (DOFs) – Beam1	124
7.1.2 Pre-processing – Discretizing and Digitizing of the Continuous Beam	125
7.1.3 Calculate the Element Stiffness Matrices of the Continuous Beam	126
7.1.4 Assembling Stiffness Equation of the Structure by the Direct Stiffness Method	126
7.1.5 Solving and Post-processing	128
7.1.6 MATLAB Codes – Beam1 Package	129
7.2 Boundary Conditions and the Beam Element with Six DOFs	129
7.2.1 Analyzing an Unrestrained Continuous Beam by Beam2 Element	129
7.2.2 Post-Imposing of Boundary Conditions and Support Settlements	134
7.3 Frames Subjected to Nodal Loading - Change of Coordinates	142
7.3.1 Introduction	142
7.3.2 Change of Coordinates	142
7.3.3 Element Stiffness Matrices in Global Coordinates and the Assembling Rules	144
7.3.4 Analysis of the Frames Subjected to Nodal Loads	145
7.4 Frames Subjected to In-span Loads and Equivalent Nodal Loads	152
7.4.1 The Equivalent Nodal Loads	152
7.4.2 The Stiffness Equation of the Structure	156
7.4.3 The End Displacement and Forces of the Structure	157
8. Dynamics of Structures	159
8.1 Introduction to Structural Dynamics	159
8.1.1 What is Structural Dynamics?	159
8.1.2 Models for Dynamic Analysis	160
8.1.3 Equations of Motion and Initial Conditions	162
8.1.4 Free Vibrations and Dynamic Properties	164
8.1.5 Dynamic Responses to External Excitations	165
8.1.6 Summary	167
8.2 Equations of Motion	167
8.2.1 Stiffness Method: The Dynamic-Equilibrium Procedure	167
8.2.2 Stiffness Method: The Virtual Constraint Approach	170
8.2.3 Flexibility Method to Formulate Equations of Motion	176
8.2.4 Stiffness Method: The Matrix Displacement Approach and Static Condensation	179
8.2.5 Damping in Structures	188

viii Structural Mechanics: Analytical and Numerical Approaches for Structural Analysis

ntents i

8.3 Dynamic Properties of Structures	191
8.3.1 Vibrations of SDOF Systems: Natural Frequency and	191
Damping Ratio	100
8.3.2 Undamped Free Vibrations of MDOF Systems: Normal Modes	198
8.3.3 Properties of Modes	202
8.3.4 Rayleigh Damping Matrix	205
8.4 Analysis of Dynamic Responses Using the Mode	207
Superposition Method	
8.4.1 Transient Responses of Uncoupled MDOF Systems to Combined Excitations	207
8.4.2 Steady-State Responses of Uncoupled MDOF Systems to Combined Excitations	212
8.4.3 Responses of Coupled MDOF Systems: Mode	215
Superposition Method	
8.5 *Analysis of the Dynamic Response Using the MATLAB ODE Solver: "ode45"	221
8.6 Steady-State Responses to Separable Excitations	222
8.6.1 Response Spectra	224
8.6.2 Peak Responses to Separable Excitations and Modal Combination Rules	225
8.7 Appendix for Structural Dynamics	227
8.7.1 Steady-State Responses to Space-time Coupled Excitations	227
9. Limit Loads of Structures	231
9.1 Introduction	231
9.2 Theorems of Plasticity	235
9.3 Applications of the Upper Bound Theorem	236
9.4 Limit Analysis by Linear Programing	240
Appendix	245
Index	247

x Structural Mechanics: Analytical and Numerical Approaches for Structural Analysis