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• Pure Bending vs. Nonuniform Bending（纯弯曲与横力弯曲）

• Assumptions for Pure Bending（纯弯曲基本假设）

• Neutral Surface & Neutral Axes（中性层与中性轴）

• Kinematics（几何关系）

• Hooke’s Law（物理关系）

• Static Equivalency（静力等效关系）

• Pure Bending Normal Stress Formula（纯弯曲正应力公式）

• Normal Stress Strength Condition（正应力强度条件）

• Stress Concentrations（应力集中）

• Bending of a Composite Beam（复合梁弯曲）

• Bending of a Curved Beam（曲梁弯曲）
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• Shearing Stresses in a Rectangular Beam（矩形梁切应力）

• Effect of Shearing Stress/Strain（切应力和切应变效应）

• Shearing Stresses in a Wide-flange Beam（宽翼缘梁切应力）

• Shear Flow in a Thin-walled Beam（薄壁梁剪力流）

• Shearing Stresses in a Circular Beam（圆截面梁切应力）

• Shearing Stresses in an Equilateral Triangular Beam（等边三角梁
切应力）

• Shearing Stress Strength Condition（切应力强度条件）

• Rational Design of Beams（梁的合理设计）

• Nonprismatic and Constant-strength Beams（非等直梁和等强度梁）

• Unsymmetric Loading of Thin-Walled Members and Shear Center

（薄壁梁的非对称弯曲与剪力中心）
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S 0 constF M ，

• Pure bending (CD)

S 0 0F M≠ ， ≠

• Nonuniform bending (AC & DB)

Pure Bending vs. Nonuniform Bending
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• Before:

• After:

Deformation Characteristics

• Straight longitudinal lines turns into curves.

• Longitudinal lines get shortened under compression  and lengthened 

under tension.

• Cross-section lines remain straight and perpendicular to longitudinal 

curves.
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• Assumption of uniaxial stress state: individual 

longitudinal layers are under uniaxial 

tension/compression along beam axis, without 

stresses acting in between.

• Plane assumption: under pure bending, cross-

sections of beams remain planar and 

perpendicular to beam axis and only rotate a small 

angle.

Assumptions for Pure Bending
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• Neutral Axes: intersecting lines of the neutral surface & cross 

sections.

Neutral Surface & Neutral Axes

• Neutral Surface the longitudinal layer under neither tension nor 

compression.

Neutral Axis

Neutral Surface

z

Neutral Surface

Neutral Axis

z

• Before:

• After:

7



ba

1 2

1 2

o1 o2

y

 
( )y d d

y
d

y

   


 



 



Neutral 

Surface

1

2

2

ρ

dθ

o1 o2

a b

Kinematics

8

• The y-coordinate is 

measured from the proposed 

neutral axis.

y

z



• Normal stress acting on a longitudinal layer is linearly proportional 

to its distance from the neutral surface, positive for layers under 

tension / negative for layers under compression.

• Remark: the above equation can only be used for qualitative analysis 

of stresses in bending beams since it is difficult to measure the 

curvature of radius (ρ) of individual longitudinal layers.

Hooke’s Law
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• Neutral axis passes through the centroid:

EIz : flexural rigidity
2

z
A

I y dA  : second moment of cross-section w.r.t. z.

i i

i

y A y A
• for an arbitrarily defined y-coordinate:

Static Equivalency
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• Normal stress on cross-sections:

: bending section modulus

• Maximum normal stress on cross-sections:

.z zM y I 

max 2z z zW I y I h 

max maxz z z zM y I M W  

Pure Bending Normal Stress Formula
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• The neutral axis passes through the centroid of the cross-sectional 

area when the material follows Hooke’s law and there is no axial 

force acting on the cross section.

• Our discussion is limited to beams for which the y axis is an axis of 

symmetry. Consequently, the origin of coordinates is the centroid.

• Because the y-axis is an axis of symmetry, it follows that the y-axis 

is a principal axis. So is the z-axis.

• Remarks:



• A strain gauge is placed under cross-section C of a simply supported 

beam shown. Under the concentrated load P, the strain gauge reads ε

= 6× 10-4. Find the magnitude of P for E = 200 GPa.

Sample Problem
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• Solution:

3 4200 10 6 10 120 MPa

640 N m

0.5 0.5 0.4 0.2 640 N m

3.2 kN

C
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• Solution: 

• Find the support position (a) at the condition of minimum 

“maximum normal stress” for the overhanging I-beam shown below, 

under uniformly distributed load q.

2A BF F ql 
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Sample Problem

1. reaction force at the 

supports. Due to symmetry:

2. Equation of bending 

moments:
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• Equating the absolute 

value of the negative and 

positive moment 

extremities results in 

minimum bending 

moments and hence 

minimum “maximum 

normal stress.”

3. Diagram of bending moments:
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• Find the maximum tensile and compressive stress in the T-beam 

shown below.

2.2 m 1 m

q = 10 kN/m
20 mm

20 mm

80 mm

120 mm

y1

z

z1

y

1. Centroid (neutral surface, neutral axis):

 80 20 10 20 120 60+20
52 mm
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By the Parallel Axis Theorem:

4644

2
3

2
3

z

m107.64mm10764

528012020
12

12020
10522080

12

2080
I









 )()(

2

' 'z z zzI I Ad 

2. Moment of inertia:

Sample Problem

• Solution:
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A
D B C

3.8 kNm

5 kNm

-

+

xD = 0.87 m

4. Maximum normal stress (At cross-section B)
3 -3

6

max -6

3 3
6

max 6

( 5 10 ) ( 52 10 )
34 10 Pa 34 MPa

7.64 10

( 5 10 ) [(140 52) 10 ]
57.6 10 Pa 57.6 MPa

7.64 10
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3. Reaction forces and diagram of 

bending moments
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A
D B C

3.8 kNm

5 kNm

-

+

xD = 0.87 m

3 3
6
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3 3
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(3.8 10 ) [(140 52) 10 ]
43.8 10 Pa 43.8 MPa

7.64 10

(3.8 10 ) [ 52 10 ]

7.64 10















   
   



   




• Maximum tensile stress: lower edge of cross-section D (43.8 MPa).
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• Maximum compressive stress: lower edge of cross-section B (-57.6 

MPa).

5. Maximum normal stress (At cross-section D)

6. Maximum normal stress



• For brittle materials

• For ductile materials

Normal Stress Strength Condition

 max
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• The maximum positive and negative bending moments in a beam 

may occur at the following places: (1) a cross section where a 

concentrated load is applied and the shear force changes sign, (2) a 

cross section where the shear force equals zero, (3) a point of support 

where a vertical reaction is present, and (4) a cross section where a 

couple is applied.



• Three types problem that are 

typically addressed by strength 

analysis: 
Strength check

Cross-section design

Allowable load

• The maximum tensile stress and the maximum compressive stress 

sometimes don’t occur on the same cross-section.

Remarks on Strength Condition

• Usually, the allowable bending stress is slightly higher than the 

allowable uniaxial tensile/compressive stress. This is because the 

bending stress only takes extremities at the upper/lower edges of 

bending beams while the maximum axial stress is uniformly 

distributed on bar cross-sections. 
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• The dimension and material of the two cantilever beams shown are 

identical. Find the allowable load ratio of these two beam based on 

the normal stress strength condition: P1/P2 = ?

Sample Problem

21



• Solution：

max 1 1 1
max 1 3 2

1

max 2 2
max 2 2

2

1
max 1 max 2

2

12 2 6
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• Two identical rectangular beams are placed together and subjected to 

a concentrated load as shown. Find the allowable load [P] if the 

allowable normal stress is given as []. What is [P] if the two beams 

are pinned together?

b

2
h

2
h

l

P P

Sample Problem
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• Solution

 
2 2

1

2

6 24

b h bh
W  

1. when the beams are not pinned together, each beam has its 

own neutral surface and carries half of the bending moments.
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2. After the beams are pinned, there exists only one neutral surface
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• It can be seen that the load carrying ability are doubled after pinning.
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• In ancient China, the typical aspect ratio of the cross-section of 

rectangular beams is given as h:b = 3:2. If beams were made from 

circular trees, employing the strength theory prove that the above 

ratio is close to the optimal aspect ratio. 

• Proof

h

b

222 dhb 
2 2 2( )

6 6
z
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W


 

2 2

0        2
6 2 3

zW d b d h
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Sample Problem

Optimal aspect ratio means that Wz

achieves the maximum value.
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• Given P = 20 kN, [] = 140 MPa. Compare the material 

consumption for the following three types of cross-sections: (1) 

rectangle with h/b = 2; (2) circle; (3) I-shaped.

Diagram of bending moment.

P = 20 kN

1 ml  
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3 3max
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(1) For rectangular cross-section
2

2

1 72 cm
6

z

bh
W A  

Sample Problem

• Solution:

-20 kN.m

x

M
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(2) For circular cross-section

3
2

211.3 cm       100 cm
32

z

d
W d A


    

(3) For I-shaped cross-section

Check the table for I-beam:

• I-beam consumes the least material while circular beam costs the 

most.

• The maximum stress in the I-beam exceeds the maximum allowable 

stress less than 5%. This is allowable in engineering practice.

3 2

3141cm 26.1cmzW A  
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• For the casting iron T-beam shown, the allowable tensile stress [+]

= 30 MPa, allowable compressive stress [ -] = 60 MPa, moment of 

inertia Iz = 7.63× 10-6 m4. Analyze the strength condition.

• Solution:

M

A

4 kN.m

C B D

2.5 kN.m

Sample Problem

Diagram of bending moment. 29
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• For cross-section C:

• For cross-section B:

• The strength condition of the beam is satisfied.
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• For the T-beam shown below, the allowable tensile and compressive 

stress are given as [σ+] and [σ -] respectively. Find the optimal ratio 

for y1/y2. (C denotes the centroid of the beam cross-section.)

C

y1

y2

z

A

P

Sample Problem
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• Solution:

max 1
max

max 2
max

1max

2max
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• The maximum bending moment occurs at the fixed end A. Make the 

upper and lower edge of cross-section A reach [σ+] and [σ -] 

simultaneously:
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Stress Concentrations

Stress concentrations may occur:

• in the vicinity of points where the loads are applied
max

max

z

z

M
K

W


 
  

 

• in the vicinity of abrupt changes in cross section

Stress-concentration factors for flat 

bars with fillets under pure bending

Stress-concentration factors for flat 

bars with grooves under pure bending
33



Bending of a Composite Beam

Bimetallic beam Reinforced concrete Beam Sandwich beam

;        
y y

E E  
 

  

• At the contact surface the 

stresses in the two materials are 

different.

• The y-coordinate is measured 

from the proposed neutral axis.
34

Wood-steel beam



Bending of a Composite Beam
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• Bending stress & Moment-curvature relationship
2 1 1
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.i i i i i

i i

y E A y E A • For an arbitrarily defined y-coordinate:

• This equation determines the exact position of neutral axis.



Approximate Theory for a Sandwich Beam
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• Provided that: 1 2E E

1 1

2 2

72 3
18

0.8 15

z

z

E I

E I
  

• If E1 = 72 Gpa (Al), E2 = 800 Mpa (Plastic), 2t/hc = 1/15: 
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• Provided that: 1 1 2 2z zE I E I

• A conservative theory.
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Sample problem

• Determine the maximum normal stress in 

the faces (Al, E1 = 72 Gpa) and the core 

(E2 = 800 Mpa ) using: (a) the general 

theory for composite beams, and (b) the 

approximate theory for sandwich beams. M

= 3.0 kN-m.

• (a) the general theory

• (b) the approximate theory

• Solution: 

 

 
 

 
 

3 3 12 4 12 4

1 2

3 2

1 1 2 2

1 2

1 2max max
1 1 2 2 1 1 2 2
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2 2
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z z z z

b
I h h I

E I E I

E M h E M h

E I E I E I E I
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Sample problem

• Calculate the largest tensile and compressive 

stresses in the wood (E1 = 1500 ksi)  and the 

maximum and minimum tensile stresses in the 

steel (material E2 = 30,000 ksi) M = 60 kip-in.

     1 1 1 2 2 2 1 2

1 2

1 2

0 1500 4 6 3 30000 4 0.5 0.25

6.25

                               5.031 in,     1.469 in

E A y E A y h h

h h

h h

        


  
  



• Solution: 

   
 

 
 

 

 

 

1 21 1
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1 1 2 2 1 1 2 2

2 2 2 2
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2 2

1

0.5
1.31 ksi,   0.251 ksi

0.5
5.030 ksi  7.62 ksi
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20
C


• Neutral axis: 

• Stresses along line A, C and B
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Bending of a Curved Beam

• Change of arc length:    JK r r y y y                 

• Longitudinal strain:
JK y y r

JK r y r

   


   

    
   



• Hooke’s law:
y E y E r E

E
r y r

   
 

   

   
   



   • Length of neutral surface remain unchanged: 

• Geometry
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• Neutral axis:

Bending of a Curved Beam

1

A
r rdA

A
 • Distance between C and centroid:

• Static equilibrium and bending stress

40



• The change in curvature of the neutral surface :

Bending of a Curved Beam

   
1 1
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1 1z zM
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• Radius of neutral surface for various cross-sectional shapes..
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• Determine the largest tensile and compressive stresses for a 

curved rectangular bean shown below, knowing that

2

2
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• It is necessary to calculate ρ with enough significant figures in order 

to obtain the usual degree of accuracy.

Sample Problem

2.5 in.,  1.5 in.,  6 in.,  8 kip in., 1500 ksi.b h r M E     

• Solution: 
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• Stresses approximated by the 

theory for a straight bar:

  

 

 

 

 

max

min

6.75 7.86 ksi

5.25 9.30 ksi
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• Largest tensile and compressive stresses

 
1 1

0.00758866zM

EA r   
  
 

• The change in curvature of the neutral surface :
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Shearing Stresses due to Transverse Loads

• If friction among beams is small, they will bend independently.

• The bottom surface of the upper beams will slide with respect to 

the top surface of the lower beams.

• Horizontal shearing stresses must develop along the glued 

surfaces in order to prevent the sliding. 

• Because of the presence of these shearing stresses, the single solid 

beam is much stiffer and stronger than the separate beams. 44



• Two assumptions:

Shearing Stresses in a Rectangular Beam

- Shearing stresses acting on the cross section are parallel to shear 

force.

- Shearing stresses are uniformly distributed across the width of the 

beam, although they may vary over the height.
45
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Shearing Stresses in a Rectangular Beam

• Horizontal shear forces/stresses

46
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Shearing Stresses in a Rectangular Beam

• Vertical shearing stresses:

• If the width of the beam is comparable or large 

relative to its depth, the shearing stresses at C1 and 

C2 are significantly higher than their midpoint.

• Theory of elasticity shows that, for h  4b, the 

maximum shearing stress does not exceed by more 

than 0.8% than the average value.
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• If the shear force is constant along beam axis, warping is the same at 

every cross section.

Effect of Shearing Stress/Strain
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• In portions of the beam located under a distributed or concentrated 

load, normal stresses will be exerted on the horizontal faces of a 

cubic element of material, in addition to the stresses.



• Uniaxial stress state is violated due to the existence of 

shearing stress..

• Plane hypothesis is violated due to the existence of shear 

strain.

• The error involved, however, is small for the values of 

the span-depth ratio encountered in practice.

• Warping does not substantially affect the longitudinal 

strains even when the shear force varies continuously along 

the length. 

• Thus, under most conditions it is justifiable to use the 

flexure formula for nonuniform bending, even though the 

formula was derived for pure bending.

Effect of Shearing Stress/Strain

49



Shearing Stresses in a Wide-flange Beam

• The shearing stresses in the web of a wide-flange beam act only in 

the vertical direction and are larger than the stresses in the flanges. 

• The shearing stresses in the flanges of the beam act in both vertical 

and horizontal directions.

• The shear formula cannot be used to determine the vertical shearing 

stresses in the flanges.

• However, the shear formula does give good results for the shearing 

stresses acting horizontally in the flanges.
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• Shear force in the web

• For beams of typical proportions, shear force in the web is greater than 90% of the 

total shear force; the remainder is carried by shear in the flanges.
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Shearing Stresses in a Wide-flange Beam



52

y

z

b

h

t

h1

y

Flange

Web

 

   

 

1

2
2

*
2 2S S

2 2S
max 1 1

min

2 4

4
8

2
8

2 0

z
A

z

z z

z

b h
S ydA y

F S F
bh by

I I

F
y h bh bh

b

I

b

h

b

y



 

 

  
   

 

  


    

 
    



• Discontinuities exist along the web/flange boundaries.

• The ratio between the minimum shearing stress in the web and the maximum stress 

in the flange is b/t.

• In practice, one usually assumes that the entire shear load is uniformly carried by 

the web ( = FS/Aweb).

• We should note, however, that while the vertical shearing stress in the flanges 

can be neglected, its horizontal component has a significant value that will be 

determined as follows.

Shearing Stresses in a Wide-flange Beam

tf



• Consider a segment of a wide-flange beam 

subjected to the vertical shear FS.

   z z S z

z z

dM S F dx S
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I I
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• The corresponding average shearing stress

• NOTE: 0xy

0xz

in the flanges

in the web

• Previously found a similar expression for 

the shearing stress in the web
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• The longitudinal shear force on the vertical cut

Shearing Stresses in a Wide-flange Beam
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Shearing Stresses in a Wide-flange Beam



• For a wide-flange beam, the shear flow 

increases symmetrically from zero at A

and A’, reaches a maximum at C and the 

decreases to zero at E and E’. 

• The continuity of the variation in f and 

the merging of f from section branches 

suggests an analogy to fluid flow.

Shear Flow in a Wide-flange Beam

SF

2 12f f

1f1f

1f 1f

2 12f f

• The variation of shear flow across the 

section depends only on the variation of 

the first moment.

ave
S z

z

F S
f t

I




 

• The sense of f in the horizontal portions 

of the section may be deduced from the 

sense in the vertical portions or the 

sense of the shear FS.
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• For a box beam, f grows 

smoothly from zero at A to a 

maximum at C and C’ and then 

decreases back to zero at E.

Shear Flow in a Box Beam

SF

ff
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Shear Flow in a Thin-walled Beam

• The shearing stress formulae can be used to determine shearing 

stresses in thin-walled beams, as long as the loads are applied in a 

plane of symmetry of the member.

• In each case, the cut must be perpendicular to the surface of the 

member, and the shearing stress formulae will yield the component 

of the shearing stress in the direction of the tangent to that surface.

• The other component may be assumed equal to zero, in view of the 

proximity of the two free surfaces.
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Shear Flow in a Thin-walled Beam

• Horizontal shearing stress

• Shear flow
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Knowing that the vertical shear 

is 50 kips in a rolled-steel beam, 

determine the horizontal 

shearing stress in the top flange 

at the point a.

SOLUTION:

• For the shaded area

    34.31in 0.770in 4.815in 15.98inzS  

• The shearing stress at a

  
  

3

4

50kips 15.98in
2.63ksi

394in 0.770in

S z

z

F S

I t




  

Sample Problem – Shearing Stresses in Flanges

4394inzI 
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• A beam is made of three planks, nailed together.  

Knowing that the spacing between nails is 25 mm and 

that the vertical shear in the beam is FS = 500 N, 

determine the shear force in each nail.

Sample Problem – Shear Force in a Web

   6 3

6 4

6 3

-6 4

0.020m 0.100m 0.060m 120 10  m

16.20 10  m

(500N)(120 10 m ) N3704
m16.20 10 m
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S z

z

S Ay

I

F S
f
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SOLUTION:

• Determine the horizontal force per unit length or shear 

flow f on the lower surface of the upper plank.

• Calculate the corresponding shear force in 

each nail for a nail spacing of 25 mm.

 0.025 0.025 3704 92.6 NF f  
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A square box beam is constructed 

from four planks as shown.  

Knowing that the spacing between 

nails is 1.5 in. and the beam is 

subjected to a vertical shear of 

magnitude FS = 600 lb, determine 

the shearing force in each nail.

SOLUTION:

• Determine the shear force per 

unit length along each edge of 

the upper plank.

• Based on the spacing between 

nails, determine the shear 

force in each nail.

Sample Problem – Shear Force in Flanges
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• For the upper plank

    30.75in. 3in. 1.875in. 4.22inzS A y   

• For the overall beam cross-section

   
4 4 41 1

12 12
4.5in 3in 27.42inzI   

SOLUTION:

• Determine the shear force per 

unit length along each edge of 

the upper plank.

  3

4

600lb 4.22in lb
2 92.3

27.42in in

lb
46.15

in

S z

z

F S
f

I

f



  

 

• Based on the spacing between 

nails, determine the shear 

force in each nail.

 
lb

46.15 1.5in 69.225lb
in

F f
 

   
 



Sample Problem – Shear Force in Flanges
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Shearing Stresses in a Circular Beam

• The shearing stresses can no longer be 

assumed parallel to the y-axis.

• On the boundary of the cross section, the 

shearing stress must act tangent to the 

boundary.

• Only the neutral axis is an exception.

- Shearing stresses are concurrent at the intersection of boundary 

tangent and y-axis.

- The projection of shearing stresses on y-axis are uniformly 

distributed across the width of the beam.

z

τmax

y

d
y

y’

A

• However, at a horizontal line we 

may further assume:
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Shearing Stresses in a Circular Beam
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Shearing Stresses in a Hollow Circular Beam
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• Solid circular cross-sections 

• Hollow circular cross-sections 
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• For a thin-walled circular beam: 
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Shearing Stresses in an Equilateral Triangular Beam
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• Although the theory for maximum shearing stresses in beams is 

approximate, it gives results differing by only a few percent from 

those obtained using the exact theory of elasticity.
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Shearing Stress Strength Condition
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• Solution

• Diagram of shearing 

forces & bending 

moments 

SF
40 kN

40 kN

40 kN m
M

• A circular beam is subjected to 

a uniformly distributed load q

= 20 kN/m. The allowable 

normal and shearing stresses 

are [σ] = 160 Mpa, [τ] = 100 

MPa. Find the minimum 

required beam diameter.

A B

4 m

20 kN/m

Sample Problem
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• For normal stress:

3
6max

max 3

40 10
[ ] 160 10

π

32
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• For shearing stress:

min 137mmd 
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• Normal stress plays the most important role in satisfying the strength 

condition of beams under bending.

max

z max

[ ]zM

W
 

 
  
 

• Minimize the maximum bending moments by proper arrangements 

of the form and position of loading and constraints.

Rational Design of Beams

• Proper design of cross-sections to maximize bending section 

modulus. 
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Rational Design of Loads & Constraints
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Rational Design of Cross-sections

• Among beam section choices which have an acceptable section 

modulus, the one with the smallest weight per unit length or cross 

sectional area will be the least expensive and the best choice. 72



• For materials with [+] = [ -], symmetric cross-sections may be 

used such that the maximum tensile and compressive stress are 

equal in magnitude at the upper/lower edges.

• For materials with [+] < [ -], i.e. casting irons, cross-sectional 

neutral axis should deviate toward the tensile side.
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Symmetry vs. Asymmetry
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• The maximum normal stress stays the same for every cross-section.

 max max
( ) ( ) [ ]M x W x  

Nonprismatic and Constant-strength Beams
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Unsymmetric Loading of Thin-Walled Members

• Beams loaded in a vertical 

plane of symmetry result in 

deforms in the symmetry 

plane without twisting.

• Beams without a vertical 

plane of symmetry bend 

and twist under transverse 

loading.
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z z
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• When the force P is applied at a 

distance e to the left of the web 

centerline (shear center), the member 

bends in a vertical plane without 

twisting.

• If the shear load is applied such that the 

beam does not twist, then the shearing 

stress distribution satisfies

• F and F’ indicate a couple Fh and the 

need for the application of a torque as 

well as the shear load. 

VehF 

Unsymmetric Loading of Thin-Walled Members
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• Determine the location for the shear center of 

the channel section with b = 4 in., h = 6 in., 

and t = 0.15 in.

• Determine the shearing stress distribution for 

FS = 2.5 kips applied at the shear center.

• Solution

Sample Problem
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• The maximum shearing stress in the flanges

• The maximum shearing stress in the web

• Determine the shearing stress distribution for 

FS = 2.5 kips applied at the shear center.
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• Pure Bending vs. Nonuniform Bending（纯弯曲与横力弯曲）

• Assumptions for Pure Bending（纯弯曲基本假设）

• Neutral Surface & Neutral Axes（中性层与中性轴）

• Kinematics（几何关系）

• Hooke’s Law（物理关系）

• Static Equivalency（静力等效关系）

• Pure Bending Normal Stress Formula（纯弯曲正应力公式）

• Normal Stress Strength Condition（正应力强度条件）

• Stress Concentrations（应力集中）

• Bending of a Composite Beam（复合梁弯曲）

• Bending of a Curved Beam（曲梁弯曲）

Contents
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• Shearing Stresses in a Rectangular Beam（矩形梁切应力）

• Effect of Shearing Stress/Strain（切应力和切应变效应）

• Shearing Stresses in a Wide-flange Beam（宽翼缘梁切应力）

• Shear Flow in a Thin-walled Beam（薄壁梁剪力流）

• Shearing Stresses in a Circular Beam（圆截面梁切应力）

• Shearing Stresses in an Equilateral Triangular Beam（等边三角梁
切应力）

• Shearing Stress Strength Condition（切应力强度条件）

• Rational Design of Beams（梁的合理设计）

• Nonprismatic and Constant-strength Beams（非等直梁和等强度梁）

• Unsymmetric Loading of Thin-Walled Members and Shear Center

（薄壁梁的非对称弯曲与剪力中心）
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